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Abstract
Seasonally	 abundant	 arthropods	 are	 a	 crucial	 food	 source	 for	 many	 migratory	
birds	that	breed	in	the	Arctic.	In	cold	environments,	the	growth	and	emergence	of	
arthropods	are	particularly	tied	to	temperature.	Thus,	the	phenology	of	arthropods	
is	anticipated	to	undergo	a	rapid	change	in	response	to	a	warming	climate,	potentially	
leading to a trophic mismatch between migratory insectivorous birds and their prey. 
Using	data	from	19	sites	spanning	a	wide	temperature	gradient	from	the	Subarctic	
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1  |  INTRODUC TION

Organismal	responses	to	climatic	warming	often	include	phenolog-
ical	shifts	in	major	life-	history	events,	which	can	lead	to	heteroge-
neous	 responses	 among	 different	 functional	 groups	 within	 food	
webs	(Thackeray	et	al.,	2016).	Small-	bodied	ectothermic	organisms	
at	lower	trophic	levels	often	respond	with	stronger	phenological	ad-
justments than large endothermic organisms at higher trophic lev-
els,	which	can	lead	to	a	trophic	mismatch	between	consumers	and	
their	food	sources	(Both	et	al.,	2009;	Cohen	et	al.,	2018;	Kharouba	&	
Wolkovich,	2023).	Arctic	ecosystems	are	currently	warming	two	to	
four	times	faster	than	the	rest	of	the	earth	(IPCC,	2021; Rantanen 
et	 al.,	 2022).	 Hence,	 arctic	 food	 webs	 are	 especially	 likely	 to	 be	

subject to trophic mismatches between consumers and their re-
sources	(Post	et	al.,	2009;	Schmidt	et	al.,	2017).

Insectivorous	migratory	birds	breeding	in	the	Arctic	are	expected	
to	 be	 especially	 prone	 to	 warming-	induced	 mismatch	 (McKinnon	
et	 al.,	2012;	Miller-	Rushing	 et	 al.,	2010;	 Saalfeld	 et	 al.,	 2019; but 
see	 Corkery	 et	 al.,	 2019;	McKinnon	 et	 al.,	2013).	 Arthropods	 are	
resident	 ectotherms,	 and	 their	 phenology	 is	 strongly	 affected	
by	 local	 environmental	 conditions	 (Culler	 et	 al.,	 2015;	 Høye	 &	
Forchhammer,	2008a;	Shaftel	et	al.,	2021).	By	contrast,	the	migra-
tion	and	breeding	phenology	of	 some	arctic	birds	can	be	affected	
by	 a	 wide	 range	 of	 cues	 and	 environmental	 conditions	 encoun-
tered en route	to	and	at	breeding	sites	(Liebezeit	et	al.,	2014;	Smith	
et	al.,	2010;	Ward	et	al.,	2016;	Winkler	et	al.,	2014).	Arctic	birds	also	
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to	the	High	Arctic,	we	investigated	the	effects	of	temperature	on	the	phenology	and	
biomass	of	arthropods	available	to	shorebirds	during	their	short	breeding	season	
at	 high	 latitudes.	We	 hypothesized	 that	 prolonged	 exposure	 to	warmer	 summer	
temperatures	would	generate	earlier	peaks	in	arthropod	biomass,	as	well	as	higher	
peak	and	seasonal	biomass.	Across	the	temperature	gradient	encompassed	by	our	
study sites (>10°C	 in	 average	 summer	 temperatures),	 we	 found	 a	 3-	day	 shift	 in	
average	 peak	 date	 for	 every	 increment	 of	 80	 cumulative	 thawing	 degree-	days.	
Interestingly,	we	found	a	 linear	relationship	between	temperature	and	arthropod	
biomass only below temperature thresholds. Higher temperatures were associated 
with	 higher	 peak	 and	 seasonal	 biomass	 below	 106	 and	 177	 cumulative	 thawing	
degree-	days,	respectively,	between	June	5	and	July	15.	Beyond	these	thresholds,	
no relationship was observed between temperature and arthropod biomass. Our 
results	suggest	 that	prolonged	exposure	to	elevated	temperatures	can	positively	
influence	prey	availability	for	some	arctic	birds.	This	positive	effect	could,	in	part,	
stem	from	changes	 in	arthropod	assemblages	and	may	reduce	the	risk	of	trophic	
mismatch.

K E Y W O R D S
arctic	arthropods,	arctic	breeding	shorebirds,	climate	warming,	insectivorous	birds,	
invertebrate	biomass,	phenology,	trophic	mismatch
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have	a	relatively	short	window	of	time	for	reproduction,	and	food	
availability	during	the	chick	rearing	period	is	especially	critical	as	it	
may	affect	fitness	through	juvenile	growth	and	survival	(McKinnon	
et	 al.,	2012;	 Reneerkens	 et	 al.,	2016;	 Saalfeld	 et	 al.,	 2019,	2021).	
Chicks	of	insectivorous	birds	mostly	feed	on	active	and	visible	arthro-
pods	(Richards	&	Gaston,	2018;	Schekkerman	et	al.,	1998)	and	their	
availability	 is	 typically	 characterized	 by	 a	 relatively	 short	 summer	
pulse	(Bolduc	et	al.,	2013;	Danks,	2004;	Tulp	&	Schekkerman,	2008).	
Consequently,	 the	 response	 of	 arctic	 arthropods	 to	 warming	 can	
strongly	affect	the	likelihood	of	trophic	mismatch.

Studies	 based	 on	 time	 series	 are	 often	 used	 to	 predict	 long-	
term	 effects	 of	 warming	 on	 wildlife	 species	 and	 trophic	 interac-
tions	 (Kharouba	et	al.,	2018;	Parmesan,	2007).	However,	empirical	
studies	 of	 the	 phenological	 responses	 of	 arctic	 arthropods	 to	 a	
prolonged increase in summer temperatures are rare and typically 
limited	to	single-	site	assessments	(e.g.,	>25 years	time	series;	Høye	
et	al.,	2021).	Such	studies	showed	that	arctic	arthropod	assemblages	
can	 change	 relatively	 quickly	 when	 exposed	 to	 warmer	 tempera-
tures	 for	 several	 years	 (e.g.,	 changes	 in	 the	 relative	 abundance	 of	
functional	groups;	Koltz	et	al.,	2018),	which	can	cause	cascading	ef-
fects	on	arthropod	availability	for	consumers	(Schmidt	et	al.,	2017).

Assuming	 that	 the	variation	of	a	parameter	 through	space	can	
also	be	used	to	predict	its	variation	through	time,	a	space-	for-	time	
substitution approach has the potential to improve our assessment 
of	 the	 long-	term	 effects	 of	 warming	 on	 ecological	 communities	
(Blois	et	al.,	2013;	Elmendorf	et	al.,	2015;	Pickett,	1989).	Although	
the	 approach	 has	 some	 important	 caveats,	 it	 can	 nonetheless	 be	
useful	 when	 the	 drivers	 that	 control	 biological	 processes	 are	 the	
same	drivers	that	operate	in	space	and	if	community	dynamics	and	
assemblages	 can	 respond	 relatively	 quickly	 to	 persistent	 environ-
mental	changes	(Damgaard,	2019;	Wogan	&	Wang,	2018).

