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Life history theory states that the resources invested in current reproduction must be traded off against resources needed for survival 
and future reproduction. Long-lived organisms have a higher residual reproductive value and are therefore expected to be sensitive 
to reproductive investments that may reduce survival and future reproduction. Individuals within a population may vary in phenotypic 
quality, experience, access to resources etc. This may affect their optimal reproductive investment level. In this study we manipu-
lated reproductive costs by shortening and extending the incubation period in common eiders Somateria mollissima without altering 
clutch size. Females whose incubation time was prolonged experimentally, suffered higher mass loss and increased clutch loss/nest 
desertion. These females were also more prone to abandon their brood after hatching. Both clutch loss and brood abandonment de-
creased with clutch size in all treatment categories, indicating higher phenotypic quality and/or better access to resources for females 
producing more eggs. However, although females with prolonged incubation were lighter at hatching, their return rate and breeding 
performance in the following year were unaffected. These results show that individual quality as expressed through clutch size and 
body mass is affecting current reproductive investment level as well as future survival and breeding performance. The results also 
show that individual birds are sensitive to changes in their own condition, and when reproductive effort is approaching a level where 
survival or future survival may be compromised, they respond by terminating their current reproductive attempt.

Key words: body mass, common eider, cost of reproduction, parental effort, reproductive value, trade-off.

INTRODUCTION
The cost of  reproduction is a fundamental concept in the evolu-
tion of  life-history strategies. That reproduction may compromise 
survival is well documented (Roff 1992, Stearns 1992, Barnes and 
Partridge 2003), but the mechanisms that link reproduction to 
survival are not so well understood (Hamel et al. 2009, Cox et al. 
2010, Williams and Fowler 2015, Williams 2012, 2018). One such 
link suggested is the principle of  resource allocation (Williams 
1966). Time and energy are limited, and the resources invested in 
current reproduction must be traded off against resources needed 
for survival and future reproduction (Williams 1966, Tinbergen 
and Daan 1990, Roff 1992; Stearns 1992).

Costs of  reproduction have been the subject of  many empir-
ical and theoretical studies on various organisms. Although some 

experimental studies have shown that parents are able to increase 
their reproductive effort above their normal levels, and that this 
leads to a reduction in adult survival and/or future fecundity, the 
results are still ambiguous (Lindén and Møller 1989, Jacobsen et 
al. 1995, Hanssen et al. 2005, Hanssen 2006, Hadley et al. 2007, 
Erikstad et al. 2009, Cox et al. 2010, Santos and Nakagawa 2012, 
but see Leach et al. 2019). One topic that has been much debated 
is the cost of  reproduction in long-lived versus short-lived species 
(Lindén and Møller 1989, Erikstad et al. 1998, 2009, Wernham 
and Bryant 1998, Golet et al. 2004). Long-lived species can be 
expected to be more reluctant to increase their reproductive effort 
than short-lived species, because even a small reduction in adult 
survival will greatly reduce the number of  subsequent breeding 
attempts and thus their lifetime reproductive success (Curio 1988, 
Wooller et al. 1992, Charlesworth 1994). In contrast to this the-
oretical prediction, the available empirical evidence suggests that 
long-lived birds are more willing to accept survival costs than 
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short-lived species (see review by Golet et al. 1998). However, 
many of  the studies reviewed by Golet et al. (1998) based their 
conclusions on return rate rather than robust capture-recapture 
analyses which may erroneously register skipped breeding as mor-
tality (see Leach et al. 2020). Alternatively, one explanation to the 
former pattern, as suggested by Wernham and Bryant (1998), is 
that many studies on short-lived birds are brood enlargements, 
and if  such species normally work at maximum reproductive ef-
fort, increasing clutch size may not alter their effort. However, 
long-lived species may, under average conditions, have a lower-
than-maximum effort and therefore be more likely to respond to 
experimentally increased broods by increasing their effort. This 
increased effort may translate into long-term costs such as re-
duced future reproduction (Leach et al. 2019, but see Santos and 
Nakagawa 2012).

