• English
    • norsk
  • English 
    • English
    • norsk
  • Login
View Item 
  •   Home
  • Norsk institutt for naturforskning
  • Publikasjoner fra CRIStin - NINA
  • View Item
  •   Home
  • Norsk institutt for naturforskning
  • Publikasjoner fra CRIStin - NINA
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Revealing hidden insect–fungus interactions; moderately specialized, modular and anti-nested detritivore networks

Jacobsen, Rannveig Margrete; Sverdrup-Thygeson, Anne; Kauserud, Håvard; Birkemoe, Tone
Journal article, Peer reviewed
Accepted version
Thumbnail
View/Open
Artikkel (1.155Mb)
Permanent link
http://hdl.handle.net/11250/2498319
Issue date
2018
Metadata
Show full item record
Collections
  • Publikasjoner fra CRIStin - NINA [1405]
  • Scientific publications [572]
Original version
10.1098/rspb.2017.2833
Abstract
Ecological networks are composed of interacting communities that influence ecosystem structure and function. Fungi are the driving force for ecosystem processes such as decomposition and carbon sequestration in terrestrial habitats, and are strongly influenced by interactions with invertebrates. Yet, interactions in detritivore communities have rarely been considered froma network perspective. In the present study, we analyse the interaction networks between three functional guilds of fungi and insects sampled from dead wood. Using DNA metabarcoding to identify fungi, we reveal a diversity of interactions differing in specificity in the detritivore networks, involving three guilds of fungi. Plant pathogenic fungi were relatively unspecialized in their interactions with insects inhabiting dead wood, while interactions between the insects and wood-decay fungi exhibited the highest degree of specialization, which was similar to estimates for animal-mediated seed dispersal networks in previous studies. The low degree of specialization for insect symbiont fungi was unexpected. In general, the pooled insect–fungus networks were significantly more specialized, more modular and less nested than randomized networks. Thus, the detritivore networks had an unusual anti-nested structure. Future studies might corroborate whether this is a common aspect of networks based on interactions with fungi, possibly owing to their often intense competition for substrate.
Journal
Proceedings of the Royal Society of London. Biological Sciences

Contact Us

Privacy policy
Powered by DSpace software

Service from Unit
 

 

Browse this CollectionIssue DateAuthorsTitlesSubjectsDocument TypesJournalsBrowse ArchiveCommunities & CollectionsIssue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us

Privacy policy
Powered by DSpace software

Service from Unit