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Abstract
Seasonally abundant arthropods are a crucial food source for many migratory 
birds that breed in the Arctic. In cold environments, the growth and emergence of 
arthropods are particularly tied to temperature. Thus, the phenology of arthropods 
is anticipated to undergo a rapid change in response to a warming climate, potentially 
leading to a trophic mismatch between migratory insectivorous birds and their prey. 
Using data from 19 sites spanning a wide temperature gradient from the Subarctic 
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1  |  INTRODUC TION

Organismal responses to climatic warming often include phenolog-
ical shifts in major life-history events, which can lead to heteroge-
neous responses among different functional groups within food 
webs (Thackeray et al., 2016). Small-bodied ectothermic organisms 
at lower trophic levels often respond with stronger phenological ad-
justments than large endothermic organisms at higher trophic lev-
els, which can lead to a trophic mismatch between consumers and 
their food sources (Both et al., 2009; Cohen et al., 2018; Kharouba & 
Wolkovich, 2023). Arctic ecosystems are currently warming two to 
four times faster than the rest of the earth (IPCC, 2021; Rantanen 
et  al.,  2022). Hence, arctic food webs are especially likely to be 

subject to trophic mismatches between consumers and their re-
sources (Post et al., 2009; Schmidt et al., 2017).

Insectivorous migratory birds breeding in the Arctic are expected 
to be especially prone to warming-induced mismatch (McKinnon 
et  al., 2012; Miller-Rushing et  al., 2010; Saalfeld et  al.,  2019; but 
see Corkery et  al.,  2019; McKinnon et  al., 2013). Arthropods are 
resident ectotherms, and their phenology is strongly affected 
by local environmental conditions (Culler et  al.,  2015; Høye & 
Forchhammer, 2008a; Shaftel et al., 2021). By contrast, the migra-
tion and breeding phenology of some arctic birds can be affected 
by a wide range of cues and environmental conditions encoun-
tered en route to and at breeding sites (Liebezeit et al., 2014; Smith 
et al., 2010; Ward et al., 2016; Winkler et al., 2014). Arctic birds also 
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to the High Arctic, we investigated the effects of temperature on the phenology and 
biomass of arthropods available to shorebirds during their short breeding season 
at high latitudes. We hypothesized that prolonged exposure to warmer summer 
temperatures would generate earlier peaks in arthropod biomass, as well as higher 
peak and seasonal biomass. Across the temperature gradient encompassed by our 
study sites (>10°C in average summer temperatures), we found a 3-day shift in 
average peak date for every increment of 80 cumulative thawing degree-days. 
Interestingly, we found a linear relationship between temperature and arthropod 
biomass only below temperature thresholds. Higher temperatures were associated 
with higher peak and seasonal biomass below 106 and 177 cumulative thawing 
degree-days, respectively, between June 5 and July 15. Beyond these thresholds, 
no relationship was observed between temperature and arthropod biomass. Our 
results suggest that prolonged exposure to elevated temperatures can positively 
influence prey availability for some arctic birds. This positive effect could, in part, 
stem from changes in arthropod assemblages and may reduce the risk of trophic 
mismatch.

K E Y W O R D S
arctic arthropods, arctic breeding shorebirds, climate warming, insectivorous birds, 
invertebrate biomass, phenology, trophic mismatch
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have a relatively short window of time for reproduction, and food 
availability during the chick rearing period is especially critical as it 
may affect fitness through juvenile growth and survival (McKinnon 
et  al., 2012; Reneerkens et  al., 2016; Saalfeld et  al.,  2019, 2021). 
Chicks of insectivorous birds mostly feed on active and visible arthro-
pods (Richards & Gaston, 2018; Schekkerman et al., 1998) and their 
availability is typically characterized by a relatively short summer 
pulse (Bolduc et al., 2013; Danks, 2004; Tulp & Schekkerman, 2008). 
Consequently, the response of arctic arthropods to warming can 
strongly affect the likelihood of trophic mismatch.

Studies based on time series are often used to predict long-
term effects of warming on wildlife species and trophic interac-
tions (Kharouba et al., 2018; Parmesan, 2007). However, empirical 
studies of the phenological responses of arctic arthropods to a 
prolonged increase in summer temperatures are rare and typically 
limited to single-site assessments (e.g., >25 years time series; Høye 
et al., 2021). Such studies showed that arctic arthropod assemblages 
can change relatively quickly when exposed to warmer tempera-
tures for several years (e.g., changes in the relative abundance of 
functional groups; Koltz et al., 2018), which can cause cascading ef-
fects on arthropod availability for consumers (Schmidt et al., 2017).

Assuming that the variation of a parameter through space can 
also be used to predict its variation through time, a space-for-time 
substitution approach has the potential to improve our assessment 
of the long-term effects of warming on ecological communities 
(Blois et al., 2013; Elmendorf et al., 2015; Pickett, 1989). Although 
the approach has some important caveats, it can nonetheless be 
useful when the drivers that control biological processes are the 
same drivers that operate in space and if community dynamics and 
assemblages can respond relatively quickly to persistent environ-
mental changes (Damgaard, 2019; Wogan & Wang, 2018).