Essential for the understanding of  the resource allocation prin-
ciple and the cost of  reproduction is therefore detailed knowledge 
of  the mechanisms that underlie the parental effort and allocation 
of  time and energy to the different phases of  reproduction. Such 
an allocation of  resources is suggested to be driven by a complex 
interaction between the parents’ own body condition, the fitness 
value of  the brood and the parents’ own survival chances and fu-
ture reproductive prospects (Erikstad et al. 1998, 2009). According 
to this hypothesis, the individual parents’ quality may to a large 
extent determine their ability to invest in reproduction, and high-
quality individuals may do better in all regards (van Noordwijk and 
de Jong 1986, Hamel et al. 2009, Caro et al. 2016, Merkling et al. 
2017, Montoya et al. 2016).

Most waterfowl species rely heavily on body reserves for egg pro-
duction and incubation (reviewed in Ankney et al. 1991, Arnold 
and Rohwer 1991). In common eider ducks (Somateria mollissima, 
hereafter “eider”) as well as in some Arctic geese, this strategy is 
at its extreme, because females normally do not feed at all between 
egg laying and hatching (Ankney and MacInnes 1978, Parker and 
Holm 1990, but see Hobson et al. 2015). Female eiders may lose up 
to 46% of  their body reserves during this period (Korschgen 1977, 
Parker and Holm 1990). Furthermore, eiders have a communal 
brood rearing system, where many females abandon/lose their 
young soon after hatching, and the young are adopted by other 
females (Munro and Bedard 1977, Bustnes and Erikstad 1991a, 
Erikstad et al. 1993, Bustnes et al. 2002, Jaatinen et al. 2011).

Previous studies have shown that incubation costs in eiders are 
higher in birds incubating more eggs (Erikstad and Tveraa 1995, 
Hanssen et al. 2003a, 2005). A larger clutch size (whether experi-
mentally enlarged or not) is associated with a higher mass loss but 
the birds do not seem to compensate for the higher incubation costs 
by abandoning their brood. It was even shown that this continued 
investment in brood tending despite high incubation costs led to re-
duced future reproduction (Hanssen et al. 2005). This points to a 
limitation in these studies: the larger the clutch size, the higher the 
fitness value of  the clutch, and this may have led to an increased 
female willingness to invest in current reproduction. Accordingly, 
it is desirable to use an experimental setup where energy demands 
are manipulated without altering the fitness value of  the brood, and 
where also the individuals’ possibility of  compensating for the in-
creased physiological cost by increasing food intake is limited/con-
trolled (Tuomi et al. 1983, Bonnet et al. 2002, Hamel et al. 2009).

We, therefore, designed an experiment in female eiders to ex-
amine the possible trade-offs between the use of  body reserves for 
incubation, brood care, survival, and future fecundity, without al-
tering clutch size. We manipulated the duration of  the incubation 

period by swapping whole clutches of  similar size between nests 
with known laying dates. A trade-off between reserve use for incu-
bation and other aspects of  reproduction is likely in eiders because 
females feed very little or not at all during the entire incubation 
period (Korschgen 1977, Parker and Holm 1990, Gabrielsen et al. 
1991). Females are thus faced with trade-offs between resources used 
for current reproduction (incubation and brood rearing) and future 
reproduction (survival and future fecundity). Females with experi-
mentally prolonged incubation may direct resources to their residual 
reproductive success by deserting their clutches or abandoning their 
brood. Such decisions are expected to depend on two parameters 
that are also indicating individual quality: body mass (affecting sub-
sequent survival) and clutch size (the potential value of  the clutch).

MATERIALS AND METHODS
Field methods and sampling

The study was carried out in a common eider breeding colony near 
Tromsø in northern Norway (69°38ʹN, 18°51ʹE) in 1993–1995. 
The colony was on a 650 ha island (Grindøya) and contained about 
400 breeding pairs. The colony has been studied extensively since 
1985. The eider produces 3–6 eggs, which are incubated by the fe-
male for 22–26 days (mean = 24 days; Erikstad et al. 1993).

