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Highlights

 There is 23% forest and 36% natural vegetation cover in the Atlantic Forest.

 Between 1986 and 2020, native forest cover decreased by 2.4% and natural

vegetation by 3.6%.

 Since 2005, there has been a 1 Mha increase in forest area by small fragments (1

ha).

 Roads and railways subdivide the largest vegetation fragments (>500,000 ha),

reducing their size by 56%–94%.

 Alarmingly, 97% of fragments are small (<50 ha) and 50–60% of the vegetation is

<90 m from its edges.

1

1

2

3

4

5

6

7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

Vancine, Maurício Humberto; Muylaert, Renata L.; Niebuhr, Bernardo Brandão; Oshima, Júlia Emi Faria; Tonetti, Vinicius; Bernardo, Rodrigo; de Angelo, Carlos; 
Rosa, Marcos Reis; Grohmann, Carlos Henrique; Ribeiro, Milton Cezar. The Atlantic Forest of South America: Spatiotemporal dynamics of the vegetation and 

implications for conservation. Biological Conservation 2024 ;Volum 291 10.1016/j.biocon.2024.110499



Abstract

The Atlantic Forest in South America (AF) is one of the world's most diverse and threatened 
biodiversity hotspots. We present a comprehensive spatiotemporal analysis of 34 years of 
AF landscape change between 1986 and 2020. We analyzed landscape metrics of forest 
vegetation only (FV), forest plus other natural vegetation (NV), and the sensitivity of metrics 
to linear infrastructure. Currently, the AF remnants comprise 22.9% of FV and 36.3% of NV, 
an extent that has decreased by 2.4% and 3.6% since 1986, respectively. Linear 
infrastructure affected mainly the largest fragments (>500,000 ha), reducing their size by 
56%–94%. The period before 2005 was characterized by loss of FV and NV (3% and 3.43%)
and decrease in the number of FV and NV fragments (8.6% and 8.1%). In contrast, after 
2005 the vegetation stabilized, with a recovery of 1 Mha of FV (0.6%) and an increase in the 
number of fragments, due in part to environmental policies. However, the AF is still a highly 
fragmented domain: 97% of the vegetation fragments are small (<50 ha), with an average 
fragment size between 16.3 and 25.5 ha; 50–60% of the vegetation is <90 m from its edges, 
and the isolation between fragments is high (250–830 m). Protected areas and indigenous 
territories cover only 10% of the AF vegetation, and most vegetation lies are >10 km in these
areas. Our work highlights the importance of legislation and analysis of landscape dynamics 
to help future conservation and restoration programs for biodiversity in the Atlantic Forest.

Keywords: Landscape structure; Habitat loss; Habitat fragmentation; Edge effect; Isolation; 

Connectivity.

1 Introduction

Habitat loss, fragmentation, and degradation caused by human-induced changes are 

identified as the main drivers of biodiversity loss worldwide (Chase et al., 2020). The 

accelerated land use conversion resulting from these changes has affected especially forest 

ecosystems, causing a decrease in fragment size and an increase in edge effects (Fischer et

al., 2021; Hansen et al., 2020). In recent decades, tropical and subtropical regions have lost 

>100 million hectares (Mha) of natural forests due to anthropogenic activities (Zalles et al., 

2021). Despite the large impacts, few studies presented a spatiotemporal panorama long 

enough to describe and analyze changes in the landscape structure dynamics, especially in 

the Americas, where one of the most diverse and threatened biodiversity hotspot in the world

is located: the Atlantic Forest in South America (AF) (Sloan et al., 2014).

The AF covers almost all the coast of Brazil and portions of Paraguay and Argentina, 

the three countries with the largest deforestation areas in the world between 1982 and 2016 

(Song et al., 2018). Before European colonization, its vegetation covered over 1.6 million 

km2 (Marques et al., 2021). Due to its high environmental heterogeneity, topographic 

variability, and pre-historic process of formation, the AF has high species diversity and 

endemism (Peres et al., 2020). With >18,000 species of plants (Flora e Funga do Brasil, 
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2023) and 3,500 species of vertebrates (Figueiredo et al., 2021; Reis et al., 2016), >65% of 

all (and 82% of the endemic) tree species are classified as threatened (de Lima et al., 2024).

Additionally, the AF provides ecosystem services for >150 million people, such as water 

provisioning, hydroelectric energy generation, food production, pollination, soil protection, 

climate regulation, carbon storage, air quality, and cultural services (Joly et al., 2014).

An intensified degradation of the AF arises with the Portuguese colonization and the 

establishment of agricultural processes such as large plantation systems (sugarcane and 

coffee), extensive cattle production, energy demand (charcoal), fires, mining, and urban and 

industrial growth (Solórzano et al., 2021). These landscape modifications have affected the 

biodiversity in the AF for different taxonomic groups (Püttker et al., 2020) and ecological 

processes, such as seed dispersal (Marjakangas et al., 2020), carbon storage (de Lima et 

al., 2020), pollination (Varassin et al., 2021), and top-down regulation through top predators 

(Paviolo et al., 2016). Furthermore, other processes pose risks to the landscapes within the 

AF, such as defaunation (Galetti et al., 2021) and climate change (Vale et al., 2021). More 

recently, however, conservation actions have reduced deforestation rates and increased 

natural regeneration, especially the Brazilian legislation (Federal Decree No. 750/93 and 

Atlantic Forest Law No. 11,428/2006) (Piffer et al., 2022b).

Despite the recent changes on the AF, few studies have analyzed the landscape 

structure in a space-time context on large time scales. In the most comprehensive study to 

our knowledge, Ribeiro et al. (2009) showed that only 11–16% of the forest cover remained 

in 2005, 83% of which was concentrated on isolated fragments smaller than 50 ha, and half 

of all forests were <100 m from their edges. Additionally, Tabarelli et al. (2010) and Ribeiro 

et al. (2011) showed a large proportion of forests remained in high elevations (>1600 m). 

Based on finer scale satellite data (5 m-spatial resolution), Rezende et al. (2018) estimated 

28% of AF vegetation. In more recent studies, using data from MapBiomas (Souza et al., 

2020), Bicudo da Silva et al. (2020) showed that landscape composition did not change 

substantially between 1985 and 2018, and that the loss in areas of montane vegetation was 

smaller than at lower elevations. In addition, Rosa et al. (2021) showed that the relative 

temporal stability of AF native forest cover (28 Mha) in recent years, was in fact due to the 

replacement of old-growth native forests in flatter terrains by young forests in marginal 

agricultural areas, resulting in increased isolation between forest fragments.

