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(SEEA EA) for quantifying and disclosing uncertainty. However, without quantifying uncertainty, it is unclear
whether or not accounting tables contain biased (erroneous) area estimates which do not reflect real land cover
changes. We use Oslo municipality in Norway as a case study to illustrate best practices in quantifying unbiased
area estimates using design-based statistical methods. As input for ecosystem extent accounts, we compared a
custom Sentinel-2 land cover map with a globally available one called Dynamic World for 2015, 2018 and 2021.
The design-based area estimation involved (i) generating a stratified probability sample of locations using the
satellite-based maps to define strata, (ii) assigning ecosystem type labels to the samples using photointerpretation
according to a response design protocol, and (iii) applying a stratified area estimator to produce 95% confidence
intervals around opening, closing and change stocks in the extent accounting table. We found that pixel counting
practices, currently adopted by the SEEA EA community, led to biased extent accounts, particularly for ecosystem
conversions, with biases averaging 195% of the true change value derived from design-based methods. We found
that the uncertainty inherent in state-of-the-art satellite-based maps exceeded the ability to detect real change in
extent for some ecosystem types including water and bare/artificial surfaces. In general, uncertainty in extent
accounts is higher for ecosystem type conversion classes compared to stable classes, and higher for 3-yr
compared to 6-yr accounting periods. Custom, locally calibrated satellite-based maps of ecosystem extent
changes were more accurate (81% overall accuracy) than globally available Dynamic World maps (75%). We
suggest that rigorous accuracy assessment in SEEA EA will ensure that ecosystem extent (and consequently
condition and service) accounts are credible. A standard for auditing uncertainty in ecosystem accounts is
needed.

1. Introduction

Climate change and biodiversity loss are tightly intertwined, and
both are related to land use. The Kunming-Montreal Global Biodiversity
Framework aims to reduce the loss of areas of high biodiversity
importance to near zero by 2030 through Target 1, which focuses on
inclusive spatial planning and effective land use and land cover (LULC)
policies. Quantifying, understanding, and communicating the dynamics
of land change is a premise for knowledge-based land use policies,
including strategies for degradation neutrality and no net loss of natural
habitats (Cowie et al., 2018). So-called ecosystem extent accounts depict
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changes in the spatial extent or area of different ecosystems over a
certain period within a focal area—i.e., a country, region, or a munici-
pality (United Nations, 2021). Accounting for changes in ecosystem
types (ET), their condition, and the services they provide for society is a
challenging task with inherent uncertainty (Costanza et al., 1997;
Foody, 2015), yet it is necessary for tracking progress towards achieving
the sustainable development goals (Bebbington and Unerman, 2018).
The UN Statistical Commission (UNSC) has adopted an internationals
statistical standard for the System of Environmental-Economic Ac-
counting Ecosystem Accounting (SEEA EA) (United Nations, 2021) and
have developed guidelines for implementation (Edens et al., 2022).
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Work is now ongoing in national statistical offices to put the standard
into national practice, and experimental ecosystem accounts have been
carried out by the EU (e.g. Vysna et al., 2021). In addition, EUROSTAT is
developing a regulation for common implementation by EU member
states, with associated countries such as Norway following the same
reporting standards under the SEEA agreement.

The current guidelines for biophysical accounting of changes in
ecosystem extent, condition and services do not specify either minimum
accuracy criteria nor methods for estimating and reporting uncertainty
(United Nations, 2022). This is perhaps because SEEA EA emerged as a
complement to the System for National Accounts (SNA) where there is
no uncertainty: the accounts consist of transactions of exactly known
amounts and there is no estimation, modelling, proxy indicators, or
measurement errors. Nevertheless, GDP revisions can be quite large (e.
g., Ghana 60 %, China 15 %, Netherlands 7 %) (Barton et al., 2019),
indicating SNA are also victim to uncertainty even if it is not explicitly
acknowledged. However, SEEA EA is fundamentally different to SNA
because it builds on indicators and estimation, which are inherently
uncertain. The lack of guidelines for reporting uncertainty is unfortu-
nately consistent with recent state-of-the-art national ecosystem ac-
counts where uncertainty is not quantified (Hein et al., 2020; Heris et al.,
2021; Petersen et al., 2022). Business accounting research has demon-
strated that different ways of accounting for and disclosing uncertainty
can affect auditor and investor objectivity (Eilifsen et al., 2021; Mayhew
et al., 2001). Therefore, communication of accuracy and uncertainty is
considered vital for the credibility and utility of future ecosystem ac-
counts (Bagstad et al., 2021; Schagner et al., 2013). Successful imple-
mentation of SEEA EA will depend on developing best practices for
rigorous accuracy quantification, assessment and disclosure — an ‘un-
certainty audit’ for ecosystem accounting.

Quantifying error in ecosystem extent maps and accounts is a priority
because ecosystem extent is the foundation for biophysical modelling of
ecosystem condition and services. Ecosystem extent accounts are
essentially an area estimation of ETs and their changes over time, which
often rely on existing LULC maps (United Nations, 2022). The classic
approach to generating a statistical estimate for the area covered by
various LULC categories relies on design-based (survey) statistics. First a
representative sample is identified for the area of interest (the study
area). The sampling units can be points (point-frame) or small polygons
(area-frame samples), which are identified using a probability sampling
design such as random, systematic or stratified random sampling (Gal-
lego, 2004). Sampling units are then manually classified according to a
target LULC typology with either ground surveys or visual interpretation
of aerial imagery (orthophotos), creating a ‘reference dataset’ from
which the total area for each category of the target typology is inferred.