Here, we apply a space-for-time substitution approach to im-
prove our ability to predict the general response of arctic arthropods 
to warming, and hence the potential consequences on consumers 
like migratory birds. Our study is based on a pan-arctic dataset of 
surface-active and low-flying arthropod biomass collected from the 
Subarctic to the extreme High Arctic. It spans a large temperature 
gradient (>10°C in June and July average daily air temperature) over-
lapping the expected temperature increase in the Arctic and allows 
comparisons between species assemblages shaped by long-term ex-
posure to warmer temperatures. Temperature is known to affect ar-
thropod emergence phenology (e.g., date of peak biomass; Figure 1a) 

F I G U R E  1 Schematic representation of the potential effects of warming on arthropod availability for insectivorous birds under current 
versus warmer temperatures. Warmer temperatures could be associated with (a) an earlier peak date, (b) a higher peak and seasonal biomass 
(area under the curve), with no change in phenology, or (c) both an earlier peak date and higher peak and seasonal biomass.
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but also the magnitude of peak arthropod biomass (Figure 1b; e.g., 
Bolduc et al., 2013; Tulp & Schekkerman, 2008). The consequences of 
warming on the availability of arthropods for Arctic-nesting birds are 
likely to depend on the strength of such combined effects (Figure 1c). 
Despite potential differences in temperature responses among ar-
thropod species, we hypothesized that higher summer temperatures 
would be associated with earlier peak arthropod biomass and higher 
arthropod biomass available to Arctic-nesting insectivorous birds 
across the temperature gradient covered by our study sites.

2  |  METHODS

2.1  |  Arthropod data

2.1.1  |  Field sampling

Arthropods were sampled during the breeding season of 
insectivorous birds (approximately June to August) at 19 field sites 
distributed across most Arctic and Subarctic bioclimatic zones 
(Figure  2; Leemans,  1992; Walker et  al.,  2005). Each site was 

sampled for 1–19 years, and over a period of 26–143 days per year 
(medians = 3 years and 56 days, respectively; Table 1), covering the 
estimated period of peak arthropod biomass. At each site, 6–20 
traps were deployed and typically emptied every 1–3 days, except 
for Zackenberg, Hochstetter Forland, and Chipp River, where 
sampling was performed once a week. The biomass estimates were 
then converted to daily values as described below.

At each study site, arthropods were sampled in dry uplands 
and low wetlands, which were the two main habitats used by the 
common species of shorebirds, passerines, and other insectivorous 
birds during their chick rearing period. Arthropods were collected 
in open areas within each habitat using modified Malaise traps with 
rectangular white pitfall traps (38 cm × 5 cm) at most sites (Bolduc 
et  al., 2013; Brown et  al., 2014), except Medusa Bay, Hochstetter 
Forland, and Zackenberg, where round white or yellow pitfall traps 
were used (10–11 cm in diameter; Schmidt et  al.,  2016; Tulp & 
Schekkerman, 2008). Therefore, we compared results obtained from 
these two trapping techniques conducted simultaneously at the 
same site before combining datasets (see below). Both techniques 
are passive traps and thus measure a combination of the abun-
dance and the activity of surface-active and low-flying arthropods 

F I G U R E  2 Circumpolar map indicating study site locations and the Arctic bioclimatic zones. Details on the study sites are provided in 
Table 1. The Circumpolar Arctic Vegetation Map (CAVM) bioclimatic zones represent gradients of temperatures, vegetation structure, and 
ecosystem productivity as defined by Walker et al. (2005). The CAVM gradient ranges from cold and almost barren zones (A) to warmer and 
vegetation-rich zones (E).
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(Southwood & Henderson, 2000). Variation in biomass was used as 
a proxy of arthropod availability for surface-feeding insectivorous 
birds such as shorebirds (Bolduc et  al.,  2013; Kwon et  al.,  2019; 
McKinnon et al., 2012).

Arctic-breeding birds are likely to be gape-limited and restricted to 
prey that they can swallow whole. We excluded bumblebees and but-
terflies, as they were likely too large to be consumed by chicks (Kwon 
et al., 2019; Saalfeld et al., 2019; Schekkerman & Boele, 2009). We 
also excluded springtails (Collembola) and mites because they were a 
negligible part of the sampled biomass and were considered too small 
to be important prey for chicks (Bolduc et al., 2013; Ridley, 1980; Tulp 
& Schekkerman, 2008). The biomass of all remaining arthropods was 
pooled, as arctic insectivorous birds typically consume a broad di-
versity of species during the breeding season (Flemming et al., 2022; 
Wirta et al., 2015). The dry biomass for each trap was measured di-
rectly or estimated with equations using the length of the specimen 
to convert abundance of individuals to dry mass (see Appendix S1 for 
details). Wet and dry habitats were pooled to obtain a general index 
of arthropod availability (McKinnon et  al.,  2012). A standardized 
daily arthropod availability index (mg/trap) was calculated for each 
year and site, achieved by dividing the overall arthropod biomass by 
the number of sorted traps and the days elapsed between sampling 
events (Bolduc et al., 2013). Our index of arthropod abundance and 
activity accounted for the variable number of traps and the differ-
ences in sampling frequency across sites.