Even with these studies, there is a demand for a refined understanding of how 

landscape structure varied over time in the AF. Currently, Brazilian initiatives such as 

MapBiomas have been mapping land use and land cover change with wide thematic 

coverage, high spatiotemporal resolution, and standardized classification (Souza et al., 

2020). This allows for the calculation and comparison of landscape metrics for large 

territorial extensions and time periods to understand the landscape dynamics of entire 
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domains (Bicudo da Silva et al., 2020; Rosa et al., 2021). Moreover, the AF has a high 

density of linear infrastructure (e.g. roads, railways, power transmission lines and oil and gas

pipelines) because of its high (and increasing) human population and industrial 

development, and the main large-scale effect on landscape configuration is related to roads 

and railways. These linear infrastructures severely impact natural vegetation connectivity 

and biodiversity (e.g. through deforestation, noise disturbance, pollution, and animal roadkill)

(Cassimiro et al., 2023; Martinez Pardo et al., 2023), but have never been analyzed in the 

context of the landscape structure.

Here, we analyzed the spatiotemporal dynamics of the landscape structure of 

vegetation in the Atlantic Forest every five years from 1986 to 2020. To accomplish this 

large-scale evaluation, we used a wide delimitation of the Atlantic Forest, including Brazil, 

Argentina, and Paraguay. We accounted for forest vegetation types only (FV) and forest plus

other natural vegetation types (NV) and quantified, in addition, the effect of linear 

infrastructure on the AF landscape metrics. To understand the spatiotemporal landscape 

structure vegetation dynamics, we calculated the following landscape metrics for all FV and 

NV fragments in the AF domain: habitat amount, fragment size, number of fragments, 

fragment temporal dynamic, edge area, functional connectivity, isolation between fragments 

and distance from protected areas (PA) and indigenous territories (IT). These metrics were 

generated through an approach that allows for ecological interpretation of the influence of 

the landscape structure on organisms by accounting for species mobility, gap-crossing 

abilities, and sensitivity to edge effects (Riva and Nielsen, 2020).

2 Methods

2.1 Study region

AF extends from 3ºS to 33ºS, and from 35ºW to 58ºW with about 163 Mha, covering 

large coastal and inland portions of Brazil, Argentina, and Paraguay (Marques et al., 2021) 

(Fig. S1a). Due to its wide extent, the AF boundaries create important ecotones with other 

vegetation domains such as Cerrado, Caatinga, Chaco and Pampa (Marques et al., 2021). 

The vegetation from AF is a complex mosaic, mainly composed of five forest vegetation 

types—Dense Ombrophilous, Open Ombrophilous, Mixed Ombrophilous, Semideciduous 

Seasonal, and Deciduous Seasonal (Joly et al., 2014). Additionally, the AF also includes 

mangroves and coastal scrub vegetation (Marques et al., 2021). There are also many 

marginal habitats such as altitude grasslands (campos rupestres and campos de altitude), 

oceanic islands, beaches, rocky shores, dunes, marshes, inland swamps, and mountain 

forest (brejos de altitude) in the Northeast region (Scarano, 2002). To provide a broad 
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picture in ecological and evolutionary terms, we used an integrative delimitation adapted 

from Muylaert et al. (2018), which encompasses the main proposed delimitations across 

several associated ecosystems. This delimitation was produced by overlapping available AF 

delimitations (Fig. S1[b-e] and Table S1) and adjusting the delimitation in the Eastern coastal

areas using the Brazilian territorial delimitation from IBGE (https://www.ibge.gov.br) for 2021 

(IBGE, 2021). This step ensures that areas of coastal vegetation such as mangroves, dunes,

and wooded sandbank/sandy coastal plain vegetation (hereafter restinga) (Scarano, 2002) 

are better represented. The final delimitation has a total area of 162,742,129 ha, distributed 

within 3653 municipalities from 18 Brazilian states (93.1%), 70 municipalities of one province

in Argentina (1.6%), and 127 municipalities from 11 departments in Paraguay (5.3%) (Fig. 

S1a, Fig. 3).

2.2 Mapping

We compiled land use and land cover maps for Brazil, Argentina, and Paraguay from

MapBiomas Brazil collection 7 (https://mapbiomas.org) and MapBiomas Bosque Atlántico 

collection 2 (https://bosqueatlantico.mapbiomas.org) (Souza et al., 2020). These datasets 

reconstruct annual land use and land cover information at 30-m spatial resolution from 1985 

to 2021, based on a pixel-based random forest classifier of Landsat satellite images using 

Google Earth Engine, with AF general accuracy of 89.8% (Souza et al., 2020). We used data

for every fifth year between 1986 and 2020. We excluded the years 1985 and 2021 because

there was no validation for the previous and subsequent year, respectively. We defined two 

groups of vegetation classes to convert the maps into non-vegetation/vegetation (0/1) binary 

rasters for landscape analyses. The first comprises only forest vegetation types (“Forest 

Vegetation”, FV), which included the classes Forest Formation, Mangrove and Wooded 

Sandbank Vegetation (restinga). The second group of vegetation classes considered both 

forests and other natural vegetation types (“Natural Vegetation”, NV), including Forest 

Formation, Mangrove, Wooded Sandbank Vegetation (restinga), Savanna Formation, 

Wetland, Grassland, Salt Flat, Herbaceous Sandbank Vegetation and Other Non-Forest 

Formations (Fig. S2a-h and Table S2).

We used roads and railways (for the year 2021 in Brazil and Argentina, and for 2012 

in Paraguay) to trim their overlapping FV and NV fragments (henceforth called “trimmed” and

“not trimmed” scenarios) (Fig. S11). This procedure enabled us to avoid overestimating the 

size of large fragments of vegetation and check the metrics’ sensitivity to linear infrastructure

(following Antongiovanni et al., 2018), since these structures might subdivide entire 

fragments, decrease landscape connectivity, and threaten multiple taxonomic groups 

(Cassimiro et al., 2023). Therefore, we analyzed four vegetation maps: “FV not trimmed”, 
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“FV trimmed”, “NV not trimmed”, and “NV trimmed”. Further, we analyzed the overlap 

between FV and NV fragments with Protected Areas (PA; for the year 2022) and Indigenous 

Territories (IT; for the year 2021) (Fig. S12). Details of road, railway, PA, and IT maps are 

presented in the Data section in the Supplementary Material (Fig. S11 and Fig. S12). All 

geospatial datasets were rasterized and warped to 30 m-spatial resolution (112663 × 83307 

≈ 9.4 billion cells and ca. 1.8 billion cells with values) using the Albers Conical Equal Area 

Brazil (SIRGAS 2000) projection (https://spatialreference.org/ref/sr-org/albers-conical-equal-

area-brazil-sirgas-2000). International map displays were generated using Natural Earth 

(1:10,000,000) data and QGIS 3.22 LTR (QGIS Development Team, 2023).