Ecosystem accounting is inherently spatial and many steps in
populating the ecosystem condition and service accounts requires a
wall-to-wall spatial delineation of the ETs. Accordingly, the develop-
ment of a comprehensive ET map was considered unavoidable to pro-
vide the necessary spatial detail. Perhaps the most commonly used wall-
to-wall ET maps are those produced by national or international statis-
tical or mapping authorities which use manual mapping approaches
based on visual interpretation of aerial and satellite imagery. In Europe
the Corine Land Cover (CLC) product (Biittner, 2014) includes single
year ET maps, but also change maps which are mapped separately from
the single year maps which can be used for ecosystem extent accounting
purposes. Because such maps are manually digitized, they are consid-
ered highly accurate, but when subjected to external validation, they
nevertheless reveal error rates of between 2 and 25 %, depending on the
ET (Biittner, 2014). Apart from the error rates, they also have relatively
restrictive minimum size thresholds (25 ha/100 m in the case of CLC
products) and update frequencies (every three years for CLC). These
constraints mean that CLC-like maps cannot meet all ecosystem ac-
counting requirements especially when considering urban thematic ac-
counts which require smaller minimum mapping units. Therefore, the
ecosystem accounting community has increasingly relied on satellite-
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based remote sensing maps of land cover built with a combination of
manual mapping and machine learning models for the purposes of
quantifying ecosystem extent (Cord et al., 2017; de Araujo Barbosa et al.,
2015). Such satellite-based maps provide wall-to-wall coverage of the
globe, with flexibly-defined minimum mapping units, and can be
continuously updated. State-of-the-art global LULC maps are based on
Sentinel satellites from the European Space Agency which deliver result
in 10 m resolution ET extent maps (Venter et al., 2022). Sentinel-based
products offer improved spatial and temporal resolution compared to
previous datasets such as CLC (Biittner, 2014) and Copernicus Global
Land Cover (Buchhorn et al., 2020). Even though manually-digitized
and satellite-based ET maps are easily complemented by design-based
sampling to give better estimations for the total area of each ET, the
extent to which this can improve the ecosystem accounting process has
not been adequately explored.

Although satellite-based maps of ecosystem extent meet SEEA EA
requirements, they can lead to biased area estimates (Foody, 2015;
Gallego, 2004). The typical approach for estimating area size from
satellite-based extent maps is ‘pixel counting’, whereby the number of
pixels per ET are summed and multiplied by the pixel area (Fig. 1).
However, pixel counting does not account for either classification errors
caused by algorithms in artificial intelligence (AI) models that are used
to convert satellite imagery into a categorical map (Olofsson et al.,
2014), or errors in the data used to calibrate the AI models themselves
(Foody et al., 2016). Such pixel counting bias can be particularly large
for rare classes, including any “change classes” corresponding to a spe-
cific ET conversion (e.g. wetland loss) over a specific time period. ET
conversions are the focus of ecosystem accounting for the purpose of
change detection and are often of high policy interest. Depending on the
length of accounting period and rate of landcover change, ET conver-
sions nearly always cover only a very small proportion of an accounting
area (Foody, 2013). In some cases, the bias in satellite-based maps may
exceed the magnitude of actual change and therefore compromise the
ability to detect statistically significant changes in ecosystem extent
(Kleinewillinghofer et al., 2022). Without quantifying area bias and
uncertainty, one cannot conclude whether accounting tables reflect real
changes or merely artifacts in the methods used to produce them. Errors
in land cover classification can generate wildly disparate value estimates
of the services ecosystems provide. For instance, after correcting for
misclassification bias in a six-class national land cover map for the
United States, Foody (2015) found that ecosystem services value
changed from US$ 1118 billion yr~! to US$ 600 billion yr*.

The SEEA EA biophysical accounts guidelines suggest reporting
classification accuracy statistics for the Al model or the ET map using an
error matrix, with the assumption that this is a reliable reflection of the
accuracy of area estimates reported in the extent accounts (United Na-
tions, 2022). However, class-specific, overall model or map accuracy
may have little bearing on the bias and uncertainty in area estimates
reported in an extent account (Radoux and Bogaert, 2020). The diver-
gence between map accuracy and extent account accuracy is especially
large, with potentially high bias for class-specific accuracies, when
ground truth data used to quantify accuracy are not based on a proba-
bility sample or when accuracy estimates are not calculated at the
appropriate scale. For example, reporting map accuracies from conti-
nental/global maps when conducting (sub)national accounts is prob-
lematic because map accuracy varies with spatial scale and the
corresponding frequency and distribution of land classes. Furthermore,
we cannot assume that accuracies of either a LULC time series product or
the AI model used to produce it will be representative of the error in the
LULC change maps when comparing annual maps over an accounting
period.

We can overcome the limitations of pixel-counting and produce
unbiased ecosystem extent accounts by using a combination of satellite-
based ecosystem extent maps and sampling-based reference data. In a
design-based area estimator (Fig. 1), we use an algorithm’s ET classifi-
cations of satellite-based ecosystem extent maps as a basis for stratified
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Fig. 1. Workflow for deriving ecosystem extents from pixel counting methods and design-based area estimation methods.

random sampling, and manually label each sampling unit through
ground surveys or visual (photo)interpretation to generate a reference
dataset (Olofsson et al., 2014). We then use the reference dataset to
calculate the area covered by each ET (i.e., the ecosystem extents) and
quantify the uncertainty of each ET extent estimate—often reported as
95 % confidence intervals. Such design-based area estimation has been
adopted by the remote sensing community to provide statistics on
agriculture, forestry, and other similar domains (e.g. Arévalo et al.,
2020; Gallego, 2004).

The application of design-based area estimation to ecosystem ac-
counting has not yet been adequately explored, however, and several
research gaps need to be addressed to inform guidelines for imple-
menting design-based area estimation in satellite-based ecosystem
extent accounts. One, we need better understanding of how much bias is
introduced through pixel counting methods as opposed to design-based
area estimation. Two, we need to explore the accuracy requirements for
extent accounting at varying administrative levels. The accuracy needs
of ecosystem accounting to support national versus local government
policy and planning needs are different (Grammatikopoulou et al.,
2023). For example, are the global high resolution (10 m) LULC maps (e.
g., Venter et al., 2022) accurate enough for municipal-level extent ac-
counting to support landuse planning, or are locally-calibrated LULC
maps necessary? Three, we need to assess whether uncertainty inherent
in satellite-based maps is presently too large to detect real changes over
shorter accounting periods (i.e. annual change as in national accounts),
or if longer accounting periods or more generalized ET typologies would
be more appropriate.

To address these research gaps, we investigated an ecosystem ac-
counting case study in Oslo, Norway. We explored how bias and un-
certainty in ecosystem extent estimates vary with input data type and
accounting period. We define bias as the difference between pixel counts
of algorithm ET classification and the statistical estimator based on the
reference dataset, while uncertainty is defined as the likely limits to the
aforementioned bias for each area estimate. Our study investigates how
bias and uncertainty in ecosystem extent differ between 1) a custom
Sentinel-2 land cover map vs the globally available Dynamic World land
cover map, and 2) between 3- and 6-year accounting periods. By seeking
answers to these research questions, we attempt to illustrate best prac-
tices in accounting for ecosystem extent.