2.1.2  |  Data standardization

We carried out a calibration experiment because two different 
trapping techniques were used across our study sites (i.e., different 
colors, shapes, and sizes of the pitfall traps). We used both types of 
traps simultaneously at Bylot Island in 2018 to develop a linear re-
gression linking the variation in the biomass of arthropods captured 
with the two different types of traps (see Appendix S2).

2.1.3  |  Arthropod phenology and biomass

Based on seasonal changes in the index of arthropod daily avail-
ability, we calculated three parameters for each year and field site: 
peak biomass, date of peak biomass (hereafter peak date), and 
seasonal biomass. Peak biomass was defined as the single high-
est recorded value of daily arthropod availability (mg/trap/day) 
and peak date was the rounded median date of the sampling pe-
riod during which the peak biomass was observed. We explored 
alternative methods (generalized additive models and moving 
averages) and found similar results. Zackenberg, Hochstetter 
Forland, and Chipp River data were excluded from peak date anal-
yses, because we considered that the weekly sampling frequency 
would strongly reduce the precision of the estimates compared to 
other sites that were sampled every 1–3 days. The daily index of 

Site name
Mean summer, T 
(°C) Coordinates Sampling years (n)

Utqiaġvik 1.2 71°18′ N, 156°45′ W 2010–2016 (7)

Alert 1.5 82°30′ N, 62°21′ W 2007–2008 (2)

Zackenberg 1.6 74°28′ N, 20°34′ W 1998–2016 (19)

Hochstetter Forland 2.0 75°09′ N, 19°42′ W 2011–2014, 
2016–2017 (6)

Ikpikpuk 2.2 70°33′ N, 154°43′ W 2010–2012 (3)

Medusa Bay 2.4 73°20′ N, 80°32′′  E 1996, 2000–2002 (4)

Prudhoe Bay 2.6 70°12′ N, 148°27′ W 2010 (1)

Bylot Island 3.1 73°80′ N, 79°58′ W 2005–2017 (13)

Chipp River 3.2 70°41′ N, 155°18′ W 2013 (1)

Canning River 3.5 70°26′ N, 145°51′ W 2010–2012 (3)

Igloolik 3.7 69°24′ N, 81°48′ W 2014, 2017 (2)

Colville 3.8 70°26′ N, 150°41′ W 2011–2012, 
2014–2017 (6)

Herschel Island 4.1 69°35′ N, 138°55′ W 2007–2008 (2)

Mackenzie Delta 4.9 69°22′ N, 134°53′ W 2011–2012 (2)

Southampton Island 5.0 63°59′ N, 81°40′ W 2006–2008, 
2010–2012 (6)

Nome 8.3 64°27′ N, 164°58′ W 2010–2012 (3)

Churchill 8.4 58°45′ N, 94°04′ W 2010–2011 (2)

Cape Krusenstern 9.7 67°06′ N, 163°29 W 2011–2012 (2)

Akimiski Island 11.7 53°00′ N, 81°20′ W 2009 (1)

Note: For a map including bioclimatic zones, see Figure 2. For detailed weather information, see 
Appendix S4.

TA B L E  1 Arctic and Subarctic study 
sites ranked by the average June and July 
daily air temperature of years included 
in our analyses (ERA Interim; Dee 
et al., 2011).

 13652486, 2024, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/gcb.17356 by N

O
R

W
E

G
IA

N
 IN

ST
IT

U
T

E
 FO

R
 N

A
T

U
R

E
 R

esearch, N
IN

A
, W

iley O
nline L

ibrary on [11/06/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



6 of 17  |     CHAGNON-­LAFORTUNE et al.

arthropod availability can vary substantially before and after the 
peak date, and the period characterized by relatively high biomass 
can be relatively narrow or wide, depending on study years and 
sites (Bolduc et al., 2013; Saalfeld et al., 2019). To better describe 
the arthropod biomass available to birds, we also calculated the 
seasonal biomass, which is the cumulative biomass sampled dur-
ing a 3-week period centered on the peak date (i.e., sum of daily 
biomass recorded during the period corresponding to the peak 
date ±10 days). Shorebird chicks are more vulnerable to starva-
tion or marked reduction in growth rate during their first 9 days 
(McKinnon et al., 2012; Pearce-Higgins & Yalden, 2003). Our sea-
sonal biomass estimates provided a proxy of food availability just 
before and after peak date, over a biologically significant period. 
Estimating seasonal biomass over a longer period generated simi-
lar results and the correlation between seasonal biomass estimates 
using a 21-day or 31-day window was high (r = .99, p < .001, n = 57). 
As the total sampling season was shorter at some study sites, the 
use of a 21-day window increased our sample size. Nevertheless, 
in nine out of 84 site-years, we were unable to estimate a seasonal 
biomass value using a 21-day window, as the period of sampling 
did not fully cover the minimum time window around the peak 
date. For 4 of the 9 cases where only 3 days were missing, the 
window was shifted up to 3 days earlier or later to include a full 21-
day window of cumulative biomass (site and year: Canning in 2011, 
Mackenzie in 2011, Southampton in 2007, and Utqiaġvik in 2010).