   

2.3 Landscape metrics

All landscape metrics were processed in GRASS GIS 8.2.1 (Neteler et al., 2012) 

through the R 4.3.0 (R Core Team, 2023), using the rgrass package (Bivand, 2022), 

implemented on the LSMetrics package (Niebuhr et al. in prep.). We calculated six 

landscape metrics: number of fragments, fragment size, edge area, isolation, functional 

connectivity, and distance from PA and IT (Figure S13 and Table S3). The number of 

fragments and fragment size allowed us to account for the number and area of vegetation 

fragments for different size classes (Table S3). Fragments were defined using the eight-

neighbor rule (Queen's case), which defines areas connected to pixels in eight directions 

(Turner and Gardner, 2015). We also examined the area and number of fragments that 

appeared and disappeared throughout time, and the areas of increase, reduction, and 

stability of fragments that remained in the landscape (Table S3) (Rosa et al., 2021). Edge 

area was calculated for different edge depths (distance from the edge of the fragment) 

(Table S3), allowing us to assess the amount and percentage of forest area subjected to 

edge effects (Harper and Macdonald, 2011).

Two metrics of functional connectivity were computed for different gap-crossing 

distances (species' capacities to cross non-habitat) (Table S3). First, we calculated the sum 

of the areas of all fragments closer than the gap-crossing distance, which can be interpreted 

as the functional available area of each clump of fragments (Awade and Metzger, 2008) or 

the amount of functional (i.e. suitable and well-connected) habitat (van Moorter et al., 2023). 

Second, we computed the expected cluster size as the mean fragment clump size, and then 

compared it with the highest cluster size in the entire study region. Isolation was calculated 

using an index adapted from the ‘‘Empty Space Function” (Dale and Fortin, 2014), similar to 

Ribeiro et al. (2009): we computed a Euclidean distance map from all the fragments, 

extracted its values and calculated the mean. We repeated this process by removing 

different-sized fragments in several steps (see Table S3 for classes of distance), and then 
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created new Euclidean distance maps to recompute the mean distance values. These 

values represented the isolation of fragments while also providing insights about the 

importance of the smaller fragments (stepping stones) (Diniz et al., 2021). We calculated the

amount of FV, NV, and vegetation classes (see Table S2) covered by PA and IT, and the 

shortest Euclidean distance from each FV and NV pixel to these areas (see Table S3 for 

classes of distance).

3 Results

3.1 Forest and natural vegetation cover

The proportion of the Atlantic Forest domain covered by forests and natural 

vegetation decreased in the past 34 years, from 25.26% (41.1 Mha) to 22.86% (37.2 Mha) 

for FV and from 39.86% (64.8 Mha) to 36.27% (59 Mha) for NV (Fig. 1 and Table S4). For 

the entire period, in Brazil the percentages decreased from 22.85% (34.6 Mha) to 22.27% 

(33.7 Mha) for FV and from 37.34% (56.5 Mha) to 35.25% (53.4 Mha) for NV, with an 

increase in the proportion since 2005 (Fig. S3). NV was mainly composed of savannas, 

grasslands, and wetlands, besides the forest formations. In Argentina, the loss of vegetation 

cover was proportionately larger, from 67.36% (1.8 Mha) to 56.89% (1.52 Mha) for FV, and 

67.96% (1.81 Mha) to 57.33% (1.53 Mha) for NV, showing an increase in the rate of 

deforestation in the last five years (Fig. S3). In Paraguay, the loss of vegetation cover was 

higher than in the other countries, dropping from 54.57% (4.7 Mha) to 22.85% (2 Mha) for 

FV, and 75.26% (6.5 Mha) to 47.74% (4.1 Mha) for NV (Fig. S3), but it has remained 

relatively stable since 2005. 

Beyond presenting the percentages for the integrative delimitation (Fig. S1a), we also

present results for five other delimitations (Table S5). The results for 2020 (Fig. S1[b-f]) 

varied for FV from 23.15% (31.6 Mha) for the delimitation of Da Silva and Casteleti (2003) to 

26.47% (29.3 Mha) for the delimitation of IBGE (2019), all trimmed by roads and railways. 

For NV, the results ranging from 31.45% (34.8 Mha) for the IBGE (2019) trimmed to 37.04% 

(40.9 Mha) for the delimitation of the Dinerstein et al. (2017) not trimmed (Table S5).

3.2 Number of fragments and fragment size distribution

Roads and railways greatly impacted the large-sized fragments, depending on the 

year and the scenario considered. These effects were mainly reflected in vegetation 

fragments larger than 500,000 ha, which reduced the maximum fragment size by 56%–94% 

(Fig. 2, Fig. S4, and Table S4). By accounting for linear infrastructure, the fragment size 
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classes >500,000 ha ceased to exist for FV for all years and were heavily reduced for NV, 

and the total area and number of fragments increased for fragments of all size classes 

<500,000 ha for FV and NV (Fig. 2, Fig. 3, and Fig. S4). Despite this effect for large 

fragments, our results showed no difference between the scenarios “trimmed” and “not 

trimmed” for other landscape metrics. Therefore, we henceforth chose to demonstrate the 

results with the linear infrastructure effect (trimmed scenario) in the main text and present 

the additional results in the Supplementary Material.

For the trimmed scenario, about 97% of the fragments have an area of <50 ha, with 

0.4% of variation over the years. However, between 1986 and 2020 the total area covered 

by these small fragments increased from 18.8% to 22.2% for FV and from 11.7% to 13.5% 

for NV (Fig. 2 and Fig. S4). For fragments between 50 ha and 25,000 ha, the proportion of 

the total number of fragments is low (2.5%), varying non-linearly for FV from 2.44% in 1986 

to 2.61% in 2020; and for NV with 2.34% in 1986 to 2.61% in 2020. However, total area 

covered by fragments of this size class increased from 1986 to 2020, going from 40% to 

46.1% for FV, and from 29.8% to 35.1% for NV (Fig. 2 and Fig. S4). For the last set of 

categories of fragment area, above 25,000 ha, we found a very small proportion of number 

of fragments (0.001%), with values falling from 0.0082% to 0.0061% for FV, and from 

0.0127% to 0.0118% for NV, between 1986 and 2020. Total area values for FV fragments in 

these categories fell from 41.1% to 31.9% and for NV from 58.6% to 51.3%, between 1986 

and 2020 (Fig. 2 and Fig. S4).