2. Methods and materials
2.1. Study area

Oslo municipality (59’55 N, 10'45 E) contains the capital of Norway
and had a population of 699,827 in 2021, or 13 % of the country’s
population. The 454 km? municipality is largely covered by forest, with
a built-up zone interspersed with grass, trees and water bodies (Fig. 2).
Oslo is one of Europe’s fastest growing cities, which has resulted in large
scale urban restructuring since the early 1990's to accommodate this
rapid growth (Kjeerds, 2023), focused on urban densification and rede-
velopment as the predominant processes. Oslo has been a focus area for
testing urban ecosystem service mapping and assessment, a lab for
experimental urban ecosystem accounting and forerunner for testing
downscaling of ecosystem accounting standards to the municipal level
(e.g. Barton et al., 2015; Cimburova and Barton, 2020; Garnésjordet
et al., 2021; Hanssen et al., 2021; Venter et al., 2021; 2020). Oslo was
the first municipality in Norway to implement urban vegetation cover
extent accounts (Oslo kommune, 2018). As a city situated between a
coastal fjord, boreal forests and agricultural landscapes, Oslo comprises
a wide range of different ETs within a relatively small area.

2.2. Satellite-based ecosystem extent maps

To map ecosystem extent and its changes, we use two 10 m resolu-
tion satellite-based maps which both provide annual status maps and do
not directly map changes between two years. There is a well-known
trade-off in satellite-based LULC maps where global maps generalize
well over large spatial extents, but have regional/local inaccuracies that
might limit their utility at municipal scales. Therefore, we wanted to
compare a global LULC map with a local one. For a global LULC map we
chose a continuously updated map called Dynamic World produced by
Google (Brown et al., 2022), which is the only existing LULC map
derived from 10 m resolution satellite data with a time series dating back
to 2015. Dynamic World is produced using a deep learning model which
classifies each Sentinel-2 satellite image into a 9-class LULC map and
provides class-specific probability scores defining the likelihood that
each pixel belongs to a given LULC class. The model has been applied to
the entire Sentinel-2 image archive (2015 to present) and is
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B) Locally-trained ELC10 2021

Fig. 2. Maps of ecosystem extent in 2021 for Dynamic World and custom map which is a version of ELC10 trained on local reference data. Inset map shows Frogner
park and is illustrated in white. The location of sampling units (10x10m quadrats) used for design-based area estimation and map accuracy assessment are shown

in black.

operationally delivering near real-time LULC maps as new Sentinel-2
scenes become available (every 5 days). Although Dynamic World has
inferior accuracy over Europe compared to the European Space Agen-
cy’s World Cover (Venter et al., 2022), it is the only global LULC dataset
to span the period 2015 to present. We created annual LULC composites
for 2015, 2018 and 2021 by calculating the median probability scores
for all LULC classes across all Dynamic World images during each year’s
growing season (April to September) and then classifying by taking the
class with the highest probability score per pixel.

The second LULC map included in our study was a local one was
customized to Norwegian conditions. Given that Norway does not have
any time series national land cover maps, we conducted a custom
implementation of a 10 m resolution European land cover map called
ELC10 which is built on Sentinel-1 and —2 imagery (Venter and
Sydenham, 2021). Here we used the same workflow as used to produce
ELC10, except that we substituted the model’s training data with local
calibration data collected over Oslo municipality. The calibration
dataset consisted of 2500 randomly distributed 10x10 m sampling
quadrats aligned to the Sentinel-2-pixel grid. The samples were labelled
using visual interpretation of very high resolution orthophotos with a
reference year of 2018 according to the Dynamic World LULC typology
(Table 1). A random forest model was then trained on the reference
sample with Spectral-temporal metrics for all Sentinel-1 and —2 images
during 2018. The model was then used to classify LULC for 2015, 2018
and 2021 over the entire municipality. All processing of satellite imag-
ery and LULC data was performed in Google Earth Engine (Gorelick
et al., 2017).

For the purposes of addressing our research aim, we employed a
simplified 4-class ecosystem typology which has a cross-walk to the
Eurostat level 1 typology, recommended by SEEA EA and based on the
IUCN ecosystem typology (Keith et al., 2022). We considered three ac-
counting periods (2015-2018; 2018-2021; and 2015-2021), which
gave two instances of 3-year intervals and one instance of a 6-year in-
terval. Three years is the frequency proposed for ecosystem extent

Table 1

Ecosystem extent typology used with descriptions from Dynamic World. Cross-
walk to Eurostat level 1 typology is provided along with the simplified 4-class
typology used in the paper.

Dynamic World Eurostat level 1 Custom 4-class

Built area Settlements and other artificial areas Bare

Bare ground Sparsely vegetated ecosystems

Crops Cropland Vegetated - short
Grass Grassland

Flooded vegetation Inland wetlands
Shrub & scrub Heathland and shrub
Trees Forest and woodland
Water Rivers and canals Water
Lakes and reservoirs
Marine inlets and transitional waters

Vegetated - tall

accounting in the EU (European Commission, 2022). The temporal
extent was determined by the limited availability of Sentinel-2 imagery,
and also the 3-year update cycle of commonly used European statistical
datasets such as Corine land cover (Biittner, 2014) and LUCAS (d’An-
drimont et al., 2020).

2.3. Pixel counting

The most common approach to calculate ecosystem extent accounts
is pixel counting. For each ET, the number of pixels classified as that ET
are counted and then multiplied by the pixel area. We conducted pixel
counting over Oslo municipality a total of six times for each unique
combination of accounting period (2015-2018, 2018-2021, and
2015-2021) and satellite data source (Dynamic World and custom
ELC10). Each map consists of a 16-class typology with 4 stable, and 12
conversion classes (Fig. 3). Pixel counting areas were used to quantify
opening, change and closing stocks for each ET for each accounting
period.
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Fig. 3. Maps of ecosystem extent change between 2015 and 2021 according to a 4-class typology resulting in a 16-class change typology. The maps highlight certain
types of change and are illustrative of the differences between Dynamic World and the ELC10 approach. The color legend is a transition matrix and should be read

from left to right in terms of direction of change.
2.4. Design-based area estimator