Here,	 we	 apply	 a	 space-	for-	time	 substitution	 approach	 to	 im-
prove	our	ability	to	predict	the	general	response	of	arctic	arthropods	
to	 warming,	 and	 hence	 the	 potential	 consequences	 on	 consumers	
like	migratory	 birds.	Our	 study	 is	 based	 on	 a	 pan-	arctic	 dataset	 of	
surface-	active	and	 low-	flying	arthropod	biomass	collected	from	the	
Subarctic	 to	 the	 extreme	High	Arctic.	 It	 spans	 a	 large	 temperature	
gradient (>10°C	in	June	and	July	average	daily	air	temperature)	over-
lapping	the	expected	temperature	 increase	 in	the	Arctic	and	allows	
comparisons	between	species	assemblages	shaped	by	long-	term	ex-
posure	to	warmer	temperatures.	Temperature	is	known	to	affect	ar-
thropod	emergence	phenology	(e.g.,	date	of	peak	biomass;	Figure 1a)	

F I G U R E  1 Schematic	representation	of	the	potential	effects	of	warming	on	arthropod	availability	for	insectivorous	birds	under	current	
versus	warmer	temperatures.	Warmer	temperatures	could	be	associated	with	(a)	an	earlier	peak	date,	(b)	a	higher	peak	and	seasonal	biomass	
(area	under	the	curve),	with	no	change	in	phenology,	or	(c)	both	an	earlier	peak	date	and	higher	peak	and	seasonal	biomass.
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but	also	 the	magnitude	of	peak	arthropod	biomass	 (Figure 1b;	 e.g.,	
Bolduc	et	al.,	2013;	Tulp	&	Schekkerman,	2008).	The	consequences	of	
warming	on	the	availability	of	arthropods	for	Arctic-	nesting	birds	are	
likely	to	depend	on	the	strength	of	such	combined	effects	(Figure 1c).	
Despite	 potential	 differences	 in	 temperature	 responses	 among	 ar-
thropod	species,	we	hypothesized	that	higher	summer	temperatures	
would	be	associated	with	earlier	peak	arthropod	biomass	and	higher	
arthropod	 biomass	 available	 to	 Arctic-	nesting	 insectivorous	 birds	
across the temperature gradient covered by our study sites.

2  |  METHODS

2.1  |  Arthropod data

2.1.1  |  Field	sampling

Arthropods	 were	 sampled	 during	 the	 breeding	 season	 of	
insectivorous	birds	(approximately	June	to	August)	at	19	field	sites	
distributed	 across	 most	 Arctic	 and	 Subarctic	 bioclimatic	 zones	
(Figure 2;	 Leemans,	 1992;	 Walker	 et	 al.,	 2005).	 Each	 site	 was	

sampled	for	1–19 years,	and	over	a	period	of	26–143 days	per	year	
(medians = 3 years	and	56 days,	 respectively;	Table 1),	 covering	 the	
estimated	 period	 of	 peak	 arthropod	 biomass.	 At	 each	 site,	 6–20	
traps	were	deployed	and	 typically	emptied	every	1–3 days,	except	
for	 Zackenberg,	 Hochstetter	 Forland,	 and	 Chipp	 River,	 where	
sampling	was	performed	once	a	week.	The	biomass	estimates	were	
then converted to daily values as described below.

At	 each	 study	 site,	 arthropods	 were	 sampled	 in	 dry	 uplands	
and	 low	wetlands,	which	were	 the	 two	main	habitats	used	by	 the	
common	species	of	shorebirds,	passerines,	and	other	insectivorous	
birds	during	 their	 chick	 rearing	period.	Arthropods	were	collected	
in	open	areas	within	each	habitat	using	modified	Malaise	traps	with	
rectangular	white	 pitfall	 traps	 (38 cm × 5 cm)	 at	most	 sites	 (Bolduc	
et	 al.,	2013;	Brown	et	 al.,	2014),	 except	Medusa	Bay,	Hochstetter	
Forland,	and	Zackenberg,	where	round	white	or	yellow	pitfall	traps	
were	 used	 (10–11 cm	 in	 diameter;	 Schmidt	 et	 al.,	 2016;	 Tulp	 &	
Schekkerman,	2008).	Therefore,	we	compared	results	obtained	from	
these	 two	 trapping	 techniques	 conducted	 simultaneously	 at	 the	
same	site	before	combining	datasets	 (see	below).	Both	techniques	
are	 passive	 traps	 and	 thus	 measure	 a	 combination	 of	 the	 abun-
dance	and	the	activity	of	surface-	active	and	low-	flying	arthropods	

F I G U R E  2 Circumpolar	map	indicating	study	site	locations	and	the	Arctic	bioclimatic	zones.	Details	on	the	study	sites	are	provided	in	
Table 1.	The	Circumpolar	Arctic	Vegetation	Map	(CAVM)	bioclimatic	zones	represent	gradients	of	temperatures,	vegetation	structure,	and	
ecosystem	productivity	as	defined	by	Walker	et	al.	(2005).	The	CAVM	gradient	ranges	from	cold	and	almost	barren	zones	(A)	to	warmer	and	
vegetation-	rich	zones	(E).
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(Southwood	&	Henderson,	2000).	Variation	in	biomass	was	used	as	
a	proxy	of	arthropod	availability	 for	 surface-	feeding	 insectivorous	
birds	 such	 as	 shorebirds	 (Bolduc	 et	 al.,	 2013;	 Kwon	 et	 al.,	 2019; 
McKinnon	et	al.,	2012).

Arctic-	breeding	birds	are	likely	to	be	gape-	limited	and	restricted	to	
prey	that	they	can	swallow	whole.	We	excluded	bumblebees	and	but-
terflies,	as	they	were	likely	too	large	to	be	consumed	by	chicks	(Kwon	
et	al.,	2019;	Saalfeld	et	al.,	2019;	Schekkerman	&	Boele,	2009).	We	
also	excluded	springtails	(Collembola)	and	mites	because	they	were	a	
negligible	part	of	the	sampled	biomass	and	were	considered	too	small	
to	be	important	prey	for	chicks	(Bolduc	et	al.,	2013;	Ridley,	1980;	Tulp	
&	Schekkerman,	2008).	The	biomass	of	all	remaining	arthropods	was	
pooled,	 as	 arctic	 insectivorous	 birds	 typically	 consume	 a	 broad	 di-
versity	of	species	during	the	breeding	season	(Flemming	et	al.,	2022; 
Wirta	et	al.,	2015).	The	dry	biomass	for	each	trap	was	measured	di-
rectly	or	estimated	with	equations	using	the	length	of	the	specimen	
to	convert	abundance	of	individuals	to	dry	mass	(see	Appendix	S1	for	
details).	Wet	and	dry	habitats	were	pooled	to	obtain	a	general	index	
of	 arthropod	 availability	 (McKinnon	 et	 al.,	 2012).	 A	 standardized	
daily	arthropod	availability	 index	 (mg/trap)	was	calculated	 for	each	
year	and	site,	achieved	by	dividing	the	overall	arthropod	biomass	by	
the	number	of	sorted	traps	and	the	days	elapsed	between	sampling	
events	(Bolduc	et	al.,	2013).	Our	index	of	arthropod	abundance	and	
activity	accounted	 for	 the	variable	number	of	 traps	and	 the	differ-
ences	in	sampling	frequency	across	sites.