In 1986, the largest FV fragments were located in the coast of Bahia (South of Bahia

—cabruca region), São Paulo, Paraná, and Santa Catarina (Serra do Mar region), and 

inland areas of Paraná, Santa Catarina and Rio Grande do Sul in Brazil. For the same 

period, there were large FV fragments in Misiones in Argentina and the eastern portion of 

Paraguay (Fig. 3a). We observed the same for NV, with additions of huge fragments in 

portions of Bahia, Minas Gerais, and Piauí in Brazil, mainly in the regions named São 

Francisco and Brejos Nordestinos (see these region concepts in Ribeiro et al., 2009) (Fig. 

3c). In 2020, these same regions concentrated the largest fragments of FV and NV, but with 

a decrease in their area (Fig. 3[b-d]). The exception was Paraguay, where there was a vast 

deforestation process, mainly for FV (Fig. 3[c-d]). Our results also show a large effect of 

roads and railways on maximum fragment size, for the same regions (compare Fig. 3[a-d] 

with Fig. S5[a-d]).

The spatial-temporal analysis revealed a turning point for the AF landscape structure 

in 2005. For the first period (1986–2005), the number of fragments decreased by 8.6% for 

FV and 8.1% for NV; for the second one (2005–2020), it increased to 12.2% for FV and 

9.3% for NV (Fig. 4a). From 2010 onwards, the number of FV and NV fragments tended to 

become more like each other (Fig. 4a). The average fragment size in the first period for FV 
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dropped by 3.6% (18.4 to 17.8 ha) and remained stable for NV, dropping 0.5% (28.2 to 28 

ha). In the second period, the FV had a larger drop of 8.5% for FV (17.8 to 16.3 ha) and 

8.9% for NV (28 to 25.5 ha) (Fig. 4b).

The temporal dynamics of the landscape from 1986 to 2005 revealed a reduction in 

the total area of 4.87 Mha of FV (3%) and 5.56 Mha of NV (3.4%) (Table S6). However, 

between 2005 and 2020, there was an increase of 990,000 ha of FV (0.6%) and a small 

decrease of 240,000 ha of NV (0.15%). Considering the balance of fragments gained and 

lost, in the first period there was a sharp drop in the number of fragments for FV (242,000) 

and NV (227,000), but in the second period there was an increase for FV (385,000) and NV 

(314,000). Between 1986 and 2005, the average size of lost FV and NV fragments (1.2 to 

1.35 ha) was greater than the size of restored fragments (1.08 to 1.14 ha); between 2005 

and 2020, this pattern reversed, with the average size of fragments lost being smaller (0.94 

to 0.97 ha) than that of fragments gained (1.03 to 1.08 ha).

3.3 Core and edge area

The percentage of FV and NV located <90 m from the edge increased over time, 

going from 51.9% to 58.8% for FV and 42.2% to 48.3% for NV, as well as the percentage 

<240 m, from 76% to 81.7% for FV and 66.2% to 72.2% for NV (Fig. 5[a-b]). Conversely, the

amount of FV and NV located >500 m from any edge (“core areas”) decreased, from 12.4% 

to 8.9% and from 19.5% to 15%, respectively. The maximum distances from fragment edges

for FV and NV were substantially different— around 11 km for FV and 32 km for NV—

showing that NV fragments have larger core areas (Fig. 5[a-b]). From 90 m onwards, there is

an inversion in the edge percentage over time: between 1986 and 2020, there is a gradual 

increase in the percentage of vegetation <90 m; and a decrease in the percentage of 

vegetation >90 m from edges, showing a threshold for central areas of fragments into edge 

areas (Fig. 5[c-d]).

3.4 Functional connectivity

The average functionally connected vegetation area—i.e. the vegetation area 

available and reachable for species—decreased for species with low-mobility in non-

vegetation matrices (up to 60 m of gap-crossing) for both types of vegetation (decreasing 

9.4% for FV and 6.5% for NV between 1986 and 2020, Fig. 6[a-b]). However, for species 

with high-mobility (gap-crossing above 120 m), the functional connectivity decreased until 

2005 and then increased afterwards. The functional connectivity of the NV was always 
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higher in numerical terms for the same years, but they followed the same patterns of annual 

trends and gap-crossing as the FV. 

When we analyzed the largest functionally connected vegetation cluster, we noticed 

that species restricted to vegetation areas (gap-crossing = 0) have relatively small 

vegetation area available (the largest fragments correspond to 1% of FV and 4% of NV 

cover, for all years, Fig. 6[c-d]). However, the area of the largest functionally connected 

cluster increases rapidly as species become more mobile, with the rate of increase varying 

largely between years and for species with different mobility. For high-mobility species (gap-

crossing >600 m) the curve presenting the largest functionally connected cluster reaches an 

asymptote (representing 85% for FV and 72% for NV), and there is no increase in the largest

functional patches even if species can move further into non-vegetation matrices. These 

patterns are similar for FV and NV. 

3.5 Mean isolation

Small fragments were key to reducing isolation between fragments in all analyzed 

scenarios. For example, when we disregard fragments <50 ha, the mean isolation increases 

by 370–495% for FV and 351–444% NV (Fig. 7[a-b]). As we increase the size of fragments 

removed, there is a gradual increase in isolation, varying to 4-22 km for FV and 1-12 km for 

NV. Importantly, the mean isolation was reduced by 65–70% when considering that NV also 

connects forests and other NV fragments (Fig. 7[a-b], Fig. S8[a-b]). Considering the 

temporal trends, in 1986, the mean isolation for the entire AF region was 773 m for FV and 

273 m for NV. The isolation reached its maximum values in 1995, after which, it slowly 

decreased until 2015, and more recently it fell to 832 m for FV and 253 m for NV in 2020 

(Fig. 7[a-b]).

3.6 Protected areas and indigenous territories

Protected areas (PA) covered 4.6 Mha (2.84%) and indigenous territories (IT) 

covered 1.3 Mha (0.81%) of the AF limit. These values represent 12.4% and 7.8% of the 

total FV and NV area for PA, and 3.6% and 2.2% of the total FV and NV area for IT in 2020. 

However, only 3.1 Mha (8.4%) of FV and 4.1 Mha (7%) of NV cover overlaps with PA (Fig. 

8[a-b]), and only 560,000 ha (1.5%) of FV and 760,000 ha (1.3%) of NV overlaps with IT 

(Fig. 8[c-d]), since other types of land cover occur within PA and IT. Only 2.7% of FV and 

2.2% of NV are within 1 km of PA and 0.8% of FV and 0.7% of NV to IT. For vegetation 

within 10 km, there are 23.4% of FV and 19.2% of NV of PA, and 9.5% of FV and 8.7% of 

NV of IT (Fig. 8). On the other hand, 68.2% of the FV and 73.9% of NV are over 10 km away
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from PA, and 89% of the FV and 90.2% of NV are over 10 km away from IT, demonstrating 

the lack of protection for these fragments of vegetation (Fig. 8). 