The approach we adopt for design-based area estimation is the
stratified area estimation described in detail in Olofsson et al. (2014).
We summarise the approach as applied to ecosystem extent accounting
here (see Fig. 1), however, for a comprehensive description of the sta-
tistical methodology and formulae, we refer the reader to Olofsson et al.
(2014). As with the pixel counting, the design-based estimation is
repeated for each wunique combination of accounting period
(2015-2018, 2018-2021, and 2015-2021) and satellite data source
(Dynamic World and custom ELC10). This results in six unique sets of
stratified samples, area estimates with associated uncertainty intervals.
It is important to note that this process is completely distinct from the
collection of calibration data for the ELC10 Al model described in sec-
tion 2.2.

i) Stratified sample: The satellite-derived LULC change maps were
used to generate a series of stratified random samples of 10x10m
quadrats, aligned with the Sentinel-2 pixel grid, over Oslo mu-
nicipality. The mapped ET and their change classes define the
strata and the number of samples allocated per strata are pro-
portional to the mapped strata areas. The total sample size was
determined using the stratified variance estimator described in
Olofsson et al. (2014). This requires one to define a target stan-
dard error of 2 % for the anticipated overall accuracy estimates.
In addition, one needs to speculate an expected error matrix
based on previous experience with mapping ET stable and tran-
sition strata. Based on previous experience in Venter and
Sydenham (2021), class-specific accuracies were anticipated as
60 % for ET conversion classes and 80 % for stable classes. As
recommended good practice, for very rare conversion classes, we
set a minimum sample size of 50. The resulting sample allocations
are presented in Table 2. The AREA2 tool (https://area2.readth

edocs.io/en/latest/overview.html) in Google Earth Engine was
used to randomly select the sampling units from each stratum.

ii) Manual labelling of ecosystem types: We developed a response

design protocol to label the sampling units according to the
ecosystem typology defined in Table 1 for the years 2015, 2018
and 2021. To facilitate the labelling of samples, we developed a
Google Earth Engine web app that allowed for visual interpreta-
tion of multi-temporal orthophotos provided by the Norwegian
Mapping Authority, Sentinel-2 mosaics, and very high resolution
satellite images provided by the Copernicus Contributing Mis-
sions. The web app allowed interpreters to easily navigate be-
tween samples, inspect the reference imagery interactively, and
assign ET labels with the click of a button. The samples were
randomly allocated among five interpreters who were trained
and provided with a sampling manual to achieve a common un-
derstanding of the typology and what possible conversion classes
look like in satellite/aerial imagery. A random sub-sample of 100
units were labelled by all interpreters in order to estimate vari-
ability and potential error in the reference data collection. The
group of interpreters consisted of researchers in landscape ecol-
ogy and ecosystem accounting and were thus familiar with ET
definitions and orthophoto interpretation methods.

iii) Error matrix for map accuracy assessment: The reference data were

used to produce an error matrix in terms of proportion of area
from mapped vs reference samples. We quantified an estimate of
the overall accuracy for each map, and we also estimated the
user’s accuracy (or commission error rate), and producer’s ac-
curacy (or omission error rate) for each ET category in each map.
The sampling variability of the different accuracy metrics was
quantified as their standard error.

iv) Stratified area estimator: Area was estimated from the reference

dataset using a simple stratified estimator (Olofsson et al., 2014).
Uncertainty in area estimates was quantified as 95 % confidence
intervals. Steps iii and iv were conducted in R using the
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Table 2

Sample allocation for the stratified random sample. Number of sampling units
per ecosystem type change strata used for quantifying map accuracy, and bias
and uncertainty in ecosystem extent estimates. Class abbreviations are shown in
parentheses for reference in later figures.

Strata (ET change 2015—2018 2018—2021 2015—2021 Total

classes)

Water - Water (W to 706 834 792 2332
w)

Water - Bare (W to B) 79 60 75 214

Water - Vegetation 75 63 69 207
tall (W to VT)

Water - Vegetation 137 65 61 263
short (W to VS)

Bare - Water (BtoW) 95 61 84 240

Bare - Bare (B to B) 925 1001 935 2861

Bare - Vegetation tall 57 66 68 191
(B to VT)

Bare - Vegetation 121 91 111 323
short (B to VS)

Vegetation tall - 103 85 120 308
Water (VT to W)

Vegetation tall - Bare 105 61 112 278
(VT to B)

Vegetation tall - 2759 2742 2710 8211
Vegetation tall (VT
to VT)

Vegetation tall - 143 95 168 406
Vegetation short
(VT to VS)

Vegetation short - 118 139 123 380
Water (VS to W)

Vegetation short - 110 92 92 294
Bare (VS to B)

Vegetation short - 92 98 122 312
Vegetation tall (VS
to VT)

Vegetation short - 487 559 470 1516
Vegetation short
(VS to VS)

Total 6112 6112 6112 18,336

‘mapaccuracy’ package (Costa, 2022) which implements the
formulae in Olofsson et al. (2014).

v) Unbiased ecosystem extent with uncertainty: Area estimates with 95
% confidence intervals were reported in accounting tables
showing opening, change and closing stocks for each ET and each
accounting period.

2.5. Effects of input data type, accounting period, and sampling effort

We explored the effect of input data type (Dynamic World vs custom
ELC10 maps) and accounting period (3- vs 6-year) on pixel counting
relative bias and estimator uncertainty. Relative bias (B) was quantified
as the percentage difference between the area proportion estimate
derived from pixel counting (A,.), and that derived from the design-
based approach (Ag):

B ="
Adb

Uncertainty for design-based area estimates was quantified as 95 %
confidence intervals (CI) based on the reference sample using equations
in Olofsson et al. (2014). For purposes of comparing across ETs, we
calculated estimator relative uncertainty (U) as a percentage of the class-
specific area estimate (Ag) as:

CI

U=-"
Adb
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3. Results
3.1. Bias in pixel counting approach

For “stable” ecosystem change classes (i.e. the ones corresponding to
no change, Fig. 4A), pixel counting led to area estimates that were
proportional to the area estimates derived from design-based methods
for water (W to W) and tall vegetation (VT to VT). However, there was
substantial bias introduced by the pixel counting for stable bare (B to B)
and short vegetation (VS to VS), particularly for estimates based on
Dynamic World. For ET conversion classes (Fig. 4B), pixel counting
produced area estimates that were greater or smaller than those from
design-based methods. In most cases, the ecosystem extents from pixel
counting exceeded the 95 % confidence intervals around the design-
based extent estimates (Fig. 4). In extreme cases, such as conversions
from short vegetation (VS) to tall vegetation (VT) and water (W), the
relative bias in area estimates resulting from pixel counting exceeded
500 % (Fig. 5). Comparatively, pixel counting of stable classes such as
tall vegetation to tall vegetation led to smaller relative biases. When
averaged across data source and accounting period, pixel counting led to
a relative bias value of 15 % for stable classes, compared to 195 % for
conversion classes.