2.1.2  |  Data	standardization

We	 carried	 out	 a	 calibration	 experiment	 because	 two	 different	
trapping	techniques	were	used	across	our	study	sites	(i.e.,	different	
colors,	shapes,	and	sizes	of	the	pitfall	traps).	We	used	both	types	of	
traps	simultaneously	at	Bylot	Island	in	2018	to	develop	a	linear	re-
gression	linking	the	variation	in	the	biomass	of	arthropods	captured	
with	the	two	different	types	of	traps	(see	Appendix	S2).

2.1.3  |  Arthropod	phenology	and	biomass

Based	on	seasonal	changes	 in	the	 index	of	arthropod	daily	avail-
ability,	we	calculated	three	parameters	for	each	year	and	field	site:	
peak	 biomass,	 date	 of	 peak	 biomass	 (hereafter	 peak	 date),	 and	
seasonal	 biomass.	 Peak	 biomass	was	 defined	 as	 the	 single	 high-
est	 recorded	 value	 of	 daily	 arthropod	 availability	 (mg/trap/day)	
and	peak	date	was	the	rounded	median	date	of	the	sampling	pe-
riod	during	which	 the	peak	biomass	was	observed.	We	explored	
alternative	 methods	 (generalized	 additive	 models	 and	 moving	
averages)	 and	 found	 similar	 results.	 Zackenberg,	 Hochstetter	
Forland,	and	Chipp	River	data	were	excluded	from	peak	date	anal-
yses,	because	we	considered	that	the	weekly	sampling	frequency	
would	strongly	reduce	the	precision	of	the	estimates	compared	to	
other	sites	that	were	sampled	every	1–3 days.	The	daily	 index	of	

Site name
Mean summer, T 
(°C) Coordinates Sampling years (n)

Utqiaġvik 1.2 71°18′ N,	156°45′ W 2010–2016	(7)

Alert 1.5 82°30′ N,	62°21′ W 2007–2008	(2)

Zackenberg 1.6 74°28′ N,	20°34′ W 1998–2016	(19)

Hochstetter	Forland 2.0 75°09′ N,	19°42′ W 2011–2014,	
2016–2017	(6)

Ikpikpuk 2.2 70°33′ N,	154°43′ W 2010–2012	(3)

Medusa	Bay 2.4 73°20′ N,	80°32′′  E 1996,	2000–2002	(4)

Prudhoe	Bay 2.6 70°12′ N,	148°27′ W 2010	(1)

Bylot	Island 3.1 73°80′ N,	79°58′ W 2005–2017	(13)

Chipp	River 3.2 70°41′ N,	155°18′ W 2013	(1)

Canning	River 3.5 70°26′ N,	145°51′ W 2010–2012	(3)

Igloolik 3.7 69°24′ N,	81°48′ W 2014,	2017	(2)

Colville 3.8 70°26′ N,	150°41′ W 2011–2012,	
2014–2017	(6)

Herschel Island 4.1 69°35′ N,	138°55′ W 2007–2008	(2)

Mackenzie	Delta 4.9 69°22′ N,	134°53′ W 2011–2012	(2)

Southampton	Island 5.0 63°59′ N,	81°40′ W 2006–2008,	
2010–2012	(6)

Nome 8.3 64°27′ N,	164°58′ W 2010–2012	(3)

Churchill 8.4 58°45′ N,	94°04′ W 2010–2011	(2)

Cape	Krusenstern 9.7 67°06′ N,	163°29 W 2011–2012	(2)

Akimiski	Island 11.7 53°00′ N,	81°20′ W 2009	(1)

Note:	For	a	map	including	bioclimatic	zones,	see	Figure 2.	For	detailed	weather	information,	see	
Appendix	S4.

TA B L E  1 Arctic	and	Subarctic	study	
sites	ranked	by	the	average	June	and	July	
daily	air	temperature	of	years	included	
in	our	analyses	(ERA	Interim;	Dee	
et	al.,	2011).
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arthropod	availability	can	vary	substantially	before	and	after	the	
peak	date,	and	the	period	characterized	by	relatively	high	biomass	
can	be	 relatively	narrow	or	wide,	depending	on	 study	years	and	
sites	(Bolduc	et	al.,	2013;	Saalfeld	et	al.,	2019).	To	better	describe	
the	arthropod	biomass	 available	 to	birds,	we	also	 calculated	 the	
seasonal	biomass,	which	 is	 the	cumulative	biomass	sampled	dur-
ing	a	3-	week	period	centered	on	the	peak	date	(i.e.,	sum	of	daily	
biomass	 recorded	 during	 the	 period	 corresponding	 to	 the	 peak	
date ±10 days).	 Shorebird	 chicks	 are	more	 vulnerable	 to	 starva-
tion	or	marked	 reduction	 in	growth	 rate	during	 their	 first	9 days	
(McKinnon	et	al.,	2012;	Pearce-	Higgins	&	Yalden,	2003).	Our	sea-
sonal	biomass	estimates	provided	a	proxy	of	food	availability	just	
before	and	after	peak	date,	over	a	biologically	significant	period.	
Estimating seasonal biomass over a longer period generated simi-
lar results and the correlation between seasonal biomass estimates 
using	a	21-	day	or	31-	day	window	was	high	(r = .99,	p < .001,	n = 57).	
As	the	total	sampling	season	was	shorter	at	some	study	sites,	the	
use	of	a	21-	day	window	increased	our	sample	size.	Nevertheless,	
in	nine	out	of	84	site-	years,	we	were	unable	to	estimate	a	seasonal	
biomass	value	using	a	21-	day	window,	as	 the	period	of	sampling	
did	 not	 fully	 cover	 the	minimum	 time	 window	 around	 the	 peak	
date.	 For	 4	 of	 the	 9	 cases	where	 only	 3 days	were	missing,	 the	
window	was	shifted	up	to	3 days	earlier	or	later	to	include	a	full	21-	
day	window	of	cumulative	biomass	(site	and	year:	Canning	in	2011,	
Mackenzie	in	2011,	Southampton	in	2007,	and	Utqiaġvik	in	2010).