The vegetation class with the largest area overlap is the Forest formation, with 3 Mha

(8.2%) for PA and 536,000 ha (1.5%) for IT (Fig. S10). The classes with the largest 

proportional cover under protection are restinga with 133,000 ha (21.6%), Mangrove with 

23,000 ha (11.9%), and Herbaceous sandbank vegetation with 31,000 ha (9.6%) (Fig. 

S10b). For IT, the class with the most cover proportion is the Other non-forest formations 

1,400 ha (8.6%), followed by restinga with 22,000 ha (3.6%), and Mangrove with 4,600 ha 

(2.4%) (Fig. S10d). The Savanna formation class is the smallest cover protection with only 

507,000 ha (3.8%) in PA (Fig. S10b) and 120,000 ha (0.9%) in IT (Fig. S10d), whose total 

area is second in terms of total area, 13 Mha (22.5%).

4 Discussion

4.1 Main results

We present here a new panorama on the Atlantic Forest vegetation dynamics, by 

providing a comprehensive spatial and temporal analysis, integrating different types of 

vegetation, and considering for the first time the whole distribution of the AF, including Brazil,

Argentina, and Paraguay. In the 34-year period analyzed, there was a substantial decrease 

in the vegetation cover in the AF, especially in Paraguay and Argentina and in Brazil until 

2005. Within Brazil, and to a lesser extent in Argentina and Paraguay, we found a turning 

point for the Atlantic Forest around 2005. The period before 2005 was characterized by 

deforestation and decrease in the number of forest fragments; the period after 2005 was 

instead characterized by a larger stability in vegetation cover and an increase in the number 

of fragments. This result is linked, at least in part, to the environmental legislation in these 

countries (see Fig. 4 and next section for legislation details). Yet, there were marked 

changes in the spatiotemporal dynamics of the landscape structure for the entire AF, with an

overall replacement of larger forest and vegetation areas by smaller fragments and 

vegetation areas increasingly subject to edge effects. Even with local and temporal changes,

and although legislation, natural regeneration and small restoration actions appear to have 

positively affected them, the overall picture is still of a highly fragmented domain: a few 

vegetation fragments are very large, but >97% of the fragments are smaller than 50 ha, the 

mean fragment size decreased for both FV and NV, and more than half of the vegetation is 

closer than 90 m to edges with other land cover types.

Even though forest fragment sizes have decreased, we showed that the small 

fragments might still be very important for decreasing the isolation between forests and 
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increasing the functional connectivity for medium- to high-mobile organisms. In this regard, 

we showed that non-forest natural vegetation is very important to increase connectivity 

between forests and between other non-forest natural vegetation fragments for organisms 

that can use them as suitable habitat or to move and reach suitable habitats. In contrast, 

species with low-mobility which are limited to forest fragments have seen a decrease in the 

available habitat area over time. We also showed that linear infrastructure such as roads and

railways have a critical effect in fragmenting forests and natural vegetation, especially in the 

larger fragments. Importantly, there is only a small amount of forest and natural vegetation 

within the protected areas and indigenous territories, and most of the vegetation (70% for FV

and 90% for NV) lies beyond 10 km from these areas. Below, we revisit these results to put 

them into context, and we explore key implications of our findings.

4.2 Forest and natural vegetation cover

Determining how much of the AF vegetation cover is left has always been a complex 

task. While we found 22.86% for FV and 36.27% for NV using an integrative AF delimitation 

in 2020, for the same year, the vegetation cover values varied from 23.15% to 37.04% for 

different delimitations and vegetation types. These values are smaller than the vegetation 

cover estimated in the Caatinga (50% in 2009; Antongiovanni et al., 2018), the Cerrado 

(54% in 2019; Pompeu et al., 2024) and the Brazilian Amazon (80% in 2021; Guedes Pinto 

et al., 2023). However, over the years, several studies have shown values ranging from 8% 

to 28% for different years for the AF (e.g. Bicudo da Silva et al., 2020; Da Silva and 

Casteleti, 2003; Rezende et al., 2018; Ribeiro et al., 2009). These estimates vary according 

to mapping resolution, size of vegetation fragments, types of vegetation (forest or non-

forest), vegetation quality (primary or secondary forest), and AF delimitation (Ribeiro et al., 

2009). We highlight that the use of MapBiomas mapping version 7, with image standards 

and classification methods, made the comparison of annual maps possible due to the 

decrease in random error between them (Souza et al., 2020). However, there are limitations 

associated with the methods used for mapping that are intrinsic from the database that we 

used. As an example, despite having a precise scale, MapBiomas does not clearly define 

vegetation successional stages and the quality of the forest remnants.

The vegetation cover showed a considerable decrease over time for Paraguay and 

Argentina, and a less pronounced decrease for Brazil, between 1986 and 2005. After 2005, 

the percentage of vegetation stabilized or increased, mainly in Brazil and for FV. These 

effects can at least partially be related to nature conservation laws (see Fig. 4 for some 

examples), which were initiated almost in the same period in Brazil (Atlantic Forest Law in 

2006, and Native Vegetation Protection Law in 2012), Argentina (Forest Law in 2007), and 
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Paraguay (The Zero Deforestation Law in 2004) (Silva et al., 2017; Dam et al., 2019). In 

Brazil, the AF Law has a clear effect on forest regeneration, as it reduces deforestation in 

advanced successional stages and requires that, when it occurs, it must be compensated, 

causing forests to emerge in secondary stages of regeneration (Piffer et al., 2022b). 

Besides, in Brazil, other specific conservation laws were established from 1998 on (Fauna 

Protection in 1988, and National System of Conservation Units in 2000), and more recently, 

the 2012 legislation Natural Vegetation Protection National Law (Law 12.651/2012 – known 

as Forest Code – FC) created the Rural Environmental Registry [Cadastro Ambiental Rural 

(CAR)], which requires environmental information from private rural properties. CAR can be 

a fundamental tool to stimulate and regulate natural regeneration and direct vegetation 

restoration efforts through legal reserves (LR; in the Atlantic Forest it represents 20% of 

private land) and permanent preservation areas (PPA; riparian vegetation along stream and 

springs) (Brock et al., 2021; da Silva et al., 2023). Furthermore, since 2009, the Pact for the 

Restoration of the Atlantic Forest (AFPR; https://pactomataatlantica.org.br) has been 

encouraging restoration with the goal to restore 15 Mha by 2050 (Melo et al., 2013), with 

about 700,000 ha forest restored between 2011 and 2015 (Crouzeilles et al., 2019). Yet, 

Bicudo da Silva et al. (2023) showed that between 2001 and 2015 there was a process of 

forest transition in the AF, from forest cover loss to forest recovery (Rudel et al., 2005), due 

to the stagnation of agricultural activities and subsequent migration of small farmers to urban

areas, the emergence of non-agricultural rural activities and the decrease in precipitation, 

which, together, led to the abandonment of land and favored natural regeneration.