During the 1993–1995 breeding seasons, we visited the island 
daily to determine the laying date (date of  a clutch’s first egg laid) 
and clutch size in marked nests. If  a nest was found with more than 
one egg, the laying date was estimated by assuming that one egg 
was laid per day (Hanssen et al. 2002). A clutch was assumed to be 
complete when no egg was laid for 2 days. Any nest in which > 1 
egg was laid per day was excluded because of  the possibility of  nest 
parasitism. Although occurring in the eider (Bjørn and Erikstad 
1994, Waldeck et al. 2011), the frequency of  nest parasitism in the 
study area is very low (<1%, unpublished data). Incubation was as-
sumed to start when the last egg was laid. Hatching date was de-
fined as the day when the brood left the nest.

On day 5 of  the incubation period, each female was captured, 
ringed, and weighed (±5  g; “early body mass”). The female was 
again weighed when the eggs had been incubated for 20 days (“late 
body mass”). At the same occasion, they were color-marked with 
tags on the back of  their neck. The tags were made of  tape and 
attached with superglue and were observed to last for up to 23 days 
(Bustnes and Erikstad 1991a). Based on early (m1) and late body 
mass (m2), we calculated (relative) mass loss as (m1 – m2)/m1.

During incubation, nests were checked from a distance (without 
flushing the female) at least every second day. We classified clutches 
as lost if  all eggs had disappeared. Clutches that were abandoned/
depredated before or during manipulation (i.e., before day 5 after 
the start of  incubation, see below), were omitted from analyses. 
Because unattended clutches are rapidly predated by crows (Corvus 
corone) or gulls (Larus spp.), we could not determine whether preda-
tion occurred before or after desertion (Swennen et al. 1993). The 
date of  egg loss was recorded (±1 day). Nesting success was defined 
as the proportion of  nests that hatched.

We classified females as “abandoners” or “tenders” according 
to their post-hatch behaviour (Kehoe 1989, Bustnes and Erikstad 
1991a, Bustnes et al. 2002). “Abandoners” were females known to 
have left the colony with young and then observed during the first 
week after hatching without young. As we did not observe the fe-
males continuously after hatching we could not distinguish between 
females abandoning young and females that lost their whole brood 
to predators. “Tenders” were females observed caring for young, 
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alone or with other females, during the first week after hatching. 
Tenders always have some of  their own young and frequently some 
adopted from abandoners (Bustnes and Erikstad 1991a). Females 
who abandon their brood generally do so within two days after 
hatching (Bustnes and Erikstad 1995, Bustnes et al. 2002).

Experimental manipulation

In 1993 and 1994, whole clutches of  the same size (3–6 eggs) that 
had been incubated for 5 and 10 days, respectively, were exchanged 
pairwise in order to prolong and shorten the duration of  incubation 
of  individual females by 5 days. The treatment groups are thus re-
ferred to as “shortened” (n = 59) (i.e., the female received a clutch 
that had been incubated longer than her own, thereby shortening 
her expected incubation time) and “prolonged” (n = 68) (i.e., the fe-
male received a clutch that had been incubated shorter than her 
own, thereby prolonging her expected incubation time). To ensure 
sufficient samples, some of  the clutches exchanged differed in size 
and/or by 4 or 6 days in age (n = 23). The unmanipulated clutch 
group (n = 34) consisted of  clutches that were not exchanged be-
tween nests. Any effect of  exchanging eggs between nests have been 
tested in this population before, by swapping eggs between nests 
without altering clutch size, without any measurable effect on mass 
loss, incubation time, nest predation, or brood tending (Hanssen et 
al. 2003a).

We define incubation time as the number of  days a female was 
incubating, as opposed to the number of  days a clutch was incubated. 
Thus, at the day of  second capture, all clutches had been incubated 
for 20 days, although the females’ incubation time varied from 15 
days in the shortened treatment group, via 20 days in the control 
group, to 25 days in the prolonged treatment group.