2.2  |  Weather data

In addition to temperature, other environmental parameters such as 
timing of snowmelt, precipitation, and solar radiation can affect the 
phenology and availability of arctic arthropods. (Asmus et al., 2018; 
Bolduc et al., 2013; Høye & Forchhammer, 2008a, 2008b). Thus, we 
added these three variables as covariates in our statistical models. 
Although it would have improved our ability to explain the variation 
in arthropod phenology and availability, local weather data acquired 
using standardized protocols were not available for most sites and 
years. The weather data used for our models were thus extracted 
from the dataset produced by the global atmospheric reanalysis ERA-
Interim (Dee et al., 2011). A reanalysis model continuously integrates 
data from satellites, weather stations, and other sources and vali-
dates the model predictions with every update. The model outputs 
are global data grids of daily weather conditions since 1979 with a 
spatial resolution of 79 km2 (Berrisford et al., 2009; Dee et al., 2011). 
This approach allowed us to fill temporal and spatial gaps in weather 
datasets for all study sites and to avoid systematic biases caused by 
the use of different field methods. Despite some errors inherent to 
this type of data, the surface air temperature estimate derived from 
ERA-Interim aligns well with the data collected from Arctic land sta-
tions, indicating a strong overall agreement (Simmons & Poli, 2015). 
Compared to other comparable reanalysis models, ERA-Interim is 
also noteworthy for the consistency of the model predictions for the 
Arctic region (Lindsay et al., 2014).

We employed ERA-Interim data for daily mean air temperature, 
daily cumulative precipitation, and daily surface solar radiation in 
order to derive relevant parameters for our models. We extracted 
values over the same period (June 5 – July 15) for all sites and years. 
The three variables included: (1) cumulative thawing degree-days 
(DD), which was calculated as the cumulative daily mean air tempera-
ture above 0°C; (2) the cumulative daily precipitation (PR); and (3) 
average surface solar radiation (RAD). The selected time period fully 
or partly overlaps the environmental conditions recorded before the 
peak date of arthropod biomass at all sites. Hence, data extracted 
over this period provided a proxy of the local environmental condi-
tions that should have a strong effect on summer arthropod avail-
ability during the chick-rearing period (Meltofte et al., 2007; Tulp & 
Schekkerman, 2008). The use of the same 41-day period at all sites is 
likely not the best approach to explain intra-site variation in annual 
peak date and biomass (e.g., the period could be adjusted relative 
to site-specific annual snowmelt date; Asmus et  al.,  2018; Shaftel 
et al., 2021). However, the use of the same period for all sites allowed 
us to compare the relative weather conditions across the gradients 
covered by our study sites. Further, values extracted over slightly 
different time periods were highly correlated (see Appendix  S3). 
Running analyses using these values did not change any of our main 
conclusions (e.g., in linear regression analyses linking environmental 
conditions and arthropod phenology or biomass, the use of slightly 
different time periods partially shifted some data points along the 
X-axis with limited effect on their rank; results not shown). Finally, 
we included the snow-free date (SN; O'Leary et al., 2017) as a proxy 
of the relative snowmelt phenology, which was extracted from an 
8-day composite satellite dataset (MOD10A2; Hall et al., 2018). This 
dataset provided a consistent set of measurements across years and 
allowed us to have a standardized and almost complete dataset for 
all study sites. A few missing values were caused by excessive cloud 
cover (nine cases out of 84 site-years). These data points were ex-
cluded from models that included snow cover.

2.3  |  Data analysis

We analyzed the effect of cumulative thawing degree-days and other 
environmental parameters on the date of peak arthropod biomass, 
the peak value for biomass per day, and the seasonal biomass (i.e., 
cumulative biomass for the peak date ±10 days). Based on previous 
studies (Bolduc et  al.,  2013; Høye & Forchhammer,  2008b; Tulp & 
Schekkerman, 2008), we created candidate models that included DD 
and combinations of other environmental parameters (for a full list, 
see Appendix S5). We calculated the correlation between all variables 
using Pearson's correlation test. Snow-free dates and DD were only 
moderately correlated (r = −.45, p < .001, n = 75 site-years) so they 
were included in the same model. Cumulative precipitation and radia-
tion were more strongly correlated (r = −.68, p < .001, n = 84) and hence 
were not included in the same statistical model. The correlations were 
low among all other covariables (r ≤ .28). Our candidate models also 
included a segmented linear regression, or “broken-stick” regression, 
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    |  7 of 17CHAGNON-­LAFORTUNE et al.

to test for break points in the relationships between temperature and 
arthropod parameters (Muggeo, 2003). We chose segmented regres-
sion over other non-linear regressions because the simplicity of its 
structure facilitates the interpretation of results, and both polynomial 
and segmented models yielded similar results. Segmented regression 
with two segments was performed with the R package segmented 
(Muggeo, 2008), which iteratively fits linear regressions with varying 
breakpoints, searching for the smallest “gap” between regression lines 
(based on minimizing the residual standard error).

