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The diel activity patterns of animals convey information about physiology, ecological 
niches and animal behaviour relevant for both applied conservation and more theo-
retical research. However, these patterns are challenging to study in the field. The cur-
rent gold-standard approach to quantify movements and activity patterns of medium 
to large wildlife species is to use global positioning systems (GPS) collars equipped 
with activity sensors (e.g. accelerometers). A more recent approach consists of infer-
ring activity patterns from the time-stamped pictures of wildlife obtained from camera 
traps now routinely used in wildlife monitoring projects. However, few studies have 
attempted to validate estimates of activity patterns obtained from camera traps against 
those obtained from activity sensors. In this study, we compared the diel activity pat-
tern of the Eurasian lynx Lynx lynx inferred from detections by a network of over 300 
camera traps active between 2010 and 2020, to activity patterns obtained from 18 
GPS-collared lynx (8 females, 10 males) equipped with 2-axis accelerometer sensors, 
in the same area of southern Norway. Our results suggest that camera traps can be used 
to estimate diel activity curves that are comparable to those obtained from accelerome-
ters. In our study, 75 detections were sufficient to approximate the diel activity pattern 
obtained from accelerometer. Subsampling indicated that a low number of detections 
results in a coarser approximation of the diel activity pattern.
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Introduction

Animals tend to have predictable activity patterns, alternating between periods of activ-
ity and resting, based on their ecological and physiological needs (Rowcliffe et al. 2014). 
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Animal activity is affected by a variety of internal factors such 
as age, sex, reproductive status, body condition and energy 
budgets (Podolski et al. 2013, Rowcliffe et al. 2014), but also 
by external factors such as human disturbance, predation risk, 
access to food/prey, temperature (Beltran and Delibes 1994), 
daylight (Heurich  et  al. 2014) and season (Manfredi  et  al. 
2011, Heurich  et  al. 2014). Investigating factors influenc-
ing activity patterns for different species or populations can 
provide insights into physiology, niche theory, commu-
nity structure and animal behaviour (Podolski  et  al. 2013, 
Frey  et  al. 2017, Edwards  et  al. 2021). Furthermore, con-
servation management can benefit from knowledge derived 
from activity studies. For example, research has shown that 
many wildlife species change their activity patterns as a con-
sequence of anthropogenic disturbance (Gaynor et al. 2018, 
Edwards et al. 2021), hunting pressure (Van Doormaal et al. 
2015, Edwards et al. 2021) and the reintroduction of preda-
tors that affect prey species’ diel patterns (Tambling  et  al. 
2015, Edwards et al. 2021).

Although the study of activity patterns of wild species is 
often challenging, recent developments in technology have 
led to different methods being applied that vary in the degree 
of invasiveness towards animal welfare and the financial and 
logistical efforts required to operate them. Currently, the 
most common approach to quantify movements and activity 
patterns of wildlife is to use global positioning system (GPS) 
collars (Cagnacci et al. 2010, Eriksen et al. 2011, Kays et al. 
2015) equipped with a motion sensor or accelerometer which 
constantly monitors animal activity independently from its 
spatial location with respect to the observer (Lottker  et  al. 
2009, Podolski  et  al. 2013, Edwards  et  al. 2021). These 
motion sensors record neck and upper body movement, 
providing the opportunity to remotely categorize animal 
behaviour in addition to overall activity (Lottker et al. 2009, 
Brown  et  al. 2013, Krop-Benesch  et  al. 2013, Wang  et  al. 
2015, Roberts et al. 2016). The most advanced sensors store 
three different values differentiated as vertical and horizontal 
motion, and tilt angle, whereas less complex models record 
only vertical and horizontal motion, or simply any force-
ful motion (Wang et al. 2015, Roberts et al. 2016). Motion 
sensors and accelerometers record activity at high temporal 
resolution, and some studies have already demonstrated that 
the estimations of behaviour made from these tools are com-
parable to continuous visual observation (Gervasi et al. 2006, 
Löttker et al. 2009, Gonzales et al. 2015, Roberts et al. 2016, 
Edwards et al. 2021, Studd et al. 2021). This accelerometer 
method of studying wildlife behaviour is particularly relevant 
for elusive, mainly nocturnal, forest-living species, which are 
difficult to observe directly, such as the Eurasian lynx Lynx 
lynx (Podolski  et  al. 2013). This species has already been 
investigated through the lens of accelerometer data: studies 
by Heurich et al. (2014) and Podolski et al. (2013) demon-
strated that collar activity sensors allow the identification of 
factors that modulate lynx activity.