2.2  |  Weather data

In	addition	to	temperature,	other	environmental	parameters	such	as	
timing	of	snowmelt,	precipitation,	and	solar	radiation	can	affect	the	
phenology	and	availability	of	arctic	arthropods.	(Asmus	et	al.,	2018; 
Bolduc	et	al.,	2013;	Høye	&	Forchhammer,	2008a,	2008b).	Thus,	we	
added these three variables as covariates in our statistical models. 
Although	it	would	have	improved	our	ability	to	explain	the	variation	
in	arthropod	phenology	and	availability,	local	weather	data	acquired	
using	standardized	protocols	were	not	available	for	most	sites	and	
years.	The	weather	data	used	for	our	models	were	thus	extracted	
from	the	dataset	produced	by	the	global	atmospheric	reanalysis	ERA-	
Interim	(Dee	et	al.,	2011).	A	reanalysis	model	continuously	integrates	
data	 from	satellites,	weather	 stations,	 and	other	 sources	 and	vali-
dates	the	model	predictions	with	every	update.	The	model	outputs	
are	global	data	grids	of	daily	weather	conditions	since	1979	with	a	
spatial	resolution	of	79 km2	(Berrisford	et	al.,	2009;	Dee	et	al.,	2011).	
This	approach	allowed	us	to	fill	temporal	and	spatial	gaps	in	weather	
datasets	for	all	study	sites	and	to	avoid	systematic	biases	caused	by	
the	use	of	different	field	methods.	Despite	some	errors	inherent	to	
this	type	of	data,	the	surface	air	temperature	estimate	derived	from	
ERA-	Interim	aligns	well	with	the	data	collected	from	Arctic	land	sta-
tions,	indicating	a	strong	overall	agreement	(Simmons	&	Poli,	2015).	
Compared	 to	 other	 comparable	 reanalysis	models,	 ERA-	Interim	 is	
also	noteworthy	for	the	consistency	of	the	model	predictions	for	the	
Arctic	region	(Lindsay	et	al.,	2014).

We	employed	ERA-	Interim	data	for	daily	mean	air	temperature,	
daily	 cumulative	 precipitation,	 and	 daily	 surface	 solar	 radiation	 in	
order	to	derive	relevant	parameters	for	our	models.	We	extracted	
values	over	the	same	period	(June	5	–	July	15)	for	all	sites	and	years.	
The	 three	 variables	 included:	 (1)	 cumulative	 thawing	 degree-	days	
(DD),	which	was	calculated	as	the	cumulative	daily	mean	air	tempera-
ture	above	0°C;	 (2)	 the	cumulative	daily	precipitation	 (PR);	and	 (3)	
average	surface	solar	radiation	(RAD).	The	selected	time	period	fully	
or	partly	overlaps	the	environmental	conditions	recorded	before	the	
peak	date	of	arthropod	biomass	at	all	sites.	Hence,	data	extracted	
over	this	period	provided	a	proxy	of	the	local	environmental	condi-
tions	that	should	have	a	strong	effect	on	summer	arthropod	avail-
ability	during	the	chick-	rearing	period	(Meltofte	et	al.,	2007;	Tulp	&	
Schekkerman,	2008).	The	use	of	the	same	41-	day	period	at	all	sites	is	
likely	not	the	best	approach	to	explain	intra-	site	variation	in	annual	
peak	date	and	biomass	 (e.g.,	 the	period	could	be	adjusted	 relative	
to	 site-	specific	 annual	 snowmelt	 date;	Asmus	 et	 al.,	 2018;	 Shaftel	
et	al.,	2021).	However,	the	use	of	the	same	period	for	all	sites	allowed	
us to compare the relative weather conditions across the gradients 
covered	by	our	 study	 sites.	Further,	 values	extracted	over	 slightly	
different	 time	 periods	 were	 highly	 correlated	 (see	 Appendix	 S3).	
Running	analyses	using	these	values	did	not	change	any	of	our	main	
conclusions	(e.g.,	in	linear	regression	analyses	linking	environmental	
conditions	and	arthropod	phenology	or	biomass,	the	use	of	slightly	
different	time	periods	partially	shifted	some	data	points	along	the	
X-	axis	with	limited	effect	on	their	rank;	results	not	shown).	Finally,	
we	included	the	snow-	free	date	(SN;	O'Leary	et	al.,	2017)	as	a	proxy	
of	 the	 relative	snowmelt	phenology,	which	was	extracted	 from	an	
8-	day	composite	satellite	dataset	(MOD10A2;	Hall	et	al.,	2018).	This	
dataset	provided	a	consistent	set	of	measurements	across	years	and	
allowed	us	to	have	a	standardized	and	almost	complete	dataset	for	
all	study	sites.	A	few	missing	values	were	caused	by	excessive	cloud	
cover	(nine	cases	out	of	84	site-	years).	These	data	points	were	ex-
cluded	from	models	that	included	snow	cover.

2.3  |  Data analysis

We	analyzed	the	effect	of	cumulative	thawing	degree-	days	and	other	
environmental	 parameters	 on	 the	 date	 of	 peak	 arthropod	 biomass,	
the	 peak	value	 for	 biomass	 per	 day,	 and	 the	 seasonal	 biomass	 (i.e.,	
cumulative	biomass	 for	 the	peak	date	±10 days).	Based	on	previous	
studies	 (Bolduc	 et	 al.,	 2013;	 Høye	 &	 Forchhammer,	 2008b;	 Tulp	 &	
Schekkerman,	2008),	we	created	candidate	models	that	included	DD	
and	 combinations	of	 other	 environmental	 parameters	 (for	 a	 full	 list,	
see	Appendix	S5).	We	calculated	the	correlation	between	all	variables	
using	Pearson's	correlation	test.	Snow-	free	dates	and	DD	were	only	
moderately correlated (r = −.45,	 p < .001,	 n = 75	 site-	years)	 so	 they	
were	included	in	the	same	model.	Cumulative	precipitation	and	radia-
tion were more strongly correlated (r = −.68,	p < .001,	n = 84)	and	hence	
were	not	included	in	the	same	statistical	model.	The	correlations	were	
low among all other covariables (r ≤ .28).	Our	 candidate	models	 also	
included	a	segmented	linear	regression,	or	“broken-	stick”	regression,	
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to	test	for	break	points	in	the	relationships	between	temperature	and	
arthropod	parameters	(Muggeo,	2003).	We	chose	segmented	regres-
sion	 over	 other	 non-	linear	 regressions	 because	 the	 simplicity	 of	 its	
structure	facilitates	the	interpretation	of	results,	and	both	polynomial	
and	segmented	models	yielded	similar	results.	Segmented	regression	
with	 two	 segments	 was	 performed	 with	 the	 R	 package	 segmented 
(Muggeo,	2008),	which	iteratively	fits	linear	regressions	with	varying	
breakpoints,	searching	for	the	smallest	“gap”	between	regression	lines	
(based	on	minimizing	the	residual	standard	error).