Our models were weighted to account for unequal sampling in 
our dataset because the number of years of observations per site 
varied from 1 to 19 years. Each site had a total weight of one, and 
thus each observation for annual peak biomass and other variables 
was weighted by 1/number of years of data included for a given 
study site. This approach allowed us to run segmented regressions 
using the same structure for all models, and to test for the presence 
of abrupt changes (breakpoints) in the relationships using model 
selection based on Akaike information criterion corrected for small 
sample sizes (AICc; Burnham & Anderson, 2002). In the absence of 
breakpoints, weighted linear regressions and mixed models using the 

within-group centering method (van de Pol & Wright, 2009) yielded 
similar outcomes such that DD always appeared in the top models, 
and parameter estimates were virtually identical (see Appendix S6). 
We checked for collinearity using the variation inflation factor (VIF), 
which was low (≤3) for all covariates included in the candidate mod-
els (Zuur et al., 2010). The model with the lowest AICc was consid-
ered the best fitting, and models with a ΔAICc <4 are presented for 
comparison (Burnham & Anderson, 2002; see Table 2). The effect of 
a parameter was illustrated using the 95% confidence interval of its 
estimate. All analyses were performed using functions of Program 
R (ver. 3.5.2) and model selection was conducted using the MuMIn 
package (Bartoń, 2018; R Core Team, 2018).

2.4  |  Model illustration

To contextualize and better assess the implications of our findings, 
we used top-ranked models for each of our three availability param-
eters to illustrate the potential effect of a prolonged temperature 
increase on the availability of arthropods to birds. To do so, we used 

df logLik AICc ΔAICc Weight

(a) Peak date

*DD + SN 4 −192.70 394.25 0.00 0.43

DD + PR 4 −193.35 395.55 1.30 0.22

DD (seg) + SN 6 −191.18 396.23 1.98 0.16

DD (seg) + PR 6 −191.49 396.85 2.60 0.12

Null model 2 −208.61 421.47 27.22 0.00

(b) Peak biomass

*DD (seg) 5 −460.52 931.92 0.00 0.31

DD (seg) + RAD 6 −459.51 932.25 0.33 0.26

DD (seg) + PR 6 −460.00 933.24 1.32 0.16

DD (seg) + SN 6 −460.39 934.01 2.09 0.11

DD 3 −464.70 935.74 3.82 0.05

Null model 2 −465.95 936.07 4.15 0.04

(c) Seasonal biomass

*DD (seg) 5 −554.58 1120.16 0.00 0.41

DD (seg) + RAD 6 −553.98 1121.38 1.22 0.22

DD (seg) + SN 6 −554.51 1122.44 2.28 0.13

DD (seg) + PR 6 −554.52 1122.46 2.30 0.13

Null model 2 −562.04 1128.27 8.11 0.0

Note: DD = cumulative thawing degree-days between June 5 and July 15 for 19 sites distributed 
across most Arctic and Subarctic bioclimatic zones, with between 1 and 19 years of sampling. The 
models presented here have a ∆AICc ≤4, while only the models with a (*) were retained for further 
analyses and discussions. The AICc weight represents the relative weight attributed to the model. 
For full model selection and summary of all models, see Appendix S5.
Abbreviations: PR, cumulative precipitation between June 5 and July 15; RAD, average solar 
radiation between June 5 and July 15; seg, segmented regression with two segments; SN, first 
snow-free day.

TA B L E  2 Model selection of the 
effect of weather on (a) peak date (b) 
peak biomass and (c) seasonal biomass of 
arthropods.
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8 of 17  |     CHAGNON-­LAFORTUNE et al.

our models to predict peak date, peak biomass, and seasonal biomass 
for hypothetical sites, based on the range of temperature values ob-
served in our data. We then used these values to create illustrative 
symmetrical bell-shaped curves representing daily arthropod avail-
ability, comparable to seasonal patterns observed at our study sites 
(Bolduc et al., 2013; Høye & Forchhammer, 2008a). These curves il-
lustrate the seasonal variation in arthropod availability under a given 
temperature scenario. We then calculated the changes in arthropod 
peak date and biomass for a warmer temperature scenario (a tem-
perature increase of 80 DD, equivalent to an increase of 2°C in aver-
age in the daily temperature between June 5 and July 15). Using the 
predicted values (arthropod peak date and biomass), we also gener-
ated a new bell-shaped curve that represents the expected seasonal 
availability of arthropods. The use of slightly different curve shapes 
did not affect our main conclusions (results not shown). To illus-
trate the magnitude of the expected changes in arthropod phenol-
ogy relative to the current shorebird breeding phenology, we then 
superimposed the current hatching periods recorded for the most 
common arctic shorebird species found at various monitoring sites 
located along the temperature gradient covered by our study. The 
range of the current hatching period at a given site was obtained 
by averaging the annual earliest and latest hatch dates recorded 
between 2010 and 2016, after excluding upper and lower 5%, for 
each year (Lanctot et al., 2016). In our model illustration, we opted 
to represent bird phenology as static to keep the focus on arthro-
pod data. However, bird phenology may also advance with climate 
warming (Liebezeit et al., 2014; Ward et al., 2016), although gener-
ally slower than the food resource (Reneerkens et al., 2016; Saalfeld 
& Lanctot, 2017; Zhemchuzhnikov et al., 2021). The strength of such 
potential adjustments is unknown, but it would contribute to reduce 
the likelihood of trophic mismatch.

3  |  RESULTS

A total of 16,134 arthropod traps were sampled at 19 different 
study sites for 1–19 years at each site, for a total of 84 site-years. 
Weather conditions varied substantially between sites (Figure  3; 
Appendix S4). The cumulative thawing degree-days between June 5 
and July 15 varied from 15 DD to 426 DD.