More recently, the use of digital camera traps, which 
allow for the non-intrusive detection and monitoring of elu-
sive wildlife at a large spatial scale (Kelly and Holub 2008, 

Sollmann et al. 2011), have become a new potential tool for 
estimating activity patterns (Edwards et al. 2021). Timestamps 
on camera trap images reflect wildlife occurrences and produce 
precise temporal data (Sollmann 2018, Edwards et al. 2021). 
Recent advances in the analyses of circular data (i.e. around the 
24 hours of a day) recorded by camera traps (Rowcliffe et al. 
2014, Edwards et al. 2021, Meredith and Ridout 2021) allow 
researchers to extract more details about the activity of the ani-
mals detected (Edwards et al. 2021). Following on from these 
innovations, a wide range of species have already been studied 
using these novel activity estimation methods (Lynam et  al. 
2013, Rowcliffe  et  al. 2014, Frey  et  al. 2017, Lashley  et  al. 
2018, Edwards et al. 2021). However, there are fundamental 
differences in the quantity and the nature of camera trap data 
compared to data recorded by collar mounted activity sensors. 
For instance, camera traps typically record relatively few detec-
tions of activity from each individual of the chosen species but 
will typically sample a larger proportion of the individuals in 
the area than collars would do, while also detecting the activ-
ity of other species present in the same region (Burton et al. 
2015). Cameras also only record activity in the immediate 
vicinity of the camera trap, and therefore are potentially open 
to bias toward quantifying specific activities, if for example 
camera traps are placed in areas or habitat associated with spe-
cific behaviours. The age, sex and identity of the individuals 
photographed is also not always known. On the other hand, 
collar-mounted activity sensors provide continuous fine-scale 
individual data, resulting in a more comprehensive picture of 
activity from a smaller sub-sample of individuals with known 
age and sex (Frey et al. 2017, Lashley et al. 2018, Edwards et al. 
2021). Moreover, camera traps capture single points in space 
and time exclusively when the animal is moving, often only 
detecting a few specific behaviours such as walking or run-
ning while cutting out a wide range of activities that the ani-
mals perform on a daily basis (resting, grooming, eating, etc) 
(Edwards  et  al. 2021). On the other hand, accelerometers 
provide a continuous record of activity with a high frequency, 
recording a wide range of behaviours (Heurich  et  al. 2014) 
and are therefore the most accurate way of studying wildlife 
activity remotely today.

There are still relatively few studies that compare the reli-
ability of activity estimations obtained from camera traps to 
those derived from activity sensors (Wolfson  et  al. 2023). 
Here, we compared activity pattern estimations obtained 
from Eurasian lynx detections recorded from more than 300 
camera traps distributed in the southern part of Norway dur-
ing a period of 11 years (from 2010 to 2020) with activity 
data obtained from GPS collars with 2-axis accelerometers 
fitted on 18 Eurasian lynx (8 females and 10 males) during an 
8-year study period (from 2008 to 2015) in the same broad 
geographical area. We investigated the following questions:

1)	 Are camera traps reliable for estimating Eurasian lynx 
activity pattern compared to accelerometer estimations?