Statistical analyses

The sample analyzed consisted of  91 and 70 nests in 1993 and 
1994, respectively. Eiders included in the experiment in 1993 were 
not included in the sample from 1994.

Continuous responses were analyzed using ANOVA and 
ANCOVA (proc glm, SAS Institute 1990, Littell et al. 1991) and 
ordinal responses using logistic models (proc genmod, Stokes et 
al. 1995) with the binomial response distribution and the logit link 
function. Year and treatment were included in the models as cate-
gorical effects, whereas laying date, clutch size, and early body mass 
were included as continuous covariates. To analyze the effect of  
brood behavior (tending/abandoning the brood) on return rate, we 
also included this as a binary variable in the models. We examined 
the effect of  treatment on laying date, clutch size, and early body 
mass in the following season. We expressed variables as deviations 
from the annual mean and controlled for repeatability of  the vari-
ables by performing an ANCOVA with the respective variable in 
the year of  treatment as a covariate.

Models are sorted using their Akaike’s Information Criterion 
(AIC), expressed more conveniently as the deviation (ΔAIC) of  each 
model’s AIC from the best model’s AIC. AIC weights (wi = exp(–
½ΔAICi)/ sum(exp(–½ΔAIC))) indicate the relative information-
theoretic weightings obtained by competing models.

All statistical tests are two-tailed. Estimates are provided as 
mean ± standard error (SE).

Survival and recapture analyses

Apparent survival (ϕ; hereafter, survival) and re-sighting rates (p) 
were analyzed in a capture–mark–recapture framework, using 

program Mark (for documentation, cf. White and Burnham 1999). 
Initial data inspection was carried out using program Release 
(cf. Burnham et al. 1987). Although Test 3.Sm was accepted 
(χ2

10 = 25.40, P = 0.15), the assumptions underlying test 3.SR (en-
counter rate does not differ between newly marked and other in-
dividuals; χ2

20 = 39.43, P = 0.0059) and Test 2 (independence of  
prior capture histories; χ2

19 = 61.75, P = 0.000002) were rejected. 
Correcting for trap dependence (Pradel 1993) considerably improved 
the global model (χ2

2 = 39.57, P < 10–6), but was not sufficient to re-
move the lack of  fit (two years of  trap dependence were accounted 
for, denoted “h2” in model notation). The remaining overdispersion 
(χ2

56 = 87.00, P = 0.0058) was taken into account using a correction 
factor of  ĉ = 1.55 in calculating quasi-AICC (QAICC).

The sample used in survival models included all eiders marked 
at Grindøya between 1985 and 2005 (n = 1212). Sightings until 
2006 were considered, which is twelve years after the experi-
ment, allowing us to disentangle mortality and non-breeding in 
the year after the experiment. All non-experimental birds were 
coded as a separate attribute group whose vital rates varied in 
parallel (additively) to experimental birds. The effect of  their in-
clusion was solely to increase the precision of  estimates, because 
the inter-annual variation in re-sighting effort might otherwise have 
been confounded with experimental effects. Only estimates of  ex-
perimental birds are discussed below. A fully time-dependent model 
{ϕ(t) p(t + h2)} was preferred over models with constant survival 
(ΔQAICC = 11.88) or re-sighting (ΔQAICC = 105.04), and was thus 
used as the starting point of  analyses. The effects of  explanatory 
variables were considered only for the first year after treatment.

RESULTS
Before manipulation

Clutch sizes at the time of  manipulation did not differ between the 
treatment groups (Table 1). Mean clutch size was not different be-
tween the two years (F1,155 = 1.7, P = 0.20).

The egg laying date was earlier in 1993 (25.57 ± 0.55) than in 
1994 (27.13 ± 0.53, F1,155 = 4.7, P = 0.032) and 4.4 ± 0.8 days 
earlier in the prolonged than in the shortened group (Table 1). The 
difference in laying date between the treatment groups was a conse-
quence of  the experimental design. Prolonging and shortening the 
duration of  incubation by pairwise switching of  clutches requires 
early-laid clutches to be switched with later clutches.