The peak biomass value per site, averaged over years, ranged 
from 6 to 433 mg/trap/day, while the average seasonal biomass 
(assessed over the 21-day period centered on the peak date) varied 
from 77 to 4354 mg per site. Peak biomass and seasonal biomass 
were highly correlated (r = .96, p = .001, n = 75 site-years). Arthropod 
peak dates varied substantially within and among sites (50 days 
range; Figure 3a), but site-averaged peak dates occurred within the 
1-month period between June 17 and July 18 across sites. In some 
cases, the intra-site range in peak dates was almost as large as inter-
site variation (Figure 3a). For instance, peak dates were spread over 
a 24-day period at Bylot Island, a High Arctic site with a 13-year time 
series. This period included the average peak dates observed at 10 
out of the 16 study sites where peak dates were estimated. Hence, 

in some years, birds nesting at Bylot Island experienced a range of 
arthropod phenology that was normally observed in much warmer 
or colder breeding sites.

Variation in arthropod peak dates was best explained by linear 
effects of DD and snowmelt (SN; Table 2). The top model indicated 
that an increase of 25 DD advanced the peak date by 1 day on av-
erage (b = −0.04, 95% CI = −0.07 to −0.02; Figure 3a; Table 2a). Peak 
date was 1 day earlier, when snow-free date was 4 days earlier, on 
average (b = 0.25, 95% CI = 0.06–0.43). Unlike the linear effect of DD 
found for peak date, the variation in peak biomass and seasonal bio-
mass were best explained by a segmented effect of DD (Table 2). We 
found that DD had a positive effect on peak biomass but only below 
a threshold of 106 DD (95% CI = 64–148 DD; Figure 3b). Below this 
threshold, an increase in 25 DD generated on average a 43.5 mg/trap/
day increase of peak biomass (b = 1.74, 95% CI = 0.24–3.24). Above 
106 DD, the effect was not significant (b = −0.07, 95% CI = −0.35–
0.22). Similarly, the positive effect of DD on seasonal biomass was 
detected only below a threshold of 177 DD (95% CI 89–266 DD; 
Figure 3c). Below this threshold, a rise of 25 DD increased seasonal 
biomass by 270 mg on average (b = 10.8, 95% CI = 4.22–17.38) while 
the relationship was not significant above the threshold (b = −2.28, 
95% CI = −8.20–3.64). Excluding extreme values observed at one 
site (Herschel) had a marked influence on the parameter estimate 
but did not affect the main patterns (peak biomass: b = 0.75, 95% 
CI = 0.25–1.26, threshold = 133 DD, 95% CI = 73–194 DD; 2nd seg-
ment: b = 0.04, 95% CI = −0.14–0.22; seasonal biomass: b = 7.77, 95% 
CI = 2.28–13.25, threshold = 134, 95%CI = 59–209; 2nd segment: 
b = 1.46, 95% CI = −0.49–3.41).

3.1  |  Model illustration

Based on our empirical results, we created two alternative scenar-
ios to visualize the potential effects of a temperature increase on 
arthropod availability for consumers, one above and one below the 
temperature threshold identified by our segmented biomass mod-
els (Figure 4). We created scenarios for (i) a relatively cold, generic 
Arctic site (current average of 50 DD; Figure 4a) versus (ii) a rela-
tively warm, generic Low Arctic site (current average of 320 DD; 
Figure 4b). In both cases, we illustrated a temperature increase of 
80 DD (equivalent to a 2°C increase in average daily air tempera-
ture between June 5 and July 15). A change of 80 DD allowed us to 
stay within the temperature range covered by each segment of the 
regression (below and above the breakpoint). For the generic cold 
site, we superimposed hatching periods of the three most com-
mon species at three of our cold study sites as points of reference 
(Bylot, Ikpikpuk, and Utqiaġvik; Lanctot et al., 2016). We repeated 
the same steps for the generic warm site, using data from three of 
our warm sites (Churchill, Cape Krusenstern, and Nome; Lanctot 
et al., 2016). In both scenarios, the model predicted a 3.2-day shift 
in average arthropod peak date (Figure 4a,b). Peak dates would 
occur during the current shorebird hatching periods recorded at 
representative study sites, except for the latest breeding species 
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    |  9 of 17CHAGNON-­LAFORTUNE et al.

F I G U R E  3 Relationship between cumulative thawing degree-days between June 5 and July 15 and (a) arthropod phenology (peak date), 
(b) peak arthropod biomass and (c) seasonal arthropod biomass (sum of daily biomass values for a 21-day period centered on peak date). 
Date is expressed in Julian date, (DOY; 156 is June 5 for non-leap years). Lines represent the fitted top-ranked models (linear or segmented 
regression) and the grey areas show the 95% confidence intervals. Dashed lines indicate that the 95% confidence interval of the slope 
estimate includes zero. Colour ranking of sites is based on average June and July daily air temperature (blue = colder, red = warmer) and 
shapes are used to differentiate sites.
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10 of 17  |     CHAGNON-­LAFORTUNE et al.