2)	 If yes, what is the effort, in terms of number of detections, 
required to obtain reliable activity estimations from cam-
era traps?
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Material and methods

Study area

This study was conducted in five counties in south-eastern 
Norway: Innlandet, Viken, Oslo, Vestfold og Telemark and 
Agder (~ 111  019 km2 area) (Fig. 1). The northern parts 
of the study area are characterized by a series of large val-
leys separated by hills or mountains reaching 1000 m a.s.l. 
and relatively low human population densities. This area is 
associated with boreal forests with primarily Norway spruce 
Picea abies and Scots pine Pinus sylvestris. The southern parts 
of the study area have lower altitudinal gradients and higher 
human population densities; here there are mainly patches 
of mixed coniferous/deciduous forests alternated with cul-
tivated lands. Eurasian lynx are widespread throughout the 
study area (Tovmo et al. 2023), with three other large carni-
vore species present: brown bear Ursus arctos, grey wolf Canis 
lupus and wolverine Gulo gulo, although these species occur 
in low densities compared to the lynx. Other species of prey 
and meso-predators include moose Alces alces, red deer Cervus 
elaphus, roe deer Capreolus capreolus, badger Meles meles, red 

fox Vulpes vulpes, pine marten Martes martes and mountain 
hare Lepus timidus.

Accelerometer data

Accelerometer data were obtained from 18 lynx (8 females 
and 10 males) equipped with GPS collars that also contained 
2-axis accelerometers (GPS plus mini, Vectronic Aerospace) 
between 2008 and 2015 as part of the SCANDLYNX project 
(http://scandlynx.nina.no). Lynx were captured using a com-
bination of methods including walk-through box-traps and 
foot snares, following the protocol described by Gervasi et al. 
(2006) and Arnemo  et  al. (2011). All procedures were 
approved by the Norwegian Experimental Animal Ethics 
Committee, and permits were obtained from the Norwegian 
Environment Agency. The accelerometers in the collars mea-
sured acceleration along two axes: forward/backward motion 
(x-axis) and sideward/rotary motion (y-axis). The values 
recorded ranged from 0 (no activity) to 255 (± 2G of force) 
and they were measured with a frequency of 8 Hz (8 records 
per second) in default mode and eventually recorded as the 
average value across 5 minutes intervals, generating a massive 

Figure 1. The study area with distribution and locations of camera traps as well as the locations where lynx were captured and equipped with 
accelerometers.
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amount of detailed information about the animal’s activity. 
Only x-activity values were analysed in this study since the 
two axes have already been shown to be highly correlated 
in previous studies (Heurich  et  al. 2014). Previous stud-
ies, using identical equipment from the same manufacturer 
(Podolski et al. 2013, Heurich et al. 2014), considered all val-
ues from 0 to 27 as ‘inactive’ while all values that range from 
28 to 255 were considered as ‘active’. The same classification 
was used here. Overall, data from the accelerometers covered 
a total of 5496 lynx days across an 8-year period, from 2008 
to 2015, resulting in ~ 1.5 million 5 minutes recordings of 
activity.

Camera trap data

Camera trap detections of lynx were obtained from 327 cam-
era traps (Reconyx HC500 HC600, PC850, PC900 and 
HP2X, Holmen, Wisconsin, USA) distributed in the study 
area as part of the SCANDCAM project (Fig. 1; https://vilt-
kamera.nina.no/). The cameras were widely dispersed using 
a grid system at a density of one camera per 50 km2, which 
translates as 5 to 10 cameras per lynx home range. Within 
each grid cell, camera traps were placed at locations cho-
sen to maximize lynx encounters, i.e. locations where lynx 
tracks were found during snow tracking or where lynx were 
expected to travel (e.g. forest roads, along the base of a cliff or 
on a wildlife trail). The cameras were active year-round with 
memory cards and batteries changed four times every year. 
More details on camera traps placement and period of activ-
ity can be found in Hofmeester et al. (2021), and information 
about sites and data is available at https://viltkamera.nina.
no. All images from SCANDCAM were pre-processed with a 
two-step neural network Artificial Intelligence enabled work-
flow, where images were first classified as containing humans/
vehicles or animals, and those with animals were then clas-
sified to species (details can be found in Hofmeester  et  al. 
2021). Images of people were automatically deleted, and 
animal species classifications were later checked by staff and 
students at the Norwegian Institute for Nature Research. 
Data used in this study resulted from 11 years of monitoring, 
from November 2010 to December 2020, and a total of 2292 
independent detections of lynx.

Kernel density estimation of activity patterns and 
overlap analysis

Eurasian lynx are known to modulate the active phase of 
their daily activity cycle following the widening and narrow-
ing of the photoperiod (Heurich et al. 2014). For this rea-
son, we compared the activity pattern inferred from camera 
traps to that obtained from accelerometers for three different 
distinct seasons which were defined by the daylength (here-
after ‘hours of light’). We estimated the daylength of each 
observation based on the date-time of the observation and 
reference geographic coordinates (location of the initial lynx 
capture for the accelerometer data, and the location of each 
camera trap for camera trap data) using the package ‘suncalc’ 

(Thieurmel and Elmarharaoui 2019) in R (www.r-project.
org), considering the package categories where ‘sunrise’ (top 
edge of the sun appears on the horizon) and ‘sunset’ (sun dis-
appears below the horizon, evening civil twilight starts) was 
used as start and end of day length.. We visually inspected 
plotted curves of activity derived from accelerometers to help 
us define three distinct levels of hours of light that clearly 
captured the change in activity across seasons: 5 to 7 hours 
(winter), 11 to 13 hours (spring and autumn), and 17 to 19 
hours (summer).

Since both accelerometers and camera traps record the 
times of the observations, it is possible to fit kernel density 
functions to estimate the distribution of activity throughout 
the day (Ridout and Linkie 2009). We used the R package 
‘overlap’ (www.r-project.org, Meredith and Ridout 2021) to 
fit a Von Mises kernel (to accommodate circular time data) 
to observations from camera traps and observations defined 
as active from the accelerometers to obtain their density dis-
tribution, which corresponds to the diel activity pattern. We 
then used the estimated coefficient of overlap between the two 
distributions as an indicator of the ability of the camera trap 
approach to reflect the same activity pattern as that obtained 
from the accelerometers. Following advice by Meredith and 
Ridout (2021), we used the so-called Δ4 estimator for camera 
trap samples bigger than > 50 detections, and Δ1 for smaller 
samplers. For each subset of hours of light (i.e. 5–7, 11–13, 
17–19 hours), we report the graphical representation of the 
kernel density distribution of activity for both monitoring 
methods, together with the corresponding estimate of the 
coefficient of overlap and its 95% bootstrap confidence inter-
val. All analyses used central European time (CET/UTM+1) 
which corresponds to local time during winter.

How many detections are needed to recover the 
‘true’ activity pattern?

In order to assess the minimum number of camera trap 
detections required to capture the ‘true’ activity pattern, as 
inferred from accelerometers, we repeated the overlap anal-
ysis described above for random subsets of the camera trap 
detection data, while keeping the accelerometer data set 
unchanged. For each level of daylight duration, we took a sub-
sample of 300, 350, 200, 150, 100, 75, 50, 25 and 10 detec-
tions without replacement, from the total detections of the 
original camera trap dataset. For each of these subsamples, we 
then estimated the kernel density distribution, the coefficient 
of overlap of this distribution with that of the (original) accel-
erometer data, and the associated 1000-iterations bootstrap 
confidence interval. In order to capture uncertainty induced 
by random subsampling of the camera trap detections, we rep-
licated this procedure 1000 times for each subsample size. For 
performance reasons, we implemented this algorithm in the 
Julia language (Bezanson et al. 2017). In Julia, we used the 
least-squares cross-validation to determine the bandwidth of 
the kernel density estimator, while the ‘overlap’ package used 
Silverman’s rule. Hence, the results are not directly comparable 
to those from the ‘overlap’ package in R (www.r-project.org).  
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Below, we report the coefficient of overlap averaged over the 
replicates for each sample size and level of daylight duration, 
together with the associated 95% bootstrap confidence inter-
val. In addition, we ran a similar procedure using subsam-
pling of the number of cameras rather than the number of 
detections. However as the number of cameras needed will be 
strongly dependent on the detectability and density of lynx 
in the study area as well as the grid design, this analysis has 
less extrapolation values to other studies, and we only present 
these results in Appendix 1.

Results

Activity pattern and overlap analysis

Out of the 2292 lynx detections in the original camera trap 
data set, 639 detections corresponded to periods with 5–7 
daily hours of light, 552 to 11–13 hours of light, and 333 to 
17–19 hours of light. The plots of the daily activity showed 
that the curves estimated from camera traps overall matched 
the activity curves obtained from accelerometer data (Fig. 2, 
Table 1, coefficient of overlap 0.92–0.97). Both accelerom-
eter and camera trap estimations show that in periods with 
less daylight (5 to 7 hours of light), the activity curves dis-
played shorter periods of consistently low activity limited to 
a few central hours of the day and a longer period of activity 
coinciding with longer nights. During the short light period, 
from both estimations, we see that the change of activity 
(from resting to being active) is more accentuated compared 
to the period with more daylight (17 to 19 hours of light), 
and peaks of activity are around 5:00–6:00 (slightly before 
dawn) and 15:00–16:00 (dusk). In contrast, in periods of the 
year with more daylight, activity curves estimated from both 
accelerometer and camera traps show that the activity was 
more attenuated, with peaks of activity occurring at 2:00–
3:00 (dawn) and 21:00–22:00 (dusk).

How many detections are needed to estimate the 
‘true’ activity pattern?

The estimates for the coefficient of overlap started to reach 
an asymptote at 75 camera trap detections (Fig. 3, Table 2, 
coefficient of overlap 0.91–0.92). Increasing the number of 
detections further did not improve the overlap significantly. 
However, the use of 50 detections reduced the coefficient of 
overlap to only 0.63–0.66. Reducing the number of detec-
tions further did not reduce overlap much but increased the 
variability in the coefficient.

Discussion

In the present study, estimations of activity based on camera 
traps produced very similar activity curves as those estimated 
from accelerometer data, showing support for the ability of 
non-invasive methods to record information on diel activity 

pattern comparable to that obtained from more invasive 
methods. Camera trap detections followed the activity pat-
terns estimated by accelerometers with high coefficients of 
overlap for all seasons (levels of hours of daylight). Both peri-
ods of high activity at night, periods of low activity at midday, 
and peaks of activity at dawn and dusk were identified suc-
cessfully from activity estimations of camera trap detections.

These results derive from a large number of lynx detections 
(~ 1500) which was achievable thanks to an exceptionally 
high number of camera traps used (327 cameras) covering a 
long monitoring period (11 years) with year-round deploy-
ment. This exceeds the effort that is commonly used in most 
camera trapping studies. However, further analyses showed 
that in our study system, 75 lynx detections were sufficient 
to get a reliable estimate of the daily activity cycle of the lynx 
during different times of the year, which is a more reasonable 
number to achieve.

The number of cameras needed to get enough detections 
for reliable estimates of activity patterns will vary consider-
ably depending on species detectability and density and 
the general study design (random locations versus camera 
traps that maximise detection), which makes it difficult to 
make general recommendations on number of cameras (in 
Appendix 1 we reported an attempt to explore the effect of 
the number of camera traps on activity estimations on our 
case study). Population densities often vary within the same 
species across different regions because of environmental 
conditions and management regimes. For Eurasian lynx in 
Scandinavia home range sizes, and densities, vary by a factor 
of ten (Linnell et al. 2001, Aronsson et al. 2016). For studies 
that will focus on the diel activity patterns, researchers there-
fore need to design a strategy for how to obtain at least 75 
detections rather than focusing on number of cameras.

Activity data obtained from camera traps still differ from 
collar activity sensor data in the matter of temporal and spatial 
resolution and type of activity recorded. The comparability of 
the estimates may thus depend on the movement ecology of 
the species in question. However, it is important to realise 
that camera traps capture limited data from many individuals 
in an area, often lacking information on age, sex, and identity 
and mainly recording animal movement. Camera traps will 
not be able to provide activity budgets of individuals or effec-
tive linkages between activity and movement, for example. 
Instead, collar-mounted sensors provide continuous, detailed 
data from specific individuals with known attributes, offering 
a high-frequency and comprehensive activity record.