Female body mass at day 5 in the incubation period was some-
what higher in 1993 (1895 g ± 14 g) than in 1994 (1843 g ± 15 g, 
F1,155 = 6.4, P = 0.012). In addition, females in the unmanipulated 
group were slightly lighter than in the treatment groups (Table 1; 
P = 0.047).

There were no significant year × experiment interactions with any 
of  the parameters measured before manipulation (all F2,155 < 1.1, all 
P > 0.35). Overall, this suggests that laying date was the only param-
eter that was strongly biased between treatment groups.

After manipulation

Incubation time, late body mass and mass loss varied between treat-
ment groups as a direct consequence of  experimental design (Table 
1). The time females spent incubating increased from the short-
ened via the unmanipulated to the prolonged group, differing by 
4.3 ± 0.2 days between treatments. This difference is virtually iden-
tical to the difference in laying dates, suggesting that treatment did 
not affect the time of  incubation received by clutches.
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In correspondence with the variation in females’ incubation 
time, the late body mass of  incubating females decreased, and 
the mass loss increased from the shortened via the unmanipulated 
to the prolonged group (Table 1). None of  the three parameters 
mentioned differed between years (all F2,119 < 2.4, P > 0.12) or 
showed significant year × experiment interactions (all F2,119 < 0.9, 
P > 0.43).

Nest success

The probability of  successful hatching increased with early fe-
male body mass and from the prolonged via unmanipulated to 
the shortened treatment group (Figure 1, Table 2, Appendix S1: 
Table S1). In addition, there was a tendency that nest success in-
creased with clutch size (P = 0.069). Nest success did not differ 
between years.

The timing of  nest loss clearly differed between treatments 
(Figure 2). Whereas nest losses in the shortened and unmanipulated 
groups occurred randomly throughout the incubation period, nest 
losses in the prolonged treatment happened much later compared to 
the shortened (+9.3 ± 1.9 days) and the control group (+6.6 ± 1.9 
days; F2,33 = 14.78, R2 = 0.47, P = 0.00003). All but one nest loss 
in the prolonged treatment was at or after the expected length of  
the incubation period (mean incubation time in the unmanipulated 
group, cf. Table 1).

Brood care

We were not able to sight all females with successful nests after 
hatching to classify their brood behavior. However, there were no 
statistical differences in hatching date, clutch size, and late body 
mass among females that were successful and sighted on one hand 
(n = 83), and successful and non-sighted on the other hand (n = 41; 
two-way ANOVA, all P > 0.12).

Based on the subsample of  females sighted, the likelihood that 
females tended their young was highest in the shortened treatment 
group (Table 2, Figure 3, Appendix S1: Table S2). Clutch size had 
a marginal positive effect on the likelihood of  tending. Tending did 
not differ between years.

Survival

Survival to the year after the experiment was not affected by 
treatment or by any of  the other covariates considered (Table 3,). 

Re-sighting, too, was unrelated to treatment (Table 2). However, 
clutch size and early female body mass were both positively correl-
ated to re-sighting rates, although the latter effect only marginally 
so (Appendix S1: Table S3). This means that, of  all experimental 
birds that survived to the next year, heavier females and females 
laying larger clutches were more likely to be breeding the year after 
the experiment.

Future fecundity

Laying date and early body mass were highly repeatable from one 
year to the next, whereas clutch size was not (Appendix S1: Table 
S4). These variables were not affected by treatment the year before 
(all P > 0.3) and did not differ between years (all P > 0.2).

DISCUSSION
The main results from the present study can be summarised as 
follows: female common eiders whose incubation time was pro-
longed experimentally suffered higher mass loss and increased 
clutch loss/nest desertion. These females were also more likely 
to abandon their brood after hatching. Both clutch loss and 
brood abandonment decreased with clutch size in all treatment 
categories. However, although females with prolonged incuba-
tion were lighter at hatching, both their return rate, survival, 
and breeding performance in the following year were unaffected. 
Body mass measured early in the incubation period and clutch 
size were the only variables related to return rate in the following 
year.

