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Abstract

Niche modeling is typically used to assess the effects of anthropogenic land
use and climate change on species distributions and to inform spatial conser-
vation planning. These models focus on the suitability of local biotic and abi-
otic conditions for a species in environmental space (E-space). Although
movements also affect species occurrence, efforts to formally integrate geo-
graphic space (G-space) into niche modeling have been hindered by the lack
of comprehensive theoretical frameworks. We propose the “functional habitat”
framework to define areas that are simultaneously of high quality in E-space,
and functionally connected to other suitable habitats in G-space. Originating
in metapopulation ecology, approaches have been developed to assess
the amount of suitable connected habitats, based on the proximity between
pairs of locations. Using network theory, which operates in topological
space (T-space, defined by a network), we extended these metapopulation
approaches to integrate movement constraints in G-space with niche modeling
in E-space. We demonstrate the functional habitat framework using empirical
data (GPS tracking and population monitoring) throughout the European wild
mountain reindeer (Rangifer t. tarandus) distribution range. We show that
functional habitat outperforms traditional suitability in explaining the species’
distribution. This approach integrates effects from habitat loss and fragmenta-
tion for spatial conservation planning, and avoids overemphasizing small,
inaccessible areas with locally suitable habitats. The functional habitat frame-
work formally integrates biotic, abiotic, and movement constraints in niche
modeling using network theory, thus opening a wide range of applications in

spatial conservation planning.
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INTRODUCTION

The current loss of biodiversity globally is due to anthro-
pogenic land use and climate change (Haddad et al,
2015; IPBES, 2019) that reduce species ranges and popu-
lation sizes. Anthropogenic impacts on species ranges are
commonly quantified using niche models, including spe-
cies distribution models (Guisan & Zimmermann, 2000)
and resource selection models (Boyce & McDonald, 1999;
Manly et al., 2007). These models typically study factors
driving species and population distribution by assessing
the suitability of local environmental conditions in envi-
ronmental space (i.e., focusing on environmental
conditions required for the species’ existence; see Guisan
et al.,, 2017). A species’ distribution is determined not
only by the suitability of local biotic and abiotic condi-
tions, but also by their accessibility through movements,
as described in the biotic-abiotic-movement (BAM;
Figure 1) framework (Soberon & Peterson, 2005). Although,
movements are crucial determinants of species distributions,
they remain unaccounted for in ~80% of studies
(Holloway & Miller, 2017; Seaborn et al., 2020). This contrib-
utes to the mismatch often detected between the predictions
of habitat suitability models and the observed species’ distri-
bution, which may be caused, for example, by the species’
absence from suitable habitat due to dispersal constraints
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FIGURE 1 Contextualization of “functional habitat” in the
biotic-abiotic-movement (BAM) niche framework (Soberon &
Peterson, 2005). According to the BAM framework, the distribution
of a species is determined by the biotic and abiotic niche (ABIOTIC
[A] and BIOTIC [B], in green, both defined in environmental space,
E-space), and by movement (MOVEMENT [M], in red, defined in
geographic space, G-space). The geographic range with conditions
at the intersection of the abiotic and biotic niche (BNA) is
considered “suitable habitat,” whereas the intersection of all three
factors (BNANM) represents the “functional habitat,” that is, a
subset of suitable habitat, that is simultaneously suitable and
accessible. Functional habitat therefore integrates E-space and
G-space, and it is defined in topological space (T-space).

(Matthiopoulos, 2022, and references therein). The main
challenge to integrating movements in niche models is
that while habitat suitability is assessed in environmental
space (E-space), assessing its accessibility requires the
simultaneous consideration of the spatial configuration of
resources and barriers in geographic space (G-space,
i.e., longitude-latitude-altitude) and topological space
(T-space, i.e., the species-specific ecological connectivity
between areas in a landscape network; Jorddn &
Scheuring, 2004). In this paper, we present a theoretical
and methodological framework integrating network the-
ory, metapopulation theory, and niche theory, to assess
what we term “functional habitats,” that is, suitable habi-
tats that are functionally connected in the topological
space of a landscape’s spatial network.