Pixel counting from locally-trained ELC10 maps produced greater
bias (168 %) compared to Dynamic World maps (71 %). The pixel
counting bias in ELC10 maps was greatest for ecosystem conversion
classes. This is despite the fact that the map accuracy assessment
(Table 4) showed that ELC10 was more accurate than Dynamic World,
highlighting the fact that map accuracy and pixel counting bias are not
necessarily related. Pixel counting in the 3-year accounting period
produced greater bias (99 %) compared to the 6-year accounting period
(81 %; Fig. 5B). The difference in pixel counting bias between 3-yr and
6-yr accounting period was greatest for conversions between tall and
short vegetation (Fig. 5A). Such conversions represent a gradient in
vegetation structure changes that are typically gradual (e.g. tree
growth), and are therefore more accurately captured by longer ac-
counting periods.

The pixel counting bias propagated through to the extent accounting
tables (Table 3) which quantify opening and closing extents along with
net change for a given accounting period. In some cases, the net change
in ecosystem extents estimated from pixel counting differed in both
magnitude and direction compared to the design-based estimates. For
instance, pixel counting from the ELC10 map revealed a net gain in tall
vegetation (+189 ha) between 2015 and 2021, yet the unbiased esti-
mate from design-based methods revealed a statistically significant net
loss of tall vegetation (-252 + 212 ha).

3.2. Uncertainty in design-based estimation

The relative uncertainty in design-based area estimates was on
average much greater for ET conversion classes (97 %) compared to
stable classes (6 %; Fig. 6A). In some cases, such as the conversion of
short vegetation to water, the width of the 95 % confidence intervals was
nearly double the magnitude of the area estimate. ET conversion classes
that were estimated with the lowest relative uncertainty included tall
vegetation to short vegetation (characteristic of forest clear-cutting),
bare to water (characteristic of rising reservoir levels), and short vege-
tation to bare (characteristic of vegetation clearing for infrastructure
development).

Uncertainty in area estimates from locally-trained ELC10 maps were
on average lower (69 %) than the uncertainty from Dynamic World
maps (84 %). On a class-by-class basis, the difference in map accuracies
between ELC10 and Dynamic World (Table 4) corresponded to the dif-
ferences in relative uncertainty in their area estimates. For instance,
ELC10 produced a higher producer’s accuracy for tall vegetation to short
vegetation class compared to Dynamic World, and this corresponded to
a lower uncertainty value in the resulting area estimate for this class.
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Fig. 4. Area estimates for stable (A) and conversion (B) ecosystem extent classes. Extents for satellite-based maps (DW = Dynamic World; ELC10 = locally trained
ELC10 map) and area estimation method (pix cnt = pixel counting; des-bsd = design-based area estimation) are differentiated by color and pattern. Design-based area
estimates are provided with 95 % confidence interval error bars. The accounting period and opening, change and closing stocks are presented as facetted panels.

The 3-year accounting period produced greater uncertainty (95 %)
compared to the 6-year accounting period (65 %; Fig. 6B).

The uncertainty in area estimates for opening and closing extents
were small enough to draw conclusions about differences in ecosystem
extents between the four ETs (Table 3). By this we mean that the dif-
ference in extents between classes exceeds the width of the 95 % con-
fidence intervals and are therefore significantly different. However, the
uncertainty in area estimates for net changes were too large to conclude
whether there had been significant changes in most cases (Table 3;
Figure S1). The few cases where uncertainty was low enough to identify
significant changes were net increases in bare cover (including built
land), and losses in tall vegetation.

4. Discussion

Pixel counting is a fast, and straightforward method to provide a
rough overview of land cover changes and is therefore widely adopted
by the ecosystem accounting community. However, our results indicate
that the practice of pixel counting for area estimation may lead to biased
extent accounts irrespective of ecosystem type, input data source, or
accounting period length. In the Oslo case study, the extent accounts
resulting from pixel counting were in some cases biased both in
magnitude and direction of change. In other words, pixel counting can
lead to conclusions about ecosystem loss or gain that are inaccurate.
There are several policy domains including agricultural, forestry, and

climate policy that require area estimations for rare LULC types (i.e.
extremely small proportional cover), such as ET conversions, in their
reporting workflows. In many of these domains the application of un-
biased area estimators based on design-based methods has already
become a best practice or even an official requirement (e.g.
Kleinewillinghofer et al., 2022). When remote sensing is used to map
such rare LULC classes (e.g. deforestation for REDD+, Mitchell et al.,
2017) design-based methods involve a (post-)stratified sampling to (1)
remove the bias introduced by the satellite-based classification in
mapped areas derived from pixel-counting, and (2) produce 95 % con-
fidence intervals for area estimates derived from the reference sample.
In some cases, this can be achieved even by reusing the same dataset that
was used by the producers of the map to validate their product (Steh-
man, 2013). In our study, we apply this methodology to ecosystem
extent accounts in Oslo and provide evidence that confirms the risks of
relying on pixel counting for area estimation. To the best of our
knowledge, no national ecosystem extent accounts have adopted design-
based approaches to area estimation. We suggest that design-based area
estimation has a lot to offer for the SEEA EA community, and we
recommend that this approach be explored and integrated in the rele-
vant guideline documents. Nevertheless, we acknowledge that pixel
counting may offer advantages compared to design-based methods
particularly in contexts without human resource to perform photoin-
terpretation. Further research is required to better elucidate the trade-
offs between pixel counting and design-based approaches in the
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Fig. 5. Variation in pixel counting bias between ecosystem type change classes (A) for two accounting periods including 3-year (average of 2015-2018 and
2018-2021) and 6-year (2015-2021), and satellite-based maps (DW = Dynamic World; ELC10 = locally trained ELC10 map). Relative bias is defined as the per-
centage difference in area estimated between pixel counting and design-based area estimation. A pseudo-log transformation is applied to the x-axis mapping numbers
to a signed logarithmic scale with a smooth transition to linear scale around 0. The distribution of absolute values for relative bias are shown in B with box-and-
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Table 3

Ecosystem extent accounting table for a 4-class ecosystem typology over three accounting periods. Values are expressed in hectares. Extents derived from traditional
pixel counting (PC) are adjacent estimates from design-based (DB) methods which are accompanied by + 95 % CI. * PC areas which are significantly biased by
exceeding the 95 % CI of the DB estimates. {DB conversion estimates which reflect significant changes in ET extent (also highlighted in bold).