In Argentina, the percentage of forest has been reduced linearly since the 1990s, 

with the combined effect of the advance of small-scale agriculture associated with population

growth and road construction in some areas, and the increase of monospecific forest 

plantations incentivized by government subsidies and the participation of large timber 

companies (Izquierdo et al., 2008). The forest loss rate was lower during 20052–015, 

potentially because of the effect of the certified wood market in this region and the approval 

of the National Forest Law and the implementation of the National Fund for the Enrichment 

and Conservation of Native Forests (Fundación Vida Silvestre Argentina & WWF, 2017). 

However, forest loss increased in the last period (2015–2020) most likely due to higher 

levels of economic growth and the impact of long-term policies on the expansion of 

agriculture and cattle raising in Misiones (Mohebalian et al., 2022). Paraguay showed the 

highest rates of deforestation of the entire Atlantic Forest between 1986 and 2005 due to the

massive expansion of agriculture. However, since the creation of the Zero Deforestation Law

and the implementation of associated mechanisms, there has been a relative stabilization of 

vegetation loss (Da Ponte et al., 2017; Fundación Vida Silvestre Argentina & WWF, 2017).
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While legislation and conservation instruments to protect forests and natural 

vegetation are essential to reduce habitat destruction, stimulate restoration and natural 

regeneration, they come with heavy social consequences, entering in conflicts with the rural 

life and work of peasants and traditional and indigenous groups that depend directly on the 

forests (Sparovek et al., 2012; Gerhardt, 2016). Furthermore, a large part of the land in the 

AF is currently private or public land already subject to protection, which poses yet another 

challenge for future protection (Sparovek et al., 2019). Future research should investigate 

how spatiotemporal changes in landscape structure are linked to land tenure distribution, 

population migration to cities, and the social and cultural consequences of these processes. 

Melo et al. (2023) showed that restoration opportunities in the Caatinga should account for 

land concentration and socioeconomic contexts if one wants to avoid reproducing 

inequalities, what is also critical in the AF and should be a priority for future research and 

policies.

4.3 Number of fragments and fragment size distribution

Our analyses demonstrated that between 2005 and 2020 there was an increase in 

the amount, number of fragments, and higher mean fragment gain for forest vegetation, with 

new fragments appearing in previously deforested areas. This change illustrates in time a 

large-scale process which includes both natural forest regeneration (Crouzeilles et al., 2020)

and forest transitions (Bicudo da Silva et al., 2023) related to other processes, and confirms 

the results found by Rosa et al. (2021), Piffer et al. (2022b) and Dias et al. (2023), who 

highlighted the replacement of older vegetation by younger vegetation in the AF. This 

replacement can lead to the loss of habitat quality in vegetation fragments, altering 

landscape features and affecting vital ecological processes and ecosystem functioning, such

as carbon cycling (Piffer et al., 2022a) and vegetation structure (Faria et al., 2023). 

We also found a large effect of roads and railways on fragment size, more 

pronounced in FV than in NV due to greater density of these linear infrastructures in large 

forest fragments located in Serra do Mar and southern Bahia in Brazil, and in the region of 

Misiones in Argentina. Roads and railways have a large impact on biodiversity, for example 

by modifying animal movement patterns, reducing connectivity between populations, and 

causing roadkills, which might lead to population declines and local extinctions (Cassimiro et

al., 2023; Martinez Pardo et al., 2023). For example, almost 38 thousand mammal roadkills 

were estimated in 10 years in the state of São Paulo (which is covered almost entirely by 

Atlantic Forest vegetation), and an extrapolation of the analysis predicted 40 thousand 

roadkills per year only in the state of São Paulo (Abra et al., 2021).
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When analyzing the distribution of fragment sizes, we noticed a reduction in the 

number and area of the fragments >500,000 ha of FV and NV between 1986 and 2020 and 

a clear increase in small fragments <50 ha. These results show a worrying pattern, much 

worse than Ribeiro et al. (2009), and can be explained by the increase in mapping quality, 

with MapBiomas standardized approaches for mapping in detail vegetation fragments 

(including fragments <3 ha) that are considered secondary vegetation (Rosa et al., 2021). 

The increase in the proportion of smaller fragments has a direct impact on the maintenance 

of species diversity and population size of multiple taxonomic groups. Several studies have 

estimated fragment size and habitat amount thresholds for assemblage diversity in the AF, 

such as terrestrial mammals (Magioli et al., 2015), bats (Muylaert et al., 2016), birds 

(Barbosa et al., 2017), and multiple other groups (Banks-Leite et al., 2014). 

However, since 97% of the fragments are <50 ha in the AF, the overall scenario is 

already well under the thresholds that are known to affect biodiversity persistence and 

composition (Banks-Leite et al., 2014; Magioli et al., 2015). In this context, approaches for 

conservation could be focused on single large and several small (SLASS) fragments 

(Szangolies et al., 2022). The SLASS approach can be more beneficial for conserving the 

AF biodiversity than choosing a unique type of conservation approach (SLOSS debate - 

single large or several small, see Fahrig et al. 2022). The current scenario is composed by a 

continuum of forest fragments within protected areas in the mountain range (Serra do Mar 

and Serra da Mantiqueira regions) and small remnants in the countryside mostly composed 

by riparian forest and legal reserves protected by law, added to hundreds of Private 

Reserves of Natural Heritage (RPPNs) to locally protecting endangered species (Rambaldi 

et al., 2005). Drastically changes in the vegetation configuration of the AF nowadays are 

highly unlikely since agricultural land, pasture and urban areas are already established in 

flatter terrains (Rosa et al., 2021). Therefore, the SLASS strategy could help to ensure that 

the vegetation in steeper terrain remains protected and increase the protection of riparian 

forests in flatter terrain.

4.4 Core and edge area

Our results showed that around 50% of the vegetation is up to 90 m, 75% of the 

vegetation is up to 240 m, and almost 90% of the vegetation is up to 500 m from the nearest 

edge (similar to Haddad et al. 2015), and may therefore be subjected to edge effects (de la 

Sancha et al., 2023; Parra-Sanchez and Banks-Leite, 2020; but see Harper et al., 2023). 