These results lend support to the hypothesis that phenotypic 
quality and/or access to resources as expressed through clutch size 
and body mass are affecting both current reproductive investment 
level and future survival and breeding performance in the same 
direction (e.g., van Noordwijk and de Jung 1986). For each indi-
vidual female, one can assume a physiological trade-off between in-
vestment in clutches and investment in chicks, even though both 
are positively correlated across females (Fig. 4). Our manipulation 
increased or decreased the investment in clutches, but the females 
responded by adjusting their investment in chicks (Fig. 4). These re-
sults show that, despite experimental manipulation, females adjust 
their overall reproductive effort to a level where survival and future 
reproduction are not compromised.

Table 1
Clutch size, laying date, hatching date, incubation time, body mass and relative mass loss of  female common eiders before and/or 
after experimental manipulation of  their incubation time (mean ± SE). Late and early measures were taken at after 5 and 20 days of  
incubation, respectively. Treatment represents females assigned to groups where the incubation period was shortened and prolonged 
with 5 days. Control nests are unmanipulated clutches. Pooled data for two different seasons (see text for further explanation). 
Sample sizes (number of  nests) are given in parentheses. Asterisks indicate significance levels (P*** < 0.001, 0.05 ≤ P+ < 0.1)

 

Treatment

F Shortened Unmanipulated Prolonged 

Before manipulation
  Clutch size 4.54 ± 0.10 (59) 4.62 ± 0.14 (34) 4.50 ± 0.09(68) 0.3
  Laying date (day in May) 28.56 ± 0.64 (59) 26.41 ± 0.64 (34) 24.16 ± 0.56 (68) 14.7***
  Early body mass (g) 1878 ± 20 (59) 1825 ± 20 (34) 1892 ± 14 (68) 3.0+

After manipulation
  Hatching date (day in June) 21.84 ± 0.65 (52) 24.08 ± 0.80 (26) 25.47 ± 0.65 (47) 8.1***
  Incubation time (d) 18.81 ± 0.20 (52) 23.35 ± 0.22 (26) 27.49 ± 0.24 (47) 431.2***
  Late body mass (g) 1615 ± 18 (55) 1465 ± 21 (28) 1437 ± 13 (53) 35.1***
  Body mass loss (%) 14.24 ± 0.40 (55) 20.37 ± 0.48 (28) 24.66 ± 0.56 (53) 131.0***
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Individual quality and investment level

Individual quality and its consequences for reproductive costs have 
for decades drawn attention to ecologists (e.g., van Noordwijk and 
de Jong 1986, Caro et al. 2016, Montoya et al. 2016, Merkling et 
al. 2017, Williams 2018). Birds that started incubation with a higher 
body mass and birds with larger clutch size had a higher probability 

of  completing incubation and tending for ducklings. These females 
also had a higher return rate to the next breeding season. From 
a life history perspective, several partly overlapping explanations 
may be given to these results. First, these birds may show higher 
investment levels because they are at the end of  their life (i.e., ter-
minal investment) (Hanssen 2006), however, their higher return rate 
does not support this. Second, a previous study where one group 
of  birds were experimentally depredated showed that successful 
breeding tended to lead to a higher probability of  breeding in the 
colony the following year (Hanssen and Erikstad 2013); however, 
this does not explain the higher body mass and larger clutch size. 
Third, a larger clutch size has a higher reproductive value, and this 
may incite females to invest more in current reproduction, however, 
this should have a neutral or more likely a negative effect on sur-
vival. A final and most likely explanation is that females of  better 
quality are able to gain more body reserves before breeding and, 
therefore, to allocate more resources to all life-history traits. This 
means that they can invest more in egg production, incubation, and 
brood rearing without compromising survival (e.g., van Noordwijk 
and de Jong 1986, Garant et al. 2007), and they even have higher 
re-sighting rate compared to females with lower body mass and 
smaller clutch size.

Experimental mass loss

The study design in the present study allowed us to manipulate 
body mass (available body reserves) without altering the reproduc-
tive value of  the clutch (clutch size). It can, however, be argued that 
prolonging the incubation period leads to later hatch dates, and 
that the value of  offspring is reduced when hatched later in the 
season (e.g., Drent and Daan 1980, Curio 1983). Thus, the ques-
tion is whether a ~4 day difference in laying/hatching dates could 
explain the reduced interest in brood care in the prolonged group. 
In this study colony the potential effect of  laying date on brood 
care has been evaluated on several occasions without uncovering 
any effect of  laying date on the probability of  tending/abandoning 
the brood after hatching (Hanssen et al. 2003a, 2003b, Hanssen 
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Figure 1
Nest success (the probability of  hatching) in common eiders in relation 
to clutch size and early female body mass for three treatment groups. 
Experimentally shortened (red), unmanipulated (green), and prolonged 
incubation time (blue). (Estimates are from the top-ranked logistic model 
in Table 2).
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Figure 2
Number of  clutch losses in common eiders during the incubation period 
among the treatment groups (experimentally shortened, unmanipulated, 
and prolonged incubation time) in relation to day (days after start of  
incubation). The arrow indicates the mean length of  the incubation period 
for unmanipulated clutches.
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2006). We here found that, as experimental mass loss increased, 
the likelihood of  continued investment in the current clutch or 
brood decreased, females tended to lose/desert their clutch before 
hatching or abandon their brood after hatching. Given a constant 
daily predation rate/clutch abandonment rate, we would of  course 
expect a higher total nest abandonment rate in the prolonged incu-
bation group, simply as a consequence of  the 5 day longer expo-
sure to the daily predation risk. However, what we found was that 
the daily predation/abandonment rate was not constant during 

incubation, it tended to increase towards the end of  incubation in 
all groups. The result that almost no birds in the prolonged group 
lost their nest until the end of  incubation suggests that these birds 
were in better condition or of  better quality than the birds in the 
unmanipulated group. This is probably a consequence of  the bias 
in laying date that derives from the experimental design, because 
the birds in the prolonged group consists of  birds with earlier laying 
dates than the shortened group and are therefore presumably of  
higher quality or more experienced birds. It should be noted that 
most of  these females in the prolonged group lost their clutch 
after having incubated beyond the time where a “normal” clutch 
would have hatched, and that the desertion/abandonment may be 
a response to this. Nevertheless, birds in the prolonged group more 
often abandoned their ducklings to other females after hatching. 

Table 2
Variables in the best models describing (A) nest success, (B) brood care, and (C) re-sighting rates of  female common eiders after 
experimental manipulation of  their incubation time. Models presented are (A + B) binominal GLMs or (C) capture–mark–recapture 
models investigating the effect of  treatment (shortened, unmanipulated and prolonged incubation time) and covariates on the 
likelihood that (A) females complete the incubation period and hatch their eggs, (B) females care for their young after hatching, or 
(C) females are re-sighted the year after, given they are alive (binary responses). Test statistics are (A + B) Wald X2 or (C) likelihood 
ratio tests. ∆AICC values indicate the difference between Akaike’s Information Criterion (corrected for small sample size) of  the 
model described and the null model. For results of  model selection, see Appendix S1: Table S1, S2 and S3, respectively

Variables N Mean Estimate c2 R2 ∆AICC 

(A) Nest success 0.11 −12.81
  Treatment
   shortened 59 88% 1.42 ± 0.52 8.3**
   unmanipulated 34 77% 0.79 ± 0.60 1.2
   prolonged 67 69%
  Early female body mass (kg) 4.80 ± 1.71 7.8**
  Clutch size 0.49 ± 0.27 3.3+

(B) Brood care 0.12 −3.94
  Treatment
   shortened 41 66% 0.62 ± 0.31 3.9*
   unmanipulated 18 50% 0.18 ± 0.38 0.2
   prolonged 24 33%
  Clutch size 0.57 ± 0.33 2.9+