Water Bare Vegetation tall Vegetation short
PC DB PC DB PC DB PC DB
Dynamic World
2015 to 2018 Opening 4818* 6628 + 565 11599* 8025 + 640 30755* 28416 + 954 903* 5006 + 678
Change 132* -15+ 94 868* 234 + 166 -1137* —281 + 186 | 137 62 + 163
Closing 4951* 6613 + 541 12467* 8259 + 781 29618* 28135 + 852 1040* 5069 + 663
2018 to 2021 Opening 4951* 6749 + 513 12467* 7895 + 650 29618* 28014 + 849 1040* 5417 + 654
Change 60* -36+78 —276* -16 + 120 165* —34 +138 51 86 + 124
Closing 5011* 6713 + 474 12190* 7879 + 648 29783* 27981 + 860 1091* 5503 + 684
2015 to 2021 Opening 4818* 6547 + 624 11599* 8074 £ 723 30755* 28431 + 967 903* 5024 + 720
Change 193* —160 + 146 } 592% 282 + 212 1 —972% -223 + 217 1 188 101 + 198
Closing 5011* 6387 + 540 12190* 8356 + 843 29783* 28208 + 932 1091* 5125 + 718
Locally-trained ELC10
2015 to 2018 Opening 5007* 6249 + 418 7445 7299 + 573 29,961 29357 + 741 5662 5171 + 579
Change 40 13 + 88 —136* 142 + 163 —-168 —250 + 171 § 264* 94 + 157
Closing 5048* 6262 + 419 7309 7441 + 640 29792* 29108 + 667 5926* 5265 + 585
2018 to 2021 Opening 5048* 6151 + 351 7309 7392 + 508 29,792 29387 + 644 5926* 5146 + 536
Change 62* —47 + 78 104* —55 + 116 357% —62 + 143 —523* 164 + 126 t
Closing 5109* 6104 + 304 7413 7337 + 477 30150* 29325 + 665 5403 5310 + 593
2015 to 2021 Opening 5007* 6064 + 539 7445 7253 + 610 29,961 29872 + 754 5662 4886 + 577
Change 102* —156 + 149 -32% 178 + 195 189* —252 + 212} —259* 230 + 186 |
Closing 5109* 5908 + 459 7413 7432 + 668 30,150 29619 + 742 5403 5116 + 610

context of ecosystem accounting.

4.1. Factors influencing bias and uncertainty in extent accounts

Bias and uncertainty in ecosystem extent accounts are particularly
large for ET conversion classes. Given that the purpose of extent ac-
counts is to track changes in ecosystem extent over time, it is vital to

ensure that the area estimates of change are credible. The higher un-
certainties associated with ET conversion classes, relative to stable
classes, in our study are consistent with other studies described in the
broader remote sensing literature (Gallego, 2004; Kleinewillinghofer
et al., 2022). The uncertainty in changes in vegetation classes — in our
case short to tall vegetation — can be particularly high. This may be a
result of the spectral similarity between vegetation classes. This is
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Table 4

Validation and accuracy assessment results for Dynamic World (DW) and custom
ELC10 maps of ecosystem extent changes between 2015 and 2018, 2018-2021,
and 2015-2021. Accuracies are averaged over the accounting periods and pre-
sented with 95% confidence intervals in parentheses. The overall accuracies for
DW and ELC10 were 75.2% (1.6%) and 81.2% (1.2%), respectively.

User’s accuracy (%) Producer’s accuracy (%)

Dw ELC10 Dw ELC10
WtoW 83.9 (3.6) 92.4 (2.4) 62.2 (4.1) 76.3 (3.8)
WtoB 6.7 (6) 7.6 (7.5) 1.8(2.2) 0.5 (0.6)
Wto VT - - - -
Wto VS - - - -
BtoW 0.9 (1.7) 1.6 (3.1) 2.8(5.3) 1.7 (3.3)
BtoB 57.6 (4) 76.4 (4.4) 85.8 (2.7) 70.9 (3)
Bto VT - - - -
Bto VS 22.8 (13.5) 8.9 (6.9) 13.2 (15.6) 32.3(24.2)
VT to W 0.5 (0.9) - 3.3(7.1) -
VT to B 0.5(0.9) 4.1 (7) 1.9 (3.8) 11 (20)
VT to VT 83.9 (1.9) 92.6 (1.4) 88.5 (1.3) 90.9 (0.9)
VT to VS 13.7 (8.9) 14.9 (8.1) 21.7 (17) 65.1 (25.4)
VSto W 1.1(21) 1.1 (.2) 100 (0) 100 (0)
VStoB 2.2(3.6) 1.9 (2.9 244 8.2 (12.1)
VSto VT 1.3 (2.6) 0.9 (1.7) 1.2(2.7) 10.2 (19.4)
VSto VS 78 (7.9) 62.8 (4.8) 11.4 (1.6) 53.7 (4.5)

reflected in the relatively low user’s and producer’s accuracies in
agreement between interpreters of orthophoto imagery during our post-
stratified sampling (Table S1). Additionally, the spectral signatures can
be further complicated by inter-annual variability due to changes in
rainfall and temperature which influence vegetation structure and
vigour. For instance, the spectral signature of a forest during a drought
year may converge with the spectral signature of shrubs or grass during a
normal year. Therefore, AI models that classify satellite imagery may
struggle to differentiate changes in spectrally similar classes between
years. This highlights the importance of over-sampling ET conversion

classes in extent maps during the stratified sampling process (Olofsson
et al., 2013). By allocating more samples to strata which are expected to
have low map accuracies, one can reduce the standard error and thus 95
% confidence intervals around the resulting area estimates up to a point.

