Vis enkel innførsel

dc.contributor.authorTreharne, Rachael
dc.contributor.authorBjerke, Jarle W.
dc.contributor.authorTømmervik, Hans
dc.contributor.authorPhoenix, Gareth K.
dc.coverage.spatialArcticen_US
dc.date.accessioned2021-02-16T14:25:31Z
dc.date.available2021-02-16T14:25:31Z
dc.date.created2020-08-24T12:47:52Z
dc.date.issued2020
dc.identifier.issn1748-9326
dc.identifier.urihttps://hdl.handle.net/11250/2728478
dc.description.abstractThe Arctic is experiencing an increased frequency of extreme events which can cause landscape-scale vegetation damage. Extreme event-driven damage is an important driver of the decline in vegetation productivity (termed ‘Arctic browning’) which has become an increasingly important component of pan-Arctic vegetation change in recent years. A limited number of studies have demonstrated that event-driven damage can have major impacts on ecosystem CO2 balance, reducing ecosystem carbon sink strength. However, although there are many different extreme events that cause Arctic browning and different ecosystem types that are affected, there is no understanding of how impacts on CO2 fluxes might vary between these, or of whether commonalities in response exist that would simplify incorporation of extreme event-driven Arctic browning into models. To address this, the impacts of different extreme events (frost-drought, extreme winter warming, ground icing and a herbivore insect outbreak) on growing season CO2 fluxes of Net Ecosystem Exchange (NEE), Gross Primary Productivity (GPP) and ecosystem respiration (Reco) were assessed at five sites from the boreal to High Arctic (64◦N-79◦N) in mainland Norway and Svalbard. Event-driven browning had consistent, major impacts across contrasting sites and event drivers, causing site-level reductions of up to 81% of NEE, 51% of GPP and 37% of Reco. Furthermore, at sites where plot-level NDVI (greenness) data were obtained, strong linear relationships between NDVI and NEE were identified, indicating clear potential for impacts of browning on CO2 balance to be consistently, predictably related to loss of greenness across contrasting types of events and heathland ecosystems. This represents the first attempt to compare the consequences of browning driven by different extreme events on ecosystem CO2 balance, and provides an important step towards a better understanding of how ecosystem CO2 balance will respond to continuing climate change at high latitudes.en_US
dc.language.isoengen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.subjectArctic browningen_US
dc.subjectclimate changeen_US
dc.subjectdwarf shruben_US
dc.subjectextreme eventsen_US
dc.subjectsnow coveren_US
dc.subjectwinteren_US
dc.titleExtreme event impacts on CO2 fluxes across a range of high latitude, shrub-dominated ecosystemsen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.rights.holder© 2020 The Author(s).en_US
dc.subject.nsiVDP::Matematikk og Naturvitenskap: 400::Zoologiske og botaniske fag: 480::Økologi: 488en_US
dc.source.journalEnvironmental Research Lettersen_US
dc.identifier.doi10.1088/1748-9326/abb0b1
dc.identifier.cristin1824786
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal