Downloaded from https://www.pnas.org by 128.39.70.74 on August 8, 2024 from | P address 128.39.70.74.

PNAS

ECOLOGY

L)

s OPEN ACCESS
Check for
updates

Large-scale avian vocalization detection delivers reliable global

biodiversity insights

Sarab S. Sethi®' 2, Avery Bick”

Celso Henrique de Freitas Parruco®, Carolyn M. Rosten®, Marius Somveille® (2, Mao-Ning Tuanmu'

, Ming-Yuan Chen®, Renato Crouzeilles®, Ben V. Hillier®, Jenna Lawson?, Chia-Yun Lee', Shih-Hao Liu',
. and Cristina Banks-Leite?

Edited by Scott Edwards, Harvard University, Cambridge, MA; received September 28, 2023; accepted June 8, 2024

Tracking biodiversity and its dynamics at scale is essential if we are to solve global
environmental challenges. Detecting animal vocalizations in passively recorded audio
data offers an automatable, inexpensive, and taxonomically broad way to monitor bio-
diversity. However, the labor and expertise required to label new data and fine-tune
algorithms for each deployment is a major barrier. In this study, we applied a pretrained
bird vocalization detection model, BirdNET, to 152,376 h of audio comprising datasets
from Norway, Taiwan, Costa Rica, and Brazil. We manually listened to a subset of
detections for each species in each dataset, calibrated classification thresholds, and found
precisions of over 90% for 109 of 136 species. While some species were reliably detected
across multiple datasets, the performance of others was dataset specific. By filtering out
unreliable detections, we could extract species and community-level insight into diel
(Brazil) and seasonal (Taiwan) temporal scales, as well as landscape (Costa Rica) and
national (Norway) spatial scales. Our findings demonstrate that, with relatively fast but
essential local calibration, a single vocalization detection model can deliver multifaceted
community and species-level insight across highly diverse datasets; unlocking the scale
at which acoustic monitoring can deliver immediate applied impact.
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Biodiversity plays a crucial role in food security, disease dynamics, human well-being, and
more (1). However, the vast number of species and the complexity of their interactions
make tracking biodiversity and understanding how it is impacted by anthropogenic activ-
ities a challenge (2). Reliable, scalable, and taxonomically diverse biodiversity monitoring
is therefore essential if we are to thrive sustainably as a society.

Traditional biodiversity surveys are time consuming and require niche expertise.
However, declines in cost and increased accessibility of robotics platforms and electronic
sensors have transformed our ability to survey ecosystems at larger scales (3). Using auton-
omous sensing technologies, scientists have tracked cetaceans in the Pacific from drones
(4), mammals in the Serengeti with camera traps (5), and bats across London from ultra-
sonic microphones (6). However, the machine learning models used in each of these cases
were trained on manually labeled subsets of data from the study system of interest.
“Plug-and-play” approaches which convert raw field sensor data into reliable species com-
munity insight across diverse ecosystems, without retraining models, have not been demon-
strated to work reliably to date.

Due to the diversity of species and their behaviors, we are unlikely to ever develop a
single technology to monitor all biodiversity in all ecosystems. Nevertheless, detection
and classification of animal vocalizations in long-term acoustic recordings is a promising
approach in its ability to scale well temporally, spatially, and taxonomically. Bird vocali-
zations in particular have been recorded by hobbyists and scientists for decades culminating
in rich libraries of annotated data which span the globe (7). Classification models have
been trained on these libraries (8, 9) and some studies have evaluated the performance of
these models on single datasets (10). However, no studies have looked at the performance
of vocalization classification models when applied to multiple large acoustic datasets
collected across diverse ecosystems.

In this study, we investigated the following: i) how reliably can we monitor bird com-
munities across diverse datasets using a single vocalization detection model and ii) what
biodiversity insight could such an approach deliver?

Results

We collected 152,376 h of passively recorded acoustic data from temperate forests across
Norway (76,746 h), tropical and subtropical forests across Taiwan (49,548 h), diverse tropical
landscapes across the Osa Peninsula in Costa Rica (25,305 h), and tropical forests in the
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Fig. 1. Study overview. (A) We recorded 152,376 h of acoustic data from
ecosystems. (B) BirdNET, a state-of-the-art convolutional neural network
model, was used to detect and classify bird vocalizations. (C) Experts manually
labeled a subset of the detections for each species in each dataset. (D) We used
filtered detections to derive reliable avian biodiversity insight across spatial
and temporal scales. (E) Approximate sampling locations across Norway,
Taiwan, the Osa Peninsula in Costa Rica, and State of Pard in Brazil. Species
depicted are Goldcrest (Norway), Red-flanked Bluetail (Taiwan), Scarlet-
rumped Tanager (Costa Rica), and White-throated Toucan (Brazil).

Amazon, State of Par4, Brazil (777 h) (Fig. 1 A and E). We detected
bird vocalizations in the audio data using an open-source convolu-
tional neural network (CNN) model, BirdNET (8), with the geo-
graphic species filter enabled. In total, the model outputted 627,995
detections of 379 species with model classification scores of above
0.80 (Fig. 1B). To ensure that we had enough verification data, we
only considered species with over 50 detections, leaving 625,113
detections from 136 species (Fig. 1C).