Uncertainty in area estimates is largely a product of the accuracy of
the input satellite-based map - in addition to the sampling effort applied
during the post-stratified area estimation, and human classification
error in the stratified sample. We found that custom satellite-based maps
tailored to local conditions are more accurate than global maps and
therefore reduced uncertainty in extent accounts. It is possible that
alternative global satellite-based maps such as the European Space
Agency’s WorldCover map (Zanaga et al., 2021) produce extent account
uncertainties that are comparable to our custom ELC10 map. World-
Cover has the highest map accuracy amongst global 10 m resolution
land cover maps when considering a 100 m? minimum mapping unit
(Venter et al., 2022). However, we could not test its performance in
extent accounts given that it is only available since 2020. Nevertheless,
regardless of the input data source, design-based methods can be used to
account for inaccuracies in satellite-based maps and, given enough post-
stratified sampling, one can still use global maps to produce unbiased
area estimates. In principle, the less accurate the extent map, the more
sampling effort needs to be applied to constrain uncertainty in area es-
timates. However, the confidence intervals will never be smaller than
the inherent error in the measurement, regardless of how many samples
are assigned to a given ET.

The length of the accounting period is another factor determining the
uncertainty in satellite-based extent accounts. We found that shorter
accounting periods (3-yr vs 6-yr) produced greater bias and uncertainty
in extent accounts. Satellite spectral signatures compared over shorter
periods are more vulnerable to the effects of inter-annual changes in
weather conditions on vegetation, which may produce artifacts in
spectral signatures. Therefore, Al models are more likely to mis-classify
ecosystem change over shorter periods. In addition, some ecosystem
change processes take several years to develop (e.g. the succession from
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low to tall vegetation) or are less likely to occur (e.g. bare to tall vege-
tation). Therefore, shorter accounting periods may result in artifacts or
misclassification of ecosystem change types. For instance, gradual
ecosystem changes such as succession from grassland into shrubland
(“woody plant encroachment™) occur over longer time periods and
produce spectral time series that are not easily classified by Al models
compared to, for example, abrupt deforestation. Our results confirm the
expectation that shorter accounting periods require greater sampling
effort in order to maintain similar 95 % confidence intervals (i.e. un-
certainty) around extent change estimates.

Irrespective of input data type or accounting period length, our
design-based area estimation for net ecosystem extent changes were
mostly too uncertain to conclude anything about the direction of
magnitude of change. The main exceptions were net increases in bare
cover, and losses in tall vegetation. The former is probably driven by
urban development and the latter by forest clear cutting. Both cases
introduce sudden and large changes to the spectral signature detected by
satellites and are thus more confidently mapped as change. Neverthe-
less, the fact that the majority of extent changes were undetectable even
for a simple ecosystem typology with four ETs highlights the difficulty of
performing extent accounts with satellite-derived maps. This finding
points to a trade-off between the thematic resolution of extent accounts
and the certainty with which one can quantify changes in extent. The
SEEA EA guidelines currently identify the IUCN Global Ecosystem Ty-
pology level 3 units (containing 108 distinct classes) as the desired
ecosystem typology for extent accounts. Our results, based on a 4-class
typology, question how realistic it is to expect countries to accurately
account for changes in ecosystem extent at level 3 of the typology. Re-
sults from field-based ET mapping have identified fine-grained and
complex typologies with a high number of classes as one of three major
sources of error in the assignment of land-cover types (Naas et al., 2023).
Therefore, although simplified ET typologies may not provide enough
detail for some use-cases of ecosystem accounts (e.g. municipal man-
agers needing to account for carbon accumulation in wetlands vs
heathlands, or forest managers needing to distinguish deciduous vs
coniferous forests), more complex typologies may result in extent ac-
counts with levels of uncertainty that are too high for reliable decision
making.

In order to address the challenge of class inseparability using remote
sensing alone, practitioners may need to consider simplified ecosystem
typologies. For instance, one may be to report baseline ecosystem ex-
tents for the full IUCN level 3 ecosystem typology, but report extent
changes only at a higher level in the classification hierarchy. Since many
ecosystem properties and processes are not detectable by remote
sensing, there is a trade-off between typologies tailor-made to describe
ecological relevant properties, and typologies tailor-made to be consis-
tently detected and classified by remote sensing methods. The simpli-
fication of change typologies has knock-on implications for estimating
changes in ecosystem service accounts, where some ES models purposed
for accounting may use more disaggregated landcover (Buchhorn et al.,
2022) than the number of ET for which we can afford to calculate
design-based uncertainty estimates. A key challenge will be under-
standing the strengths and limitations of remote sensing-based indices
when making ecological interpretation of changes in ecosystem extent,
and for the purpose of estimating changes in ecosystem services.

4.2. Areas for future research

Perhaps the greatest challenge with applying design-based methods
to ecosystem accounting is that the resulting ecosystem extent tables
violates an important accounting identity: the closing stocks of a “T1-
T2” account should match the opening stock of a “T2-T3” account. While
pixel counting conforms to this identity (see Table 3), design-based
methods do not because each opening and closing stock is estimated
with a unique survey with different uncertainty estimates. This begs the
question of whether the accounting identities should be enforced with
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some form of post-processing of the design-based estimates, or whether
a violation of accounting identities should acceptable given that SEEA
EA necessitates modelling, estimation and measurement — all of which
have inherent uncertainty. Further research and guidance in this di-
rection is needed.

There are several limitations to our study which also serve as avenues
for further research. Firstly, we did not consider the effect of spatial scale
on bias and uncertainty. The size (scale) of the basic spatial units (also
referred to as minimum mapping units) has significant effects on the
area estimates derived from design-based estimation (Gallego, 2004).
For instance, an accounting unit of 100 m? might identify clumps of trees
in a city as forest, whereas the same clump of trees might be considered
as urban in an accounting unit of 10000 m2 which considers a mosaicked
approach to ET definition. Like the accounting unit, the scale of the
accounting area over which ecosystem extents are estimated can affect
the bias and uncertainty in extent accounts. Here we used a single ac-
counting area, Oslo municipality, however further research is needed to
quantify the effects of spatial scale on uncertainty, and whether uncer-
tainty estimates from one accounting area can be generalized to another.
The expectation is that municipalities with similar land use mosaics/ ET
proportions will have similar uncertainty estimates. Secondly, our study
took place at municipal level and it is unclear whether our findings are
applicable to the national level — the level at which Eurostat requires
ecosystem accounts to be reported. Thirdly, we considered a 3-yr and 6-
yr accounting period, the latter recommended by the draft EUROSTAT
regulation. Given our results, we expect uncertainties in change esti-
mates to be even higher for 1-yr accounting periods used in national
accounts. Fourthly, we did not account for the uncertainty in sample
photointerpretation (Table S1) and how this error propagates to area
estimates in extent accounts. Nor did we compare validate our photo-
interpretation ET labels with field-based ground truths which are known
to exhibit discrepancies (Naas et al., 2023). Fifthly, because our focus is
on satellite-based maps derived using machine learning, we did not
consider including manually-mapped ET products such as CLC, which
have single year status maps, but also 3-year change maps. We expect
that using the CLC change product would produce more certain extent
accounts than using the difference (intersection) of the two consecutive
status layers. However, the error rates of CLC change maps exceed 15 %
in many cases (Biittner, 2014) and may be as uncertain as the satellite-
based maps presented here. The comparison of manually-mapped ET
changes versus satellite-derived machine learning change maps in terms
of accuracy and resource requirements for producing such maps requires
further research.