Our	models	were	weighted	to	account	for	unequal	sampling	 in	
our	dataset	because	 the	number	of	years	of	observations	per	 site	
varied	from	1	to	19 years.	Each	site	had	a	total	weight	of	one,	and	
thus	each	observation	for	annual	peak	biomass	and	other	variables	
was	weighted	 by	 1/number	 of	 years	 of	 data	 included	 for	 a	 given	
study	site.	This	approach	allowed	us	to	run	segmented	regressions	
using	the	same	structure	for	all	models,	and	to	test	for	the	presence	
of	 abrupt	 changes	 (breakpoints)	 in	 the	 relationships	 using	 model	
selection	based	on	Akaike	information	criterion	corrected	for	small	
sample	sizes	(AICc;	Burnham	&	Anderson,	2002).	In	the	absence	of	
breakpoints,	weighted	linear	regressions	and	mixed	models	using	the	

within-	group	centering	method	(van	de	Pol	&	Wright,	2009)	yielded	
similar	outcomes	such	that	DD	always	appeared	in	the	top	models,	
and	parameter	estimates	were	virtually	identical	(see	Appendix	S6).	
We	checked	for	collinearity	using	the	variation	inflation	factor	(VIF),	
which	was	low	(≤3)	for	all	covariates	included	in	the	candidate	mod-
els	(Zuur	et	al.,	2010).	The	model	with	the	lowest	AICc	was	consid-
ered	the	best	fitting,	and	models	with	a	ΔAICc	<4	are	presented	for	
comparison	(Burnham	&	Anderson,	2002; see Table 2).	The	effect	of	
a	parameter	was	illustrated	using	the	95%	confidence	interval	of	its	
estimate.	All	analyses	were	performed	using	functions	of	Program	
R	(ver.	3.5.2)	and	model	selection	was	conducted	using	the	MuMIn	
package	(Bartoń,	2018;	R	Core	Team,	2018).

2.4  |  Model illustration

To	contextualize	and	better	assess	the	implications	of	our	findings,	
we	used	top-	ranked	models	for	each	of	our	three	availability	param-
eters	 to	 illustrate	 the	potential	 effect	of	 a	prolonged	 temperature	
increase	on	the	availability	of	arthropods	to	birds.	To	do	so,	we	used	

df logLik AICc ΔAICc Weight

(a)	Peak	date

*DD + SN 4 −192.70 394.25 0.00 0.43

DD + PR 4 −193.35 395.55 1.30 0.22

DD	(seg) + SN 6 −191.18 396.23 1.98 0.16

DD	(seg) + PR 6 −191.49 396.85 2.60 0.12

Null	model 2 −208.61 421.47 27.22 0.00

(b)	Peak	biomass

*DD	(seg) 5 −460.52 931.92 0.00 0.31

DD	(seg) + RAD 6 −459.51 932.25 0.33 0.26

DD	(seg) + PR 6 −460.00 933.24 1.32 0.16

DD	(seg) + SN 6 −460.39 934.01 2.09 0.11

DD 3 −464.70 935.74 3.82 0.05

Null	model 2 −465.95 936.07 4.15 0.04

(c)	Seasonal	biomass

*DD	(seg) 5 −554.58 1120.16 0.00 0.41

DD	(seg) + RAD 6 −553.98 1121.38 1.22 0.22

DD	(seg) + SN 6 −554.51 1122.44 2.28 0.13

DD	(seg) + PR 6 −554.52 1122.46 2.30 0.13

Null	model 2 −562.04 1128.27 8.11 0.0

Note:	DD = cumulative	thawing	degree-	days	between	June	5	and	July	15	for	19	sites	distributed	
across	most	Arctic	and	Subarctic	bioclimatic	zones,	with	between	1	and	19 years	of	sampling.	The	
models	presented	here	have	a	∆AICc	≤4,	while	only	the	models	with	a	(*)	were	retained	for	further	
analyses	and	discussions.	The	AICc	weight	represents	the	relative	weight	attributed	to	the	model.	
For	full	model	selection	and	summary	of	all	models,	see	Appendix	S5.
Abbreviations:	PR,	cumulative	precipitation	between	June	5	and	July	15;	RAD,	average	solar	
radiation	between	June	5	and	July	15;	seg,	segmented	regression	with	two	segments;	SN,	first	
snow-	free	day.

TA B L E  2 Model	selection	of	the	
effect	of	weather	on	(a)	peak	date	(b)	
peak	biomass	and	(c)	seasonal	biomass	of	
arthropods.
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our	models	to	predict	peak	date,	peak	biomass,	and	seasonal	biomass	
for	hypothetical	sites,	based	on	the	range	of	temperature	values	ob-
served	in	our	data.	We	then	used	these	values	to	create	illustrative	
symmetrical	bell-	shaped	curves	representing	daily	arthropod	avail-
ability,	comparable	to	seasonal	patterns	observed	at	our	study	sites	
(Bolduc	et	al.,	2013;	Høye	&	Forchhammer,	2008a).	These	curves	il-
lustrate the seasonal variation in arthropod availability under a given 
temperature	scenario.	We	then	calculated	the	changes	in	arthropod	
peak	date	and	biomass	for	a	warmer	temperature	scenario	(a	tem-
perature	increase	of	80	DD,	equivalent	to	an	increase	of	2°C	in	aver-
age	in	the	daily	temperature	between	June	5	and	July	15).	Using	the	
predicted	values	(arthropod	peak	date	and	biomass),	we	also	gener-
ated	a	new	bell-	shaped	curve	that	represents	the	expected	seasonal	
availability	of	arthropods.	The	use	of	slightly	different	curve	shapes	
did	 not	 affect	 our	 main	 conclusions	 (results	 not	 shown).	 To	 illus-
trate	the	magnitude	of	the	expected	changes	in	arthropod	phenol-
ogy	relative	to	the	current	shorebird	breeding	phenology,	we	then	
superimposed	 the	current	hatching	periods	 recorded	 for	 the	most	
common	arctic	shorebird	species	found	at	various	monitoring	sites	
located	along	the	temperature	gradient	covered	by	our	study.	The	
range	of	 the	 current	 hatching	period	 at	 a	 given	 site	was	obtained	
by averaging the annual earliest and latest hatch dates recorded 
between	2010	and	2016,	after	excluding	upper	and	 lower	5%,	 for	
each	year	(Lanctot	et	al.,	2016).	In	our	model	illustration,	we	opted	
to	represent	bird	phenology	as	static	to	keep	the	focus	on	arthro-
pod	data.	However,	bird	phenology	may	also	advance	with	climate	
warming	(Liebezeit	et	al.,	2014;	Ward	et	al.,	2016),	although	gener-
ally	slower	than	the	food	resource	(Reneerkens	et	al.,	2016;	Saalfeld	
&	Lanctot,	2017;	Zhemchuzhnikov	et	al.,	2021).	The	strength	of	such	
potential	adjustments	is	unknown,	but	it	would	contribute	to	reduce	
the	likelihood	of	trophic	mismatch.

3  |  RESULTS

A	 total	 of	 16,134	 arthropod	 traps	 were	 sampled	 at	 19	 different	
study	sites	 for	1–19 years	at	each	site,	 for	a	 total	of	84	site-	years.	
Weather	 conditions	 varied	 substantially	 between	 sites	 (Figure 3; 
Appendix	S4).	The	cumulative	thawing	degree-	days	between	June	5	
and	July	15	varied	from	15	DD	to	426	DD.