Over time, there was an increase in vegetation located closer than 90 m from the edges, 

revealing a possible edge effect threshold in the AF. Below this value, there is an 

intensification of edge effects, and above it, there is a decrease in the amount of vegetation 
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core. This threshold is probably associated with the massive number and small average size

of fragments we detected. Importantly, small fragments are more subject to edge effects due

to their size and shape (Fahrig, 2003). The edge effect changes the AF landscape features 

such as microclimate and carbon cycle (Magnago et al., 2015, 2017) depending on the 

fragment shape (Banks-Leite et al., 2013) and the matrix effect (Adorno et al., 2021). In that 

regard, numerous studies have demonstrated the negative effects of edge changes for 

epiphyte plants, small mammalian, and birds in the AF (de la Sancha et al., 2023; Morante-

Filho et al., 2018; Parra-Sanchez and Banks-Leite, 2020). Despite this, Harper et al. (2023) 

showed that the edge effect for plant species did not exceed 20 m but recognizes its 

importance for conservation planning. Added to that, Pivello et al. (2021) and dos Santos et 

al. (2019) identified that AF is highly fire-sensitive, which changes the conditions of the 

edges and hinder natural regeneration. Some measures such as forested or agroforestry 

matrices and strips of trees being planted, forming a buffer around the existing fragments, 

can reduce the edge effect (Gama-Rodrigues et al., 2021; Tavares et al., 2019). 

4.5 Functional connectivity and mean isolation

Functional connectivity and isolation had co-varying response patterns over time, 

with the lowest functional connectivity and highest isolation among fragments between 1990 

and 2000, and from 2005 onwards there were clear signs of improvement, with increase of 

functional and decrease of isolation between vegetation fragments. The vegetation amount 

has not changed noticeably since 2005, and this improvement was due to the appearance of

new fragments that increased the connectivity of the landscape, serving as stepping stones 

for mobile species. In this way, small fragments (<50 ha, which represents 97% of AF 

remnants) play a fundamental role in keeping large fragments connected, mainly for species 

that can cross non-vegetation matrices (Hatfield et al., 2018b; Diniz et al., 2021). 

Additionally, we have shown here that non-forest natural vegetation plays a key role in 

decreasing the isolation between forest fragments. Although there may be fewer forest-

specialist species that use other types of vegetation, other natural vegetation types can be 

critical to maintaining AF connectivity for multiple species groups and ecological processes 

(Lyra-Jorge et al., 2010). 

Our approach to evaluate connectivity and isolation focus on landscape structure, 

and when applied should be complemented by assessments of the permeability of the matrix

between vegetation fragments (Hatfield et al., 2018a). Practices such as agroecology and 

forestry can increase the connectivity by increasing the permeability of the matrix for some 

groups of organisms (Tubenchlak et al., 2021). Furthermore, the AFPR and the CAR might 

be a great opportunity for land use planning to create and improve ecological corridors (da 
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Silva et al., 2023; Melo et al., 2013; Pinto et al., 2014). Finally, although connectivity and 

isolation were not sensitive to roads and railways, this lack of sensitivity appear due to short-

distance divisions into FV or NV fragments, and to the fact that the additional cost that these 

linear infrastructures pose to animal movement and survival (Martinez Pardo et al., 2023) 

was not considered. Thus, management measures such as fauna passages might be 

fundamental for improving landscape permeability to maintain wildlife gene flow and reduce 

roadkill in landscapes highly fragmented by linear infrastructure such as the AF (Cassimiro 

et al., 2023; Teixeira et al., 2017, 2022).

4.6 Protected areas and indigenous territories

Alarmingly, we show that the proportion of total vegetation area formally protected by

PAs (9.9% for FV and 8.3% for NV) is far below the targets of the post-2020 Global 

Biodiversity Framework (30% land surface by 2030, Jung et al., 2021). We highlight that 

indigenous territories, despite not being PA, have proven to be fundamental for forest 

restoration in the AF (Benzeev et al., 2023), but they only comprise 1.5% of FV and 1.3% of 

NV total area. Moreover, we found that most of the vegetation is located >10 km distant from

PA and IT (70% for FV and 90% for NV). Our findings are consistent but more alarming than 

those found by Ribeiro et al. (2009) and Rezende et al. (2018). The Forest Formation class 

has the greatest overlap with PAs (8.2%) and IT (1.5%), given that forests are the main 

target for the creation of PAs and IT, and is the main class in the composition of the AF 

(62.1%). In addition, restinga and mangroves had a high overlap with PA and TI (40%), due 

to the high density of these protective measures on the Brazilian coast, especially in Serra 

do Mar. However, despite this high proportion of protection, these ecosystems have faced 

many threats in recent decades, which can affect several functions of ecosystems and local 

populations (Diniz et al., 2019). Savanna formation was critical to ensuring overall 

connectivity in the AF, but this class has the lowest proportion in PA and TI (4.7%) despite 

representing 23% of the amount of vegetation, possibly because this vegetation formation is 

not formally protected by specific AF protection laws. Since deforestation outside PA and IT 

has been lower than in private rural areas (da Silva et al., 2023), these areas are essential to

ensure and promote biodiversity conservation (Avigliano et al., 2019; Benzeev et al., 2023). 

Therefore, it is necessary to create new protection instruments that focus on multiple types 

of natural vegetation, as well as strengthen the connection network between existing ones, 

and that account for the surroundings of forested areas to promote the regeneration and 

restoration of vegetation.
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4.7 Conservation implications and applications

The Atlantic Forest presented a panorama of greater effect of vegetation loss and 

fragmentation than other biomes such as the Caatinga (Antongiovanni et al., 2018), the 

Cerrado (Pompeu et al., 2024) and the Amazon (Lapola et al., 2023). Despite this, due to 

their long history of occupation and degradation, valuable conservation lessons can be 

applied to these biomes, mainly in relation to the abundance of restoration studies carried 

out in the Atlantic Forest (Guerra et al., 2020). Guedes Pinto et al. (2023) highlight 

governance lessons from the Atlantic Forest that can be applied in the Brazilian Amazon: (i) 

to create large protected areas for conserved areas in public lands, (ii) to create protected 

areas in the hotspots of deforestation in private lands [Reserves of Natural Heritage 

(RPPN)], (iii) to create a specific legislation for the biome (such as AF Law) in addition to the 

FC, (iv) forest restoration of LR and PPA in accordance with the FC, and (v) ensure natural 

regeneration and stimulate it through mechanisms such as payment for ecosystem services. 