W listened to 50 random detections for each species from each
dataset and labeled them as true positives (T,) or false positives
(F)) to measure model performance (c. 20 to 30 min labeling effort
per species, Fig. 1C). Measuring recall was intractable on such large
datasets (10). We calibrated classification thresholds for each spe-
cies in each dataset (11) and found in Norway 43/57, Taiwan
33/51, Costa Rica 19/19, and Brazil 14/16 species all reached over
90% precision—i.e., the model very rarely outputted false positive
detections for these species (Fig. 2). Full avian communities in the
sampled ecosystems are far larger than the subsets that Bird NET
detected, but the discrepancy was particularly stark in Brazil and
Costa Rica—Tlikely due to long-standing geographical and taxo-
nomic biases in the training datasets used by BirdNET (9).

Norway Taiwan

Barn Swallow  mm True pos. (T,)
Common Chaffinch
Common Chichsft & mmm False pos. (F,)

Arctic Warbler {
Barn Swallow* §

Seven species appeared in two datasets. Model precision for five
species was consistent across datasets: Blue-black Grassquits, Great
Kiskadees, and Tropical Kingbirds in Brazil and Costa Rica, and
Barn Swallows and Eurasian Curlews in Norway and Taiwan.
However, while detections of Common Sandpipers and Eurasian
Woodcocks were reliable in Norway (100% precision), detections
of the same two species in Taiwan were highly unreliable (preci-
sions of 7% and 0%, respectively). Inconsistent performance
across datasets might be explained by varying dialects, micro-
phones, experts performing the labeling, geophony, anthropoph-
ony, and more, indicating that model performance must be
recharacterized for each new deployment of acoustic sensors.

Considering only detections from species with over 90% precision
and over 20 detections in each dataset (once optimal BirdNET
thresholds were applied), we extracted biodiversity insight across
varied spatiotemporal scales and taxonomic resolutions (Fig. 3). In
the Brazilian Amazon, diel vocal activity varied between species which
were more vocal at dawn (e.g., Pale-breasted Spinetail), during the
day (e.g., Blue-black Grassquit), and at dusk (e.g., Great Kiskadee)
(Fig. 34). On the Osa Peninsula in Costa Rica, we found daily vocal-
ization rate of the Yellow-throated Toucan varied across habitats with
the most frequent vocalizations detected in old-growth and secondary
forests, likely indicating habitat-driven variations in population sizes
or behaviors (Fig. 3B). Across the temperate forests of Norway, we
saw the northward movement of the migratory Willow Warbler
throughout spring (Fig. 3C). In the forests of Taiwan, we found com-
plex temporal occurrence patterns across a 2-y period, from species
which visited Taiwan to breed (e.g., Large Hawk-Cuckoo), those
which wintered in the country (e.g., Yellow-browed Warbler), to
those which were endemic and vocalising year-round (e.g., Taiwan
Bamboo-Partridge) (Fig. 3D). While we have showcased known
phenomena, we also supply the full lists of reliable detections in each
dataset for others to explore in the accompanying data.

Conclusion

We demonstrated that a single vocalization classification model deliv-
ered reliable monitoring for many bird species across four large and
diverse datasets. However, predictions were not perfect, and only
small subsections of full species communities were detectable, espe-
cially in Costa Rica and Brazil which remain underrepresented in
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Fig. 2. BirdNET was highly pre-
cise for many species across di-
verse datasets. An expert manu-
ally labeled 50 BirdNET detections
of each species in each dataset
to calibrate classification thresh-
olds and measure precision (T,/
[T,+Fp], where T, and F, are true
and false positives, respectively).
We found 43/57 species in Nor-
way, 33/51 in Taiwan, 19/19 in
Costa Rica, and 14/16 in Brazil
were detected with over 90% pre-
cision. Calibrated thresholds and
model performance varied across
species and datasets, suggesting
that expert validation must be
repeated for new deployments.
Asterisks denote species with
low numbers of detections (once
optimal BirdNET thresholds were
applied).
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global libraries of avian vocalizations. Nonetheless, with relatively
fast yet essential local calibration, fine resolution and taxonomically
broad biodiversity insight could still be unlocked for many species
on small and large temporal and spatial scales in all datasets. If
training datasets are able to grow in size and accessibility while
addressing systematic taxonomic and geographic biases, the perfor-
mance of machine learning models will continue to improve (9),
unlocking further opportunities for fully autonomous acoustic
monitoring to be deployed at scale and deliver impact around the
world (12).

Materials and Methods

Vocalization Detection Model. BirdNET (8) was used to detect vocalizations.
Location data were provided to BirdNET o filter for only species expected at each
recorder [based on eBird (13) observations].

Calibrating Classification Thresholds. To determine optimal classification
thresholds (11), we measured precision using thresholds between 0.80and 0.99,
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inclusive. The optimal value was chosen as the lowest threshold that achieved
90% precision. For all results presented, we filtered detections using independent
calibrated classification thresholds for each species in each dataset.

Data, Materials, and Software Availability. Code and data used to reproduce
figures and results presented in this manuscript are freely available on Zenodo
codes 8338721 (14) and 8340251 (15).
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