4.3. Implications for ecosystem service accounting

Our analysis was restricted in scope to ecosystem extent and further
research is needed on the wider implications for ecosystem accounting
as a standard for generating national statistics. Since SEEA EA is spe-
cifically designed as a cascade, extent accounts outputs serve as inputs to
condition accounts, services accounts and asset accounts, but the im-
plications of this for the reliability of ecosystem accounting as a standard
practice for supporting policy are unclear (United Nations, 2021). Ur-
gency is needed now that SEEA EA is an international statistical standard
and is being applied to support regulatory frameworks such as the
proposed Nature Restoration Law (Maes et al., 2023) and EU Common
Agricultural Policy (Grondard et al., 2021).

SEEA EA accounting standards define extent accounts as “stock”
accounts with opening and closing extents, additions and reductions (see
e.g. Figure and Table 2.2 (United Nations, 2021), pp.31-32). Our design-
based approach highlights the uncertainty in using this standardised
approach. The condition accounts are also based on opening and closing
entries, with net change computed as the difference. The biophysical
and monetary ecosystem services supply-use accounts are flow accounts
(Table 2.4 (United Nations, 2021). For ecosystem services where flows
are directly recorded (e.g. crop production), any change in cropland in
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the accounting period will be implicitly integrated in the annually
recorded crop production. However, the majority of ecosystem services
are modelled based on units of ecosystem extent (sometimes including
condition variables), with a convention being to use the opening state as
the basis for the calculation (e.g. 6.111 “The carbon retention compo-
nent of the service is quantified by recording the stock of carbon retained
in ecosystems at the beginning of the accounting period (i.e., the
opening stock).”). A change in ecosystem service flow in this case is
detected between two accounting periods, rather than within the ac-
counting period as with extent and condition. Given the uncertainty in
the underlying extent accounts documented in this paper, change in ES
supply will be harder to detect.

Valuing total ecosystem service flows versus incremental changes in
flows raises some methodological questions that are addressed in the
SEEA EA standard in general, but without operational recommenda-
tions. “Monetary values are of most applicability in analysing changes
that are marginal, i.e., concerning the effects of relatively small changes
in stocks or flows of a particular asset, good or service. For example,
analysing the changes in agricultural production associated with
changes in soil fertility. When there is a requirement to analyse large,
non-marginal changes, such as the permanent loss of a water resource,
analysis should incorporate the assessment of physical changes in stocks
in relation to appropriate thresholds” (p.178 (United Nations, 2021)).
An operational recommendation from our paper could therefore be that
when statistically significant changes in ecosystem extent are identified
in the extent account, an assessment of the validity of accounting prices
used to value ecosystem services based on the opening extent should be
explicitly assessed and reported with the monetary ecosystem service
supply-use tables.

5. Conclusion and recommendations

Although satellite-based maps of ecosystem extent may be well-
suited to indicative ecosystem accounting, we argue that rigorous ac-
curacy assessment is needed to maintain the credibility of SEEA EA.
Without addressing uncertainty, decision-makers risk mismanaging
valuable and irreplaceable natural assets. Using Oslo municipality as a
case study, we found that without design-based area estimation,
satellite-based extent maps lead to biases in extent accounts, even with a
simple ecosystem typology with four classes. In general, uncertainties
and limitations in ecosystem accounts should be communicated to users
and policy makers. Specifically, we suggest some recommendations for
the SEEA EA community below:

e Pixel counting from satellite-based maps for generating extent ac-
counts can lead to biased area estimates and should therefore be
discouraged unless there are insufficient resources to support design-
based area estimation from a photointerpretation survey.

Instead of a dedicated survey (stratified with the satellite-based ET
map), it is also possible to re-use an existing reference data set —
typically a survey-based dataset, that was created for a similar pur-
pose using a compatible typology (i.e. one with a reliable cross-walk
towards the target ecosystem typology). In many countries there are
national reference datasets for statistical area estimation (e.g. the
LUCAS survey in the EU — d’Andrimont et al., 2020), and often the
validation dataset of the ET map itself can be considered given some
caveats (Stehman and Foody, 2019).

In cases where pixel counting takes place, this should be explicitly
communicated and the potential for biased area estimates
acknowledged. Practitioners should not use the classification accu-
racy of the Al model or the resulting map to inspire confidence in the
resulting ecosystem extent estimates. Map accuracy metrics like
those recommended in the SEEA EA guidelines (United Nations,
2022) including users, producers, and overall accuracy do not
necessarily mean the area estimates derived from the map will be
unbiased or certain.
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e Longer accounting periods offer more precise extent change esti-
mates and may be preferred depending on the accuracy requirement
of the ecosystem account end-users.

Simplified ecosystem typologies which are possible to classify reli-
ably with remote sensing, should be considered when estimating
ecosystem changes with satellite-based extent maps.

Satellite-based extent maps generated from locally-trained Al models
should be evaluated as alternatives to global land cover maps
because they may produce less uncertainty in the resulting extent
accounts.

o The compounding effect of uncertainty in extent accounts down the
ecosystem accounting cascade is a useful and urgent avenue for
further research. For example, if uncertainty analysis is to be applied
to ecosystem service models being proposed for ecosystem ac-
counting, they may need to be simplified to match the limitation in
number of ecosystem types that can be subjected to an ecosystem
account ‘uncertainty audit’.

Standards for quantifying, assessing and disclosing uncertainty in
ecosystem accounting are needed to complement the existing guid-
ance in the SEEA EA statistical standard. An ‘uncertainty audit’ for
ecosystem accounting could play an analogous role to that of an
‘information systems audit’ vis a vis corporate financial accounts.
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