Vis enkel innførsel

dc.contributor.authorHedger, Richard David
dc.contributor.authorGosselin, Marie-Pierre
dc.date.accessioned2023-11-17T10:50:26Z
dc.date.available2023-11-17T10:50:26Z
dc.date.created2023-08-01T15:14:13Z
dc.date.issued2023
dc.identifier.citationRivers Research and Applications: an international journal devoted to river research and management. 2023, 1-13.en_US
dc.identifier.issn1535-1459
dc.identifier.urihttps://hdl.handle.net/11250/3103179
dc.description.abstractMapping fluvial hydromorphology is an important part of defining river habitat. Mappingvia field sampling or hydraulic modelingis however time consuming, and mappinghydromorphology directly from remote sensing data may offer an efficient solution.Here, we present a system for automated classification of fluvial hydromorphologybased on a deep learning classification scheme applied to aerial orthophotos. Usingselected rivers in Norway, we show how surface flow patterns (smooth or rippled sur-faces vs. standing waves) can be classified in imagery using a trained convolutional neu-ral network (achieving a training and validation accuracy of >95%). We show howintegration of these classified surface flow patterns with information on channel gradi-ent, obtained from airborne topographic LiDAR data, can be used to compartmentalizethe rivers into hydromorphological units(HMUs) that represent the dominant flow fea-tures. Automated classifications were broadly consistent with manual classifications thathad been made in previous ground surveys, with equivalency in automated and manu-ally derived HMU classes ranging from 61.5% to 87.7%, depending on the river stretchconsidered. They were found to be discharge-dependent, showing the temporallydynamic aspect of hydromorphology. The proposed system is quick, flexible, generaliz-able, and provides consistent classifications free from interpretation bias. The deeplearning approach used here can be customized to provide more detailed information onflow features, such as delineating between standing waves and advective diffusion ofair bubbles/foam, to provide a more refined classification of surface flow patterns, andthe classification approach can be furtheradvanced by inclusion of additional remotesensing methods that provide further information on hydromorphological features.en_US
dc.language.isoengen_US
dc.rightsNavngivelse-Ikkekommersiell 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/deed.no*
dc.subjectaerial orthophotosen_US
dc.subjectCNNsen_US
dc.subjecthydromorphologyen_US
dc.subjectLiDARen_US
dc.subjectmappingen_US
dc.titleAutomated fluvial hydromorphology mapping from airborne remote sensingen_US
dc.title.alternativeAutomated fluvial hydromorphology mapping from airborne remote sensingen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.rights.holder© 2023 The Authorsen_US
dc.subject.nsiVDP::Matematikk og Naturvitenskap: 400::Zoologiske og botaniske fag: 480en_US
dc.source.pagenumber1889–1901en_US
dc.source.volume39en_US
dc.source.journalRivers Research and Applications: an international journal devoted to river research and managementen_US
dc.identifier.doi10.1002/rra.4186
dc.identifier.cristin2164324
dc.relation.projectEgen institusjon: Norwegian institute for nature research (NINA)en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse-Ikkekommersiell 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse-Ikkekommersiell 4.0 Internasjonal