Environmental niche models commonly focus on the
local biotic and abiotic conditions that contribute to the
occupancy of a location by a species (e.g., Guisan et al.,
2017). Kearney (2006) defines habitat as “a description of
the physical nature (biotic and abiotic) of a place of inter-
est with respect to an organism,” that is the location’s
position in E-space. Although habitat suitability is often
predicted onto maps (G-space), the spatial relationships
among mapping units, such as the distance or connectiv-
ity between pixels or cells of suitable habitat, are gener-
ally not taken into account (Matthiopoulos et al., 2020).
Thus, high-resolution mapping risks identifying islets of
“suitable” habitats that are too small and isolated, and
therefore functionally unsuitable, to support an individ-
ual or a population. In other words, although an area
may present suitable biotic and abiotic conditions in
E-space, it may still be unsuitable from a G/T-space per-
spective if it is not connected to other suitable habitats
(Figure 2).

In metapopulation theory, Hanski and Ovaskainen
developed two metrics to integrate the amount and the
connectedness of habitat in a landscape: the neighbor-
hood habitat area index (NHAI; pp. 83 in Hanski, 1999)
and the metapopulation capacity (MC; Hanski &
Ovaskainen, 2000). Originally, both metrics were devel-
oped using a patch-matrix model of the landscape
(reviewed in Lausch et al., 2015) with simple connectivity
metrics based on the Euclidean distance between areas,
ignoring landscape heterogeneity in between these areas.
Subsequent research has addressed this major limitation
using network-based ecological distances (i.e., least-cost
distance or resistance distance) to account for the role
of landscape heterogeneity for connectivity, as presented
by, for instance, “stepping stones” (e.g., Drielsma,
Manion, & Ferrier, 2007; Gurrutxaga et al., 2011; Saura &
Pascual-Hortal, 2007). These metapopulation- and
network-based approaches present an approach for incor-
porating spatial relationships into niche modeling, and
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FIGURE 2 Conceptual framework of functional habitat. The upper row illustrates a landscape in geographic space, with forested areas

(panel A) and roads (panel B), and highlights three areas within (1, 2, 3). A hypothetical deer species prefers forested habitat and can

traverse small roads, while larger roads present nearly impermeable barriers. Thus (panel C), the highest abundance of individuals is

expected in the largest and most continuous forested habitat (1), while no deer is expected to survive in the small and isolated habitat patch

in (3). The bottom row illustrates different representations of the species’ niche. The ecological niche can be represented in environmental

space (panel D), and can be predicted in geographic space as a traditional habitat suitability map ignoring connectivity (panel E), or as a

network-based map of functional habitat (panel F). While pixels of highly suitable habitat (darker green) are present in areas 1, 2, and 3,

pixels of highly functional habitat (bright yellow) can be detected only in 1, and to a far lower degree in 2 with virtually no functional
habitat in area 3. This is because functional habitat is a subset of suitable habitat, that is at the same time highly suitable and well
connected. Thus, while within the three areas identical conditions in E-space are present, they do not represent the same potential for

individual or population viability. In other words, the long-term persistence of individuals in an area is not solely determined by E-space, but

also by G-space. See main text for further details.

allowing them to overcome the ‘“nearsightedness” of
traditional habitat suitability maps by including connec-
tivity among areas. However, fully optimal or completely
random movements represent two extremes on a contin-
uum with animals often moving in between (Goicolea
et al., 2021; Panzacchi et al., 2016).

In general, from a network perspective, the connectiv-
ity between two areas increases as the cost of moving
along the paths between them decreases and as the num-
ber of alternative paths increases. The least-cost distance

and the resistance distance (based on an optimal and a
random walker, respectively) each measure only one of
these aspects, that is, the cost or the number of paths,
respectively (Van Moorter et al., 2021). In contrast, the
randomized shortest paths framework (RSP; Kivimaki
et al., 2014; Saerens et al., 2009) uses a “randomness”
parameter to interpolate between both extremes (fully
optimal vs. fully random movements), thus accounting
simultaneously for both the cost and the number of paths
between two areas. This enhances the ability to tailor the
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models to the specific species’ movement patterns, and
thus the accuracy and realism in the representation of
connectivity (Panzacchi et al., 2016). Owing to its flexibil-
ity, the RSP framework is gaining popularity in move-
ment ecology (e.g., Brennan et al., 2018; Fullman
et al.,, 2017; Goicolea et al., 2021; Peck et al.,, 2017;
Vasudev et al., 2021). Building on this framework, Van
Moorter et al. (2021) defined and quantified “effective
connectivity” between two locations, considering simul-
taneously their suitability and functional connectivity for
a focal ecological process.