The	 peak	 biomass	 value	 per	 site,	 averaged	 over	 years,	 ranged	
from	 6	 to	 433 mg/trap/day,	 while	 the	 average	 seasonal	 biomass	
(assessed	over	the	21-	day	period	centered	on	the	peak	date)	varied	
from	77	 to	 4354 mg	per	 site.	 Peak	 biomass	 and	 seasonal	 biomass	
were highly correlated (r = .96,	p = .001,	n = 75	site-	years).	Arthropod	
peak	 dates	 varied	 substantially	 within	 and	 among	 sites	 (50 days	
range; Figure 3a),	but	site-	averaged	peak	dates	occurred	within	the	
1-	month	period	between	June	17	and	July	18	across	sites.	In	some	
cases,	the	intra-	site	range	in	peak	dates	was	almost	as	large	as	inter-	
site variation (Figure 3a).	For	instance,	peak	dates	were	spread	over	
a	24-	day	period	at	Bylot	Island,	a	High	Arctic	site	with	a	13-	year	time	
series.	This	period	included	the	average	peak	dates	observed	at	10	
out	of	the	16	study	sites	where	peak	dates	were	estimated.	Hence,	

in	some	years,	birds	nesting	at	Bylot	Island	experienced	a	range	of	
arthropod phenology that was normally observed in much warmer 
or colder breeding sites.

Variation	 in	arthropod	peak	dates	was	best	explained	by	 linear	
effects	of	DD	and	snowmelt	(SN;	Table 2).	The	top	model	indicated	
that	an	increase	of	25	DD	advanced	the	peak	date	by	1 day	on	av-
erage (b = −0.04,	95%	CI = −0.07	to	−0.02;	Figure 3a; Table 2a).	Peak	
date	was	1 day	earlier,	when	snow-	free	date	was	4 days	earlier,	on	
average (b = 0.25,	95%	CI = 0.06–0.43).	Unlike	the	linear	effect	of	DD	
found	for	peak	date,	the	variation	in	peak	biomass	and	seasonal	bio-
mass	were	best	explained	by	a	segmented	effect	of	DD	(Table 2).	We	
found	that	DD	had	a	positive	effect	on	peak	biomass	but	only	below	
a	threshold	of	106	DD	(95%	CI = 64–148	DD;	Figure 3b).	Below	this	
threshold,	an	increase	in	25	DD	generated	on	average	a	43.5 mg/trap/
day	increase	of	peak	biomass	(b = 1.74,	95%	CI = 0.24–3.24).	Above	
106	DD,	 the	effect	was	not	significant	 (b = −0.07,	95%	CI = −0.35–
0.22).	Similarly,	the	positive	effect	of	DD	on	seasonal	biomass	was	
detected	only	 below	 a	 threshold	 of	 177	DD	 (95%	CI	 89–266	DD;	
Figure 3c).	Below	this	threshold,	a	rise	of	25	DD	increased	seasonal	
biomass	by	270 mg	on	average	(b = 10.8,	95%	CI = 4.22–17.38)	while	
the	relationship	was	not	significant	above	the	threshold	(b = −2.28,	
95%	 CI = −8.20–3.64).	 Excluding	 extreme	 values	 observed	 at	 one	
site	 (Herschel)	 had	a	marked	 influence	on	 the	parameter	estimate	
but	 did	 not	 affect	 the	main	 patterns	 (peak	 biomass:	b = 0.75,	 95%	
CI = 0.25–1.26,	threshold = 133	DD,	95%	CI = 73–194	DD;	2nd	seg-
ment: b = 0.04,	95%	CI = −0.14–0.22;	seasonal	biomass:	b = 7.77,	95%	
CI = 2.28–13.25,	 threshold = 134,	 95%CI = 59–209;	 2nd	 segment:	
b = 1.46,	95%	CI = −0.49–3.41).

3.1  |  Model illustration

Based	on	our	empirical	results,	we	created	two	alternative	scenar-
ios	to	visualize	the	potential	effects	of	a	temperature	increase	on	
arthropod	availability	for	consumers,	one	above	and	one	below	the	
temperature	threshold	identified	by	our	segmented	biomass	mod-
els (Figure 4).	We	created	scenarios	for	(i)	a	relatively	cold,	generic	
Arctic	site	(current	average	of	50	DD;	Figure 4a)	versus	(ii)	a	rela-
tively	warm,	generic	Low	Arctic	site	(current	average	of	320	DD;	
Figure 4b).	In	both	cases,	we	illustrated	a	temperature	increase	of	
80	DD	(equivalent	to	a	2°C	increase	in	average	daily	air	tempera-
ture	between	June	5	and	July	15).	A	change	of	80	DD	allowed	us	to	
stay	within	the	temperature	range	covered	by	each	segment	of	the	
regression	(below	and	above	the	breakpoint).	For	the	generic	cold	
site,	we	 superimposed	 hatching	 periods	 of	 the	 three	most	 com-
mon	species	at	three	of	our	cold	study	sites	as	points	of	reference	
(Bylot,	Ikpikpuk,	and	Utqiaġvik;	Lanctot	et	al.,	2016).	We	repeated	
the	same	steps	for	the	generic	warm	site,	using	data	from	three	of	
our	warm	sites	 (Churchill,	Cape	Krusenstern,	and	Nome;	Lanctot	
et	al.,	2016).	In	both	scenarios,	the	model	predicted	a	3.2-	day	shift	
in	 average	 arthropod	 peak	 date	 (Figure 4a,b).	 Peak	 dates	would	
occur during the current shorebird hatching periods recorded at 
representative	study	sites,	except	for	the	latest	breeding	species	

 13652486, 2024, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/gcb.17356 by N

O
R

W
E

G
IA

N
 IN

ST
IT

U
T

E
 FO

R
 N

A
T

U
R

E
 R

esearch, N
IN

A
, W

iley O
nline L

ibrary on [11/06/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



    |  9 of 17CHAGNON-LAFORTUNE et al.

F I G U R E  3 Relationship	between	cumulative	thawing	degree-	days	between	June	5	and	July	15	and	(a)	arthropod	phenology	(peak	date),	
(b)	peak	arthropod	biomass	and	(c)	seasonal	arthropod	biomass	(sum	of	daily	biomass	values	for	a	21-	day	period	centered	on	peak	date).	
Date	is	expressed	in	Julian	date,	(DOY;	156	is	June	5	for	non-	leap	years).	Lines	represent	the	fitted	top-	ranked	models	(linear	or	segmented	
regression)	and	the	grey	areas	show	the	95%	confidence	intervals.	Dashed	lines	indicate	that	the	95%	confidence	interval	of	the	slope	
estimate	includes	zero.	Colour	ranking	of	sites	is	based	on	average	June	and	July	daily	air	temperature	(blue = colder,	red = warmer)	and	
shapes	are	used	to	differentiate	sites.
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(especially	 for	 American	 Golden-	plovers,	 Pluvialis dominica,	 and	
Whimbrels,	Numenius phaeopus; Figure 4a,b).	While	peak	biomass	
is	predicted	to	remain	similar	for	the	generic	warm	site,	the	model	
predicted	an	increase	of	peak	arthropod	biomass	(80 mg/trap/day,	
from	30	to	110 mg/trap/day)	for	the	generic	cold	site	(Figure 4a).	
Such	a	marked	increase	in	arthropod	availability	induced	by	warm-
ing would occur during the hatching periods currently observed 
for	most	shorebird	species	breeding	in	relatively	cold	Arctic	sites	
(Figure 4a).