The authors also point out that the main lesson is regarding the urgency of these measures, 

given the context of climate crisis and ecosystem services, the formulation and 

implementation of these measures must be adopted urgently in the Amazon, unlike the 

Atlantic Forest. Similar measures can be adapted and applied to other biomes, such as 

Cerrado and Caatinga, which despite having less vegetation remnants than Amazon, can 

benefit from conservation lessons learned and implemented in the Atlantic Forest.

Complementary studies to this one should focus on prioritizing the restoration of the 

Atlantic Forest, such as that developed by Tambosi et al. (2014) in the Atlantic Forest and by

Antongiovanni et al. (2022) in the Caatinga, for long-term planning of restoration and 

regeneration programs, while also accounting for land and social inequality (Melo et al. 

2023). Additionally, studies must still focus on how compliance with the FC (restoration of RL

and APP in private lands) can be beneficial for the structure of the landscape, such as that 

carried out by De Marco et al. (2023) in the Cerrado. Finally, there is an urgent need for 

studies to evaluate the quality of fragments in terms of successional stages, such as that 

carried out by Dias et al. (2023). Piffer et al. (2022b) point out that fragments regenerated 

<10 years ago are in the initial stages of regeneration and have limited protection from the 

AF Law and are mostly deforested, preventing the regeneration process and its benefits for 

biodiversity. Thus, Guedes Pinto et al. (2023) propose a review of the Atlantic Forest Law to 

become a Zero deforestation to prevent loss of forest in initial successional stages. 

Moreover, expansion of payment programs for ecosystem services (e.g. Conexão Mata 

Atlântica; https://conexaomataatlantica.mctic.gov.br/cma/portal), can be favorable for forest 

recovery (Ruggiero et al., 2019).
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5 Conclusion

To our knowledge, this is the first study that analyzed the spatiotemporal dynamics of

the entire Atlantic Forest landscape structure through multiple landscape metrics, 

considering a broad tri-national delimitation, not only for forest vegetation but also for other 

natural vegetation types, and including the effect of linear structure. This study adds to other 

work carried out in the Caatinga (Antongiovanni et al., 2018), the Cerrado (Pompeu et al., 

2024) and the Brazilian Amazon (Guedes Pinto et al., 2023) to understand the dynamics of 

the landscape structure of these biomes through landscape metrics and propose 

governance lessons for conservation. Our findings allow a detailed understanding of the 

habitat fragmentation process in the AF in the last three and a half decades. The number of 

forest fragments has increased, which comes accompanied by a modest but essential 

increment of vegetation, mainly from natural regeneration. Besides that, natural vegetation 

fragments—fundamental to promoting connectivity—are far from being under sufficient 

protection. Overall, the fragmentation scenarios in Argentina, Brazil, and Paraguay are 

equally worrying (97% of fragments are very small and highly isolated, and more than half 

may be under edge effect). We highlight the substantial effect of roads and railways on 

breaking large FV fragments apart, likely disrupting the functional connectivity of several 

ecological processes. These findings reinforce the need for conservation and restoration 

actions considering linear infrastructure, and investing in implementing conservation plans 

for large fragments. Beyond that, promoting the connectivity of small fragments, managing 

the matrix to minimize edge effects and improve connectivity, and leading restoration actions

in key areas, such as large and isolated fragments, are all measures of great importance. 

Added to potential coordinated actions, we highlight the importance of planning and building 

fauna passages to improve landscape connectivity and reduce wildlife roadkill. Finally, the 

recent increase in vegetation observed in the Atlantic Forest after 2005 appears to be 

related to two concomitant processes: mostly due to natural regeneration linked to the 2005 

protection legislation (AF Law) and a long process of forest transition (abandonment of 

agricultural land), and to a lesser extent due to restoration associated with local initiatives 

such as the Pact for the Restoration of the Atlantic Forest started in 2009 and the 

implementation of the CAR began in 2012 by the FC. The continuity and expansion of these 

measures are essential to guarantee the continuity of this vegetation increase process in the

future, given the intensified effects of climate change taking place and the further expansion 

of urban and agricultural areas.
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Figures

Figure 1. Vegetation cover for Forest Vegetation (FV) and Natural Vegetation (NV) through 

the years for the whole Atlantic Forest limit, trimmed by roads and railways. Abbreviations: 

Forest Formation (FF), Mangrove (MG), Wooded Sandbank Vegetation (restinga) (WS), 

Savanna Formation (SF), Wetland (WT), Grassland (GL), Salt Flat (ST), Herbaceous 

Sandbank Vegetation (HS), Other Non-Forest Formations (OF).
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Figure 2. Distribution of Forest Vegetation (FV) and Natural Vegetation (NV) fragment sizes 

across the AF (1986 and 2020), trimmed and not trimmed by linear infrastructure. %A: 

percentage of the total area; %NF: percentage of the number of fragments. See Fig. 3S for 

other years (1990–2015). Please note the difference scales in the x-axis between the FV 

and NV plots.
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Figure 3. Fragment area for Forest Vegetation (FV) in 1986 (a) and 2020 (b), and for Natural

Vegetation (NV) in 1986 (c) and 2020 (d), trimmed by roads and railways for the entire AF.
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Figure 4. Distribution of (a) number of fragments and (b) average fragment sizes of Forest 

Vegetation (FV) and Natural Vegetation (NV) across the AF from 1986 to 2020, trimmed and

not trimmed by roads and railways. The gray lines represent reference years when important

legislation and restoration programs were created in Brazil (See Discussion for details). 
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Figure 5. Cumulative (a and b) and per class (c and d) area under edge effect at different 

depths for the Forest Vegetation (FV) and Natural Vegetation (NV) in the AF trimmed by 

roads and railways. See Fig. S6 for not trimmed scenario.
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Figure 6. Expected cluster size (a-b) (average functional size; ha) of functionally connected 

fragments of Forest Vegetation (FV) and Natural Vegetation (NV) for different functional 

distance values (meters) for the AF trimmed by roads and railways. Highest functionally 

connected vegetation cluster (c-d) (% of total cover of FV and NV) estimated across varying 

functional distances (meters) for the AF. See Fig. S7 for not trimmed scenario.
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Figure 7. Mean isolation between fragments of Forest Vegetation (FV) and Natural 

Vegetation (NV) trimmed for the AF trimmed by roads and railways. Smallest fragments size:

0 ha (all fragments), 50 ha, 100 ha, 150 ha, 200 ha, 250 ha, 350 ha, 500 ha, and 1000 ha. 

See Fig. S8 for not trimmed scenario.

Figure 8. Amount of AF vegetation trimmed by roads and railways (area and percentage) 

and their distance (meters) from protected areas (PA; a – FV and b – NV) and indigenous 

territories (IT; c – FV and d – NV) per class. See Fig. S9  for not trimmed scenario.
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