(especially for American Golden-plovers, Pluvialis dominica, and 
Whimbrels, Numenius phaeopus; Figure 4a,b). While peak biomass 
is predicted to remain similar for the generic warm site, the model 
predicted an increase of peak arthropod biomass (80 mg/trap/day, 
from 30 to 110 mg/trap/day) for the generic cold site (Figure 4a). 
Such a marked increase in arthropod availability induced by warm-
ing would occur during the hatching periods currently observed 
for most shorebird species breeding in relatively cold Arctic sites 
(Figure 4a).

4  |  DISCUSSION

Our results, based on pan-Arctic arthropod monitoring spanning a 
gradient exceeding 10°C in average daily air temperatures during June 
and July, provide support to our hypothesis that extended exposure 
to elevated temperatures can advance arthropod phenology while 
increasing their potential biomass accessible to consumers like 
Arctic-nesting shorebirds. Our investigation revealed a strong 
positive correlation between temperature and arthropod availability 
(peak or seasonal biomass) below specific temperature thresholds. 

Moreover, the correlation between temperature and arthropod 
phenology, as expressed by the date of peak biomass available to 
birds, was relatively moderate across our large temperature gradient, 
with an average of a 1-day shift for an increase of 25 DD (roughly 
equivalent to a 0.6°C difference in average summer temperature). 
This shift is small when considering the broad spectrum of annual 
arthropod peak dates encountered by birds breeding at several 
Arctic sites (intra-site variation reaching >15 days; Kwon et al., 2019; 
this study). Overall, our findings suggest that prolonged exposure to 
elevated temperatures can have a positive effect on arctic arthropod 
availability that may help counteract warming-induced phenological 
shifts of arthropods and reduce the risk of trophic mismatch for 
shorebirds.

The non-linear relationship between temperature and biomass of 
arctic arthropods outlined in our study is a novel finding. The phys-
iological functions of arthropods such as metabolism and growth 
rates, are largely constrained by temperature, and some arctic ar-
thropods could benefit from a temperature increase in northern re-
gions (Barrio et al., 2017; Bolduc et al., 2013; Shaftel et al., 2021). 
Although positive responses may be the case for some arthropod 
groups and during specific timeframes, recent studies have also 

F I G U R E  4 Conceptual illustration of the potential effects of warming on the availability of arthropods based on predictions of top-
ranked models for ten insectivorous shorebirds that breed in the Arctic. The models predict the date of peak biomass, peak biomass, 
and seasonal biomass (sum of daily biomass values for a 21-day period centered on peak date as illustrated by grey areas under curves). 
Predictions were generated using the temperature currently observed at (a) relatively cold and (b) relatively warm generic Arctic sites 
(i.e., current average of 50 and 320 cumulative thawing degree-days between June 5 and July 15, respectively. See Section 2). Arthropod 
availability under current conditions (light grey area, blue dashed line) and predicted values following an increase of 80 cumulative thawing 
degree-days (dark grey area, red dashed line) are illustrated. Dashed lines of daily biomass are only illustrative, as they were extrapolated 
from model predictions of peak biomass, peak date and seasonal biomass (the shape is a simplified version of availability curves observed 
at our sites). Colored bars illustrate the range of current hatch dates for the six most common shorebird species observed at representative 
Arctic sites (see Section 2 for full details). Color ranking of sites is based on average June and July daily air temperature (from cooler to 
warmer; see Table 1 for temperature) and species shades were attributed randomly. Cold Arctic sites are UT = Utqiaġvik, IK = Ikpipkuk, 
BY = Bylot Island, whereas warm Arctic sites are NO = Nome, CH = Churchill, KR = Cape Krusenstern. Ten species of migratory shorebirds 
are included: REPH = Red Phalarope (Phalaropus fulicarius), DUNL = Dunlin (Calidris alpina), PESA = Pectoral Sandpiper (Calidris melanotos), 
WESA = Western Sandpiper (Calidris mauri), SESA = Semipalmated Sandpiper (Calidris pusilla), RNPH = Red-necked Phalarope (Phalaropus 
lobatus), WHIM = Whimbrel (Numenius phaeopus), AMGP = American Golden-plover (Pluvialis dominica), WRSA = White-rumped Sandpiper 
(Calidris fuscicollis), BASA = Baird's Sandpiper (Calidris bairdii).
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shown negative or heterogeneous responses of some arctic arthro-
pods to rising temperatures (Bowden et al., 2018; Høye et al., 2021; 
Loboda et  al., 2017). Above a temperature threshold, the positive 
effects of temperature on biomass and activity rate of some surface-
active and low-flying arthropods could thus be counterbalanced by 
the negative effects on other taxa, leading to the observed null ef-
fect of temperature increase on arthropod availability (see also Høye 
et al., 2021; Koltz et al., 2018).