In this paper, we propose the “functional habitat”
framework for niche modeling by formally integrating
habitat suitability in E-space with its accessibility in
G-space (Figure 1). In practice, we scale up the quantifi-
cation of effective connectivity in Van Moorter et al.
(2021) from a single pair of locations to an all-pairs
approach, which allows us to quantify the effective con-
nectivity at the landscape scale using the connectivity
modeling library ConScape (Van Moorter, Kivimiki,
Noack, et al., 2023; Figure 3). Effectively connected areas

ENVIRONMENTAL SPACE

at the landscape scale represent “functional habitats,”
defined as areas that are simultaneously suitable and
functionally connected to other suitable habitats. We first
formally define functional habitat as an extension of cur-
rent metapopulation theoretical approaches. We then
empirically test the ability of the functional versus suit-
able habitat to explain the population distribution of wild
mountain reindeer (Rangifer t. tarandus) throughout
their distribution range in Norway, using both GPS track-
ing (Panzacchi et al., 2015) and population monitoring
data (Nilsen & Strand, 2018).

METHODS

Functional habitat: Definition

Different metrics have been developed in metapopulation
ecology to simultaneously quantify the effects of habitat loss

and landscape fragmentation on populations (reviewed in
Kindlmann & Burel, 2008; Saura & Pascual-Hortal, 2007).

GEOGRAPHIC SPACE ;) ; GEOGRAPHIC SPACE
RESOURCE | HABITAT
SELECTION RN ARERERENS S (2, | SUITABILITY
STEP MOVEMENT COST C HABITAT
SELECTION MOVEMENT PERMEABILITY
LIKELIHOOD A

ConScape

RANDOMIZED
SHORTEST PATHS

|

DISTANCE A —»

S ﬂfh._

Environmental data

TOPOLOGICAL SPACE 451

PROXIMITY 1

K=exp (—aA)

v HABITAT FUNCTIONALITY

LANDSCAPE |
MATRIX 5
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FIGURE 3 Analytical workflow to compute functional habitat. First, species’ data and environmental variables (defined in geographic

space, G-space) are modeled to obtain a representation of the species’ niche in environmental space (E-space), describing both the suitability
of resources for the species’ occurrence, and their permeability to movements. These metrics are typically predicted back in the G-space. We
used resource selection functions (RSF, Panzacchi et al., 2015) and step selection functions (SSF, Panzacchi et al., 2016), but other
approaches (e.g., integrated step selection analysis; Avgar et al., 2016) can be used (see also Van Moorter et al., 2021, for a discussion of other
data types). The software ConScape (Connected Landscapes; Van Moorter, Kiviméki, Noack, et al., 2023) then parameterizes a landscape
network, or graph, in topological space (T), using habitat preferences as proxy for the quality Q of nodes, and the likelihood A and cost C of
movements as attributes for the links (see Van Moorter et al., 2021). The Randomized Shortest Paths algorithm (Saerens et al., 2009)
computes the ecological distance (A) between a pair of source and target pixels s and ¢, and their proximity (K= exp(—aA)). The “landscape
matrix” M is computed by multiplying the habitat quality from E-space (Q) with the proximity in T-space (K) for each pixel pair s — t. This
matrix can then be summarized using summation or eigenanalysis to estimate functional habitat in each pixel, which can be visualized in
G-space (see main text for further details).
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The formalism, based on the landscape matrix (M), for the
two most common approaches was first presented by
Hanski and Ovaskainen (Hanski, 1999; Hanski &
Ovaskainen, 2000) as NHAI (pp. 83 in Hanski, 1999) and
MC (Hanski & Ovaskainen, 2000). The matrix M consists of
elements my = g, X q, X exp(—oady ), where q is the quality
and dg is the distance between all pairs of areas as
source s and target ¢, scaled with species-specific move-
ment capabilities a. Note that we use the term “matrix”
in its mathematical meaning, not as the area in between
habitat patches (cf. the patch-matrix representation of a
landscape; Lausch et al., 2015). The difference between
NHAI and MC lies in the summary statistics derived
from the landscape matrix M, respectively, the sum of its
elements versus its leading eigenvalue. We present a
brief overview of this foundational work and later devel-
opments (e.g., Drielsma, Ferrier, & Manion, 2007;
Saura & Pascual-Hortal, 2007) in Appendix S1:
Section S1.1.