(C) Re-sighting rates −2.84
  Treatment
   shortened 59 52% 0.43 ± 0.34
   unmanipulated 34 35% –0.26 ± 0.43 2.7
   prolonged 68 61% 0.79 ± 0.34
  Early female body mass (kg) 0.43 ± 0.20 3.3+

  Clutch size 0.46 ± 0.19 3.9*
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Figure 3
Brood care (the probability of  tending young) in common eiders in relation 
to clutch size for three treatment groups (experimentally shortened, 
unmanipulated, and prolonged incubation time). Error bars indicate 95% 
confidence limits. (Estimates are from the top-ranked logistic model in Table 2).

Table 3
Adult survival rates of  female common eiders during the first 
winter after experimental manipulation of  their incubation 
time. Columns show the number of  parameters (K); the quasi-
Akaike’s Information Criterion, corrected for small sample size, 
relative to the best model (∆QAICC); the QAICC weight (w); and 
the likelihood ratio test X2 of  the deviances of  pairs of  nested 
models (all P > 0.1). The parameterization of  re-sighting rate in 
all models of  this Table was model 1 from Supplementary Table 
3. The top model had a QAICC of  5136.00

Model K ∆QAICC w c2 

1 Null model 72 0.00 0.592 0.00
2 Treatment 74 3.40 0.108 0.81
3 Treatment + early female mass 75 4.93 0.050 1.38
4 Treatment + clutch size 75 5.00 0.049 1.32
5 Treatment + nest success 76 7.14 0.017 1.29
6 Treatment + tending young 76 7.60 0.013 0.82
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The cost of  this abandonment seems to be lower survival of  aban-
doned young, probably as a consequence of  being forced by their 
foster mother into more disadvantageous positions in the brood 
(Bustnes and Erikstad 1991b, Ost and Back 2003). The costs to the 
adopting females are probably negligible as the young feed them-
selves, i.e., increasing brood size does not lead to increased costs 
of  care (Lazarus and Inglis 1978, 1986). This brood abandonment 
strategy ensures that after abandonment the broods still have a 
chance of  survival (albeit reduced) and the current reproductive 
effort is not wasted (Bustnes and Erikstad 1991b, Öst and Bäck 
2003). Given that the birds in the prolonged group may presumably 
be of  slightly higher quality it is not impossible that this may have 
weakened the experimental effect and even higher desertion/aban-
donment rates may have been expected if  laying dates in all groups 
had been equal.

Cost of reproduction

The population dynamics of  long-lived species have been shown 
to be sensitive to changes in adult survival (Stearns 1992, Caswell 
2000, Sæther and Bakke 2000), and these species are therefore pre-
dicted to be restrictive with activities that reduce adult survival (e.g., 
Lindén and Møller 1989, Charlesworth 1994). We found that birds 
that suffered a very high experimental mass loss, even though they 
may be of  higher individual quality, more often abandoned their 
eggs and chicks but had a similar return rate to the next season, 
when compared to unmanipulated and birds with an experimen-
tally reduced mass loss. Thus, as has been shown in other long-lived 
birds (Erikstad et al. 2009), female eiders have a highly flexible pa-
rental investment, which they adjust according to their individual 
quality and state. They seem able to compensate for the increased 
mass loss by abandoning their brood, thereby avoiding reaching a 
condition where their own survival and future reproduction would 
be at risk (Fig. 4).

SUPPLEMENTARY MATERIAL
Supplementary material can be found at Behavioral Ecology online.
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Figure 4
Although investment in clutches (before hatching) and investment in chicks 
(after hatching) are expected to exhibit intra-individual trade-offs (thin black 
lines) and thus be negatively correlated, the observed phenotypic pattern at 
the population level is a positive correlation (black eggs). This is due to fixed 
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intra-individual black contour lines, leading to an increased or decreased 
probability of  hatching and/or tending.
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