A wide array of mechanisms can lead to a negative effect of 
temperature on arctic arthropods (Høye, 2020). For example, higher 
summer temperatures can lead to a decrease in arthropod body size, 
possibly due to metabolic costs (Bowden et al., 2015), a reduction 
of arthropod activity rates above a certain temperature threshold 
(Asmus et al., 2018) and reduced vegetation nutritive quality (Welti 
et al., 2020). Warmer winter conditions can also have a negative im-
pact on summer arthropod abundance through a higher frequency 
of freeze–thaw events or reductions in insulation due to less snow 
cover during winter (Ávila-Jiménez et al., 2010; Everatt et al., 2015; 
Høye et al., 2021). Changes in water availability induced by changes 
in patterns of precipitation, melting of permafrost, or higher evap-
oration rates, can in turn negatively affect the abundance of some 
arthropod species (Ávila-Jiménez et al., 2010; Bowden et al., 2018).

After controlling for cumulative thawing degree-days (DD), the 
relationships we documented between arctic arthropod phenology 
and other weather variables are generally consistent with previous 
findings. For example, we found that later snowmelt was associated 
with later peak date, which is consistent with previous studies that 
identified snow dynamics as a major predictor of arctic arthropod 
phenology (Høye,  2020; Høye & Forchhammer,  2008a). On the 
other hand, Kwon et al. (2019) reported a strong negative effect of 
timing of snowmelt on peak arthropod biomass available to birds. 
We did not detect such an effect, likely due to our reliance on less 
precise estimates of snowmelt date. Finally, summer precipitation is 
known to negatively affect daily availability of arthropods (Asmus 
et al., 2018; Shaftel et al., 2021; Tulp & Schekkerman, 2008), but few 
studies investigated the effect of summer precipitation on arthropod 
phenology (negligible effects reported in Saalfeld et al., 2019). Use 
of high quality local weather data could improve the understanding 
of the positive effect of summer precipitation that we found on ar-
thropod peak date (see Appendix S5).

The performance of space-for-time substitution to predict the 
response of ecological systems to global warming can be highly vari-
able (Damgaard, 2019). Spatial variation often results from long-term 
processes that can lead to misestimating short-term responses to 
warming (Elmendorf et al., 2015). The main assumptions of our ap-
proach were that (1) arthropod communities assemblages sampled 
across our broad temperature gradient would respond to a given 
temperature increase in a similar way or (2) arthropod assemblages 
would change relatively quickly following warming, and the new as-
semblage would respond to a temperature increase in a similar way 
to assemblages currently found at warmer sites. Although the same 
dominant taxa are usually present in arctic arthropod assemblages 
(Bolduc et al., 2013; Shaftel et al., 2021) and rapid climate-induced 

changes in the composition of these assemblages have been ob-
served (Koltz et al., 2018; Loboda et al., 2017), the validity of these 
assumptions remains uncertain. Moreover, some ecological pro-
cesses indirectly affecting the biomass of arthropods available to 
consumers, such as vegetation changes, may operate over longer 
timescales. The effect of warming on arthropod availability could 
be assessed by integrating longer time series data from several sites 
encompassing diverse environmental conditions and experiencing 
temperature increases over time (Damgaard, 2019).

Although climate change has led to significant changes in the 
timing of critical life history events among interacting species (e.g. 
Schmidt et al., 2023), the prevalence of warming-induced mismatch 
remains low in terrestrial study systems linking the level of asyn-
chrony to individual fitness (Kharouba & Wolkovich,  2023). Our 
results also suggest that some generalist insectivorous arctic bird 
populations may be less vulnerable to mismatch than expected due to 
a potential warming-induced increase in food availability. Moreover, 
some shorebirds (and other insectivorous birds) can advance 
their breeding dates under warmer conditions (Kwon et  al.,  2019; 
Liebezeit et al., 2014; Ruthrauff et al., 2021). Although this advance-
ment may not perfectly track phenological shifts in environmen-
tal conditions (Saalfeld & Lanctot, 2017), it should also reduce the 
risk of trophic mismatch. Some arctic shorebird species, like Dunlin 
(Calidris alpina) and Sanderling (Calidris alba), are already breeding 
late relative to seasonal peaks in arthropod abundance (McKinnon 
et al., 2012, 2013; Reneerkens et al., 2016; see also Figure 4) and 
hence may not benefit from a potential positive effect of tempera-
ture on arthropod peak biomass. Birds having more specialized diets 
or those dependant on highly nutritional food resources could also 
be more vulnerable to warming-induced changes in prey phenology 
and quality (Arnold et al., 2010; Wilde et al., 2020; Zhemchuzhnikov 
et  al., 2022). Hence, further investigations may be useful to fully 
quantify the risk of mismatch for arctic insectivorous birds, while 
considering that higher temperatures encountered by chicks could 
provide thermogenic relief that can compensate (or not) for their 
lack of synchrony (Lameris et  al.,  2022; McKinnon et  al.,  2013; 
Saalfeld et al., 2021).

Climate warming can lead to significant shifts in the timing of key 
life history events in Arctic ecosystems (Post et al., 2018). Based on 
a space-for-time substitution, our pan-arctic study indicates that the 
positive effects of prolonged exposure to elevated temperatures on 
food availability may help counteract warming-induced phenological 
shifts in peak food availability for some arctic birds. Incorporating 
time series data from Arctic sites where temperatures have been in-
creasing over time and the inclusion of weather parameters outside 
the breeding season could strengthen our findings. Additionally, em-
ploying higher arthropod taxonomic resolutions may help pinpoint 
the specific ecological processes driving warming-induced changes 
in arthropod availability for birds.
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