4  |  DISCUSSION

Our	results,	based	on	pan-	Arctic	arthropod	monitoring	spanning	a	
gradient	exceeding	10°C	in	average	daily	air	temperatures	during	June	
and	July,	provide	support	to	our	hypothesis	that	extended	exposure	
to elevated temperatures can advance arthropod phenology while 
increasing	 their	 potential	 biomass	 accessible	 to	 consumers	 like	
Arctic-	nesting	 shorebirds.	 Our	 investigation	 revealed	 a	 strong	
positive correlation between temperature and arthropod availability 
(peak	or	seasonal	biomass)	below	specific	 temperature	thresholds.	

Moreover,	 the	 correlation	 between	 temperature	 and	 arthropod	
phenology,	 as	expressed	by	 the	date	of	peak	biomass	 available	 to	
birds,	was	relatively	moderate	across	our	large	temperature	gradient,	
with	an	average	of	a	1-	day	shift	for	an	increase	of	25	DD	(roughly	
equivalent	 to	a	0.6°C	difference	 in	average	 summer	 temperature).	
This	shift	 is	small	when	considering	the	broad	spectrum	of	annual	
arthropod	 peak	 dates	 encountered	 by	 birds	 breeding	 at	 several	
Arctic	sites	(intra-	site	variation	reaching	>15 days;	Kwon	et	al.,	2019; 
this	study).	Overall,	our	findings	suggest	that	prolonged	exposure	to	
elevated	temperatures	can	have	a	positive	effect	on	arctic	arthropod	
availability	that	may	help	counteract	warming-	induced	phenological	
shifts	 of	 arthropods	 and	 reduce	 the	 risk	 of	 trophic	 mismatch	 for	
shorebirds.

The	non-	linear	relationship	between	temperature	and	biomass	of	
arctic	arthropods	outlined	in	our	study	is	a	novel	finding.	The	phys-
iological	 functions	 of	 arthropods	 such	 as	metabolism	 and	 growth	
rates,	 are	 largely	 constrained	by	 temperature,	 and	 some	arctic	 ar-
thropods	could	benefit	from	a	temperature	increase	in	northern	re-
gions	 (Barrio	et	al.,	2017;	Bolduc	et	al.,	2013;	Shaftel	et	al.,	2021).	
Although	positive	 responses	may	be	 the	 case	 for	 some	arthropod	
groups	 and	 during	 specific	 timeframes,	 recent	 studies	 have	 also	

F I G U R E  4 Conceptual	illustration	of	the	potential	effects	of	warming	on	the	availability	of	arthropods	based	on	predictions	of	top-	
ranked	models	for	ten	insectivorous	shorebirds	that	breed	in	the	Arctic.	The	models	predict	the	date	of	peak	biomass,	peak	biomass,	
and	seasonal	biomass	(sum	of	daily	biomass	values	for	a	21-	day	period	centered	on	peak	date	as	illustrated	by	grey	areas	under	curves).	
Predictions	were	generated	using	the	temperature	currently	observed	at	(a)	relatively	cold	and	(b)	relatively	warm	generic	Arctic	sites	
(i.e.,	current	average	of	50	and	320	cumulative	thawing	degree-	days	between	June	5	and	July	15,	respectively.	See	Section	2).	Arthropod	
availability	under	current	conditions	(light	grey	area,	blue	dashed	line)	and	predicted	values	following	an	increase	of	80	cumulative	thawing	
degree-	days	(dark	grey	area,	red	dashed	line)	are	illustrated.	Dashed	lines	of	daily	biomass	are	only	illustrative,	as	they	were	extrapolated	
from	model	predictions	of	peak	biomass,	peak	date	and	seasonal	biomass	(the	shape	is	a	simplified	version	of	availability	curves	observed	
at	our	sites).	Colored	bars	illustrate	the	range	of	current	hatch	dates	for	the	six	most	common	shorebird	species	observed	at	representative	
Arctic	sites	(see	Section	2	for	full	details).	Color	ranking	of	sites	is	based	on	average	June	and	July	daily	air	temperature	(from	cooler	to	
warmer; see Table 1	for	temperature)	and	species	shades	were	attributed	randomly.	Cold	Arctic	sites	are	UT = Utqiaġvik,	IK = Ikpipkuk,	
BY = Bylot	Island,	whereas	warm	Arctic	sites	are	NO = Nome,	CH = Churchill,	KR = Cape	Krusenstern.	Ten	species	of	migratory	shorebirds	
are	included:	REPH = Red	Phalarope	(Phalaropus	fulicarius),	DUNL = Dunlin	(Calidris	alpina),	PESA = Pectoral	Sandpiper	(Calidris	melanotos),	
WESA = Western	Sandpiper	(Calidris	mauri),	SESA = Semipalmated	Sandpiper	(Calidris	pusilla),	RNPH = Red-	necked	Phalarope	(Phalaropus	
lobatus),	WHIM = Whimbrel	(Numenius	phaeopus),	AMGP = American	Golden-	plover	(Pluvialis	dominica),	WRSA = White-	rumped	Sandpiper	
(Calidris	fuscicollis),	BASA = Baird's	Sandpiper	(Calidris	bairdii).
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shown	negative	or	heterogeneous	responses	of	some	arctic	arthro-
pods	to	rising	temperatures	(Bowden	et	al.,	2018;	Høye	et	al.,	2021; 
Loboda	et	 al.,	2017).	Above	a	 temperature	 threshold,	 the	positive	
effects	of	temperature	on	biomass	and	activity	rate	of	some	surface-	
active	and	low-	flying	arthropods	could	thus	be	counterbalanced	by	
the	negative	effects	on	other	taxa,	leading	to	the	observed	null	ef-
fect	of	temperature	increase	on	arthropod	availability	(see	also	Høye	
et	al.,	2021;	Koltz	et	al.,	2018).

A	 wide	 array	 of	 mechanisms	 can	 lead	 to	 a	 negative	 effect	 of	
temperature	on	arctic	arthropods	(Høye,	2020).	For	example,	higher	
summer	temperatures	can	lead	to	a	decrease	in	arthropod	body	size,	
possibly	due	to	metabolic	costs	 (Bowden	et	al.,	2015),	a	reduction	
of	 arthropod	activity	 rates	above	a	 certain	 temperature	 threshold	
(Asmus	et	al.,	2018)	and	reduced	vegetation	nutritive	quality	(Welti	
et	al.,	2020).	Warmer	winter	conditions	can	also	have	a	negative	im-
pact	on	summer	arthropod	abundance	through	a	higher	frequency	
of	freeze–thaw	events	or	reductions	in	insulation	due	to	less	snow	
cover	during	winter	(Ávila-	Jiménez	et	al.,	2010;	Everatt	et	al.,	2015; 
Høye	et	al.,	2021).	Changes	in	water	availability	induced	by	changes	
in	patterns	of	precipitation,	melting	of	permafrost,	or	higher	evap-
oration	rates,	can	in	turn	negatively	affect	the	abundance	of	some	
arthropod	species	(Ávila-	Jiménez	et	al.,	2010;	Bowden	et	al.,	2018).