In our study area, the placement of camera traps within 
the grid cells was chosen to maximise the detection prob-
ability of lynx, which is common practice when working with 
elusive species (Rowcliffe  et  al. 2014, Lashley  et  al. 2018). 
However, previous studies underlined that for estimating 
activity curves from camera trap detections it would be pref-
erable to randomly place the devices (Rowcliffe et al. 2014) 
to make sure not to include any potential biases in activity 
depending on the location of the traps. For instance, if lynx 
use areas close to people more often at night compared to 
the day. This could potentially result in activity estimations 
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being biased towards night if cameras were only located in 
areas close to people (Thorsen et al. 2022). However, in our 
study, cameras were placed in different habitat with different 
human pressure and we consider the non-random placement 
of the camera traps to not affect the overall results obtained, 
further supported by the high overlap between the camera 
traps data and the accelerometer data. If our camera trap-
ping data would have suffered from a high bias, i.e. camera 
traps placed in habitat where lynx is only active during day 

or night, one would have expected a lower degree of overlap 
with accelerometer data. Bias was probably reduced in our 
case by the very dispersed nature of our camera deployment, 
and the fact that the cameras were deployed by many dif-
ferent volunteers leading to a large diversity of deployment 
decisions.

Detection probability can be an important factor to 
consider in camera trap studies. The probability of detect-
ing an animal through camera traps relies on several factors 
(Lashley et al. 2018, Smith et al. 2020). For example, habi-
tat at, and around, the camera locations as well as species 
and/or individual specific characteristics (such as group size, 
home range size, density, geographical range, response to 
camera trap) may considerably affect detection probability 
(Lashley et al. 2018, Broadley et al. 2019, Hofmeester et al. 
2019, Delisle  et  al. 2021). For lynx, detection probability 
may be lower for females between May and August, as females 
with kittens move over smaller areas due to a central-place 
foraging strategy and low mobility of the kittens (Schmidt 

Figure 2. Overlap (grey area) between lynx diel activity pattern obtained from accelerometer data (plain red line) and camera traps data 
(dashed blue line) for times of the year with (a) 5 to 7 hours of light per day, (b) 11 to 13 hours of light per day and (c) 17 to 19 hours of 
light per day. The rug plot indicates the actual observations for camera traps (blue) and accelerometer (red).

Table 1. Summary of estimates of the coefficient of overlap between 
accelerometers and camera traps dataset (dhat4) and associated 
95% bootstrap confidence intervals, taking into account the three 
levels of hours of light per day.

Hours of light per 
day Estimate of overlap %95 bootstrap CI

5–7 0.92 0.89–0.95
11–13 0.96 0.93–0.98
17–19 0.97 0.94–0.98
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1999). On the other hand, males generally move over larger 
areas during the mating season (February–March) compared 
to the rest of the year. This is a clear example of how the target 
species ecology and behaviour can influence detectability at 
camera traps and eventually impact the number of detections 
(Broadley et al. 2019, Hofmeester et al. 2019). In addition, 
some camera traps specifications, e.g. battery length, sensor 

sensitivity and trigger speed, also affect the detection of the 
target species (Hofmeester et al. 2019).

Conclusion

Camera traps can be used to estimate overall activity curves 
with comparable estimations to the ones obtained from 
accelerometers. In our study, we conclude that 75 detec-
tions are sufficient to obtain good estimates of diel activity 
patterns, and a lower number of detections results in a less 
accurate activity estimation. Although the camera traps can 
be efficiently used to estimate activity patterns it is impor-
tant to keep in mind the fundamental differences that occur 
between data collected from these two methodologies and 
the strengths/weaknesses of each method.
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Figure 3. Overlap estimates of activity patterns using the original accelerometer data set compared with down sampled number of detections 
from the camera trap dataset, separated between different hours of daylight (blue: 5 to 7 hours of light, yellow: 11 to 13 hours of light, and 
red: 17 to 19 hours of light). Coefficients of overlap are shown with their respective 95% bootstrap confidence intervals.