After	controlling	for	cumulative	thawing	degree-	days	 (DD),	the	
relationships we documented between arctic arthropod phenology 
and other weather variables are generally consistent with previous 
findings.	For	example,	we	found	that	later	snowmelt	was	associated	
with	later	peak	date,	which	is	consistent	with	previous	studies	that	
identified	snow	dynamics	as	a	major	predictor	of	arctic	arthropod	
phenology	 (Høye,	 2020;	 Høye	 &	 Forchhammer,	 2008a).	 On	 the	
other	hand,	Kwon	et	al.	(2019)	reported	a	strong	negative	effect	of	
timing	of	 snowmelt	on	peak	 arthropod	biomass	 available	 to	birds.	
We	did	not	detect	such	an	effect,	likely	due	to	our	reliance	on	less	
precise	estimates	of	snowmelt	date.	Finally,	summer	precipitation	is	
known	 to	negatively	affect	daily	availability	of	arthropods	 (Asmus	
et	al.,	2018;	Shaftel	et	al.,	2021;	Tulp	&	Schekkerman,	2008),	but	few	
studies	investigated	the	effect	of	summer	precipitation	on	arthropod	
phenology	(negligible	effects	reported	in	Saalfeld	et	al.,	2019).	Use	
of	high	quality	local	weather	data	could	improve	the	understanding	
of	the	positive	effect	of	summer	precipitation	that	we	found	on	ar-
thropod	peak	date	(see	Appendix	S5).

The	 performance	 of	 space-	for-	time	 substitution	 to	 predict	 the	
response	of	ecological	systems	to	global	warming	can	be	highly	vari-
able	(Damgaard,	2019).	Spatial	variation	often	results	from	long-	term	
processes	 that	 can	 lead	 to	misestimating	 short-	term	 responses	 to	
warming	(Elmendorf	et	al.,	2015).	The	main	assumptions	of	our	ap-
proach	were	that	 (1)	arthropod	communities	assemblages	sampled	
across our broad temperature gradient would respond to a given 
temperature	increase	in	a	similar	way	or	(2)	arthropod	assemblages	
would	change	relatively	quickly	following	warming,	and	the	new	as-
semblage would respond to a temperature increase in a similar way 
to	assemblages	currently	found	at	warmer	sites.	Although	the	same	
dominant	taxa	are	usually	present	 in	arctic	arthropod	assemblages	
(Bolduc	et	al.,	2013;	Shaftel	et	al.,	2021)	and	rapid	climate-	induced	

changes	 in	 the	 composition	 of	 these	 assemblages	 have	 been	 ob-
served	(Koltz	et	al.,	2018;	Loboda	et	al.,	2017),	the	validity	of	these	
assumptions	 remains	 uncertain.	 Moreover,	 some	 ecological	 pro-
cesses	 indirectly	 affecting	 the	 biomass	 of	 arthropods	 available	 to	
consumers,	 such	 as	 vegetation	 changes,	 may	 operate	 over	 longer	
timescales.	 The	 effect	 of	warming	 on	 arthropod	 availability	 could	
be	assessed	by	integrating	longer	time	series	data	from	several	sites	
encompassing	 diverse	 environmental	 conditions	 and	 experiencing	
temperature	increases	over	time	(Damgaard,	2019).

Although	 climate	 change	 has	 led	 to	 significant	 changes	 in	 the	
timing	of	critical	 life	history	events	among	interacting	species	(e.g.	
Schmidt	et	al.,	2023),	the	prevalence	of	warming-	induced	mismatch	
remains	 low	 in	 terrestrial	 study	 systems	 linking	 the	 level	 of	 asyn-
chrony	 to	 individual	 fitness	 (Kharouba	 &	 Wolkovich,	 2023).	 Our	
results also suggest that some generalist insectivorous arctic bird 
populations	may	be	less	vulnerable	to	mismatch	than	expected	due	to	
a	potential	warming-	induced	increase	in	food	availability.	Moreover,	
some	 shorebirds	 (and	 other	 insectivorous	 birds)	 can	 advance	
their	 breeding	 dates	 under	warmer	 conditions	 (Kwon	et	 al.,	 2019; 
Liebezeit	et	al.,	2014;	Ruthrauff	et	al.,	2021).	Although	this	advance-
ment	 may	 not	 perfectly	 track	 phenological	 shifts	 in	 environmen-
tal	conditions	 (Saalfeld	&	Lanctot,	2017),	 it	should	also	reduce	the	
risk	of	trophic	mismatch.	Some	arctic	shorebird	species,	like	Dunlin	
(Calidris alpina)	 and	 Sanderling	 (Calidris alba),	 are	 already	 breeding	
late	relative	to	seasonal	peaks	 in	arthropod	abundance	(McKinnon	
et	al.,	2012,	2013;	Reneerkens	et	al.,	2016; see also Figure 4)	and	
hence	may	not	benefit	from	a	potential	positive	effect	of	tempera-
ture	on	arthropod	peak	biomass.	Birds	having	more	specialized	diets	
or	those	dependant	on	highly	nutritional	food	resources	could	also	
be	more	vulnerable	to	warming-	induced	changes	in	prey	phenology	
and	quality	(Arnold	et	al.,	2010;	Wilde	et	al.,	2020;	Zhemchuzhnikov	
et	 al.,	2022).	 Hence,	 further	 investigations	may	 be	 useful	 to	 fully	
quantify	 the	 risk	 of	mismatch	 for	 arctic	 insectivorous	 birds,	while	
considering	that	higher	temperatures	encountered	by	chicks	could	
provide	 thermogenic	 relief	 that	 can	 compensate	 (or	 not)	 for	 their	
lack	 of	 synchrony	 (Lameris	 et	 al.,	 2022;	 McKinnon	 et	 al.,	 2013; 
Saalfeld	et	al.,	2021).

Climate	warming	can	lead	to	significant	shifts	in	the	timing	of	key	
life	history	events	in	Arctic	ecosystems	(Post	et	al.,	2018).	Based	on	
a	space-	for-	time	substitution,	our	pan-	arctic	study	indicates	that	the	
positive	effects	of	prolonged	exposure	to	elevated	temperatures	on	
food	availability	may	help	counteract	warming-	induced	phenological	
shifts	 in	peak	 food	availability	 for	some	arctic	birds.	 Incorporating	
time	series	data	from	Arctic	sites	where	temperatures	have	been	in-
creasing	over	time	and	the	inclusion	of	weather	parameters	outside	
the	breeding	season	could	strengthen	our	findings.	Additionally,	em-
ploying	higher	arthropod	taxonomic	resolutions	may	help	pinpoint	
the	specific	ecological	processes	driving	warming-	induced	changes	
in	arthropod	availability	for	birds.
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