Table 2. Estimates of the coefficient of overlap between accelerom-
eters and camera trap detections and associated 95% bootstrap con-
fidence intervals.

Hours of 
light per day

No. of 
detections

Estimate of 
overlap

%95 bootstrap 
CI

5–7 300 0.93 0.92–0.94
11–13 300 0.94 0.93–0.95
17–19 300 0.95 0.95–0.96
5–7 250 0.93 0.92–0.94
11–13 250 0.94 0.93–0.94
17–19 250 0.95 0.95–0.96
5–7 200 0.93 0.92–0.94
11–13 200 0.93 0.92–0.94
17–19 200 0.95 0.94–0.95
5–7 150 0.92 0.91–0.93
11–13 150 0.93 0.92–0.94
17–19 150 0.94 0.93–0.95
5–7 100 0.92 0.90–0.93
11–13 100 0.92 0.90–0.93
17–19 100 0.93 0.92–0.94
5–7 75 0.91 0.89–0.92
11–13 75 0.91 0.89–0.92
17–19 75 0.92 0.91–0.93
5–7 50 0.66 0.56–0.77
11–13 50 0.64 0.54–0.75
17–19 50 0.63 0.53–0.73
5–7 25 0.62 0.46–0.82
11–13 25 0.6 0.44–0.80
17–19 25 0.58 0.43–0.77
5–7 10 0.64 0.41–0.93
11–13 10 0.6 0.36–0.93
17–19 10 0.59 0.36–0.92
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Table A1. Estimates of the coefficient of overlap between accelerometers and number of camera traps and associated 95% bootstrap confi-
dence intervals.

Hours of light per day No. of camera traps Estimate of overlap %95 bootstrap CI

5–7 300 0.93 0.920.94
11–13 300 0.93 0.92–0.94
17–19 300 0.92 0.91–0.93
5–7 250 0.93 0.92–0.93
11–13 250 0.93 0.92–0.93
17–19 250 0.91 0.90–0.92
5–7 200 0.92 0.91–0.93
11–13 200 0.92 0.91–0.93
17–19 200 0.9 0.89–0.91
5–7 150 0.92 0.91–0.93
11–13 150 0.91 0.90–0.92
17–19 150 0.9 0.88–0.91
5–7 100 0.91 0.90–0.92
11–13 100 0.9 0.89–0.91
17–19 100 0.88 0.87–0.90
5–7 75 0.9 0.89–0.92
11–13 75 0.89 0.88–0.91
17–19 75 0.87 0.86–0.89
5–7 50 0.66 0.57–0.77
11–13 50 0.64 0.55–0.74
17–19 50 0.61 0.51–0.71
5–7 25 0.63 0.47–0.83
11–13 25 0.59 0.44–0.79
17–19 25 0.56 0.40–0.78
5–7 10 0.65 0.42–0.94
11–13 10 0.58 0.34–0.92
17–19 10 0.53 0.28–0.90

Appendix 1

Effect of subsampling number of cameras used to produce stable estimates of activity pattern 

The number of camera traps was subsampled and resulting activity estimations compared to the estimations obtained from the 
unchanged accelerometer dataset following the same procedure used for the subsampling of the number of camera traps detec-
tions (see main paper). After subsampling our camera traps, it was found that a minimum of 75 camera traps was required 
to obtain a dependable estimate of true activity (Fig. A1; Table A1, coefficient of overlap 0.87 - 0.9). Increasing the number 
of camera traps beyond this threshold did not result in a significant improvement in overlap. However, when only 50 camera 
traps were used, the coefficient of overlap decreased to a range of 0.61-0.66. Further reduction in the number of camera traps 
not only decreased overlap but also substantially increased the variability in the coefficient.

Figure A1. Overlap estimates using the original accelerometer data set compared with down sampled number of camera traps, 
separated between different amounts of daylight duration (blue: 7 hours of light, yellow: 11 to 13 hours of light, and red: 17 
to 19 hours of light). Coefficients of overlap are shown with their respective 95% bootstrap confidence intervals.
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