We extended these metapopulation approaches
through the concept of “functional habitat,” which refers
to habitats that are simultaneously suitable in environ-
mental space and accessible in geographic space, or func-
tionally connected in topological space to other suitable
habitats (Figure 1). The term functional habitat was first
used by Dennis et al. (2003) to denote the habitats
“...where resources are connected by daily movements...”
(Van Dyck, 2012, p. 149) or, in other words, habitats that
are simultaneously suitable and well connected. Based on
the BAM framework we generalize this definition by
including larger scale movements. We formally defined
functional habitat as a summary of the landscape matrix M
with elements my = g, X q, X kg, which quantifies (1) the
suitability g of a landscape unit s or ¢ in environmental
space; and (2) the connectivity or proximity ks between a
pair of landscape units as source s and target ¢t in geo-
graphic or topological space (Figure 3; note: kg =1 for
s=t, thus allowing for self-rescue; Saura &
Pascual-Hortal, 2007; Schnell et al., 2010).

We can then define the functional habitat K of a land-
scape (L), or in short, the landscape functionality, in two
ways: first, by summing all the elements of the landscape
matrix M:

n n n n
oSt = Z Z Mg = Z Z quzkst’ (1)
s=1 t=1 s=1 t=1
and second, by the leading eigenvalue from M:
Keisk =k (m). (2)

Whether the summary should emphasize connectivity
recursively (K®®') or nonrecursively (K*™") will

depend on the ecological application. For instance,
metapopulation persistence may be better assessed
recursively, whereas a nonrecursive approach may be
better suited for migration connectivity. However, com-
putational constraints may also affect this choice, as the
summation of M is computationally less demanding
than eigenanalysis and the absence of recursive connec-
tivity makes the implementation of moving window
approaches more straightforward for summation-based
functional habitat. For these computational reasons, we
focused our current presentation and demonstration on
summation-based functional habitats. See Appendix S1:
Section S1.2 for details and the discussion of functional
habitat based on eigenanalysis.

In addition to summarizing the whole landscape, we
can also define functional habitat for each landscape
unit s or ¢ in an analogous manner: first, by summing
over all columns of M:

™ = " ggqiks (3)

t=1

this metric quantifies how well high-quality source pixels
are connected to suitable target habitat within a land-
scape. Alternatively, summing over all rows of M:

n
K™ =" gyqcksts (4)

s=1

quantifies the functionality of target pixels ¢, that is, how
well suitable targets are connected to suitable source
habitats.

Initially, in Hanski’s work, the proximity between the
source and target (ky) was an exponential decay function
of the Euclidean distance (d5"®): ky = exp(—ad5’) (with
distance scaling parameter a; Hanski, 1999; Hanski &
Ovaskainen, 2000). Saura and Pascual-Hortal (2007) and
Drielsma, Manion, and Ferrier (2007) extended this
approach and adopted a network-based ecological dis-
tance based on the least cost between source and target
(ds°): kg = exp(—ady"). This change drastically altered
the behavior of the metrics as it accounted for the role of
intervening areas as connectors or ‘“stepping stones”
between s and ¢ (Saura et al., 2014; Saura & Rubio, 2010).
We suggest the further extension of these metapopulation
approaches using the randomized shortest paths frame-
work from network sciences (RSP; Kivimiki et al., 2014;
Saerens et al., 2009), which interpolates between optimal
and random movement using a “randomness” parameter
(0). More formally, the RSP framework defines a distribu-
tion over all paths between s and t. For 6 — 0 this RSP
distribution converges to the random walk distribution,
whereas the RSP distribution converges asymptotically to
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the least-cost path(s) as 6 increases (the rate of conver-
gence depends on both the cost units and the size of the
graph). In other words, as 0 increases, the RSP distribu-
tion increasingly focuses on paths with a lower cost.
Therefore, the RSP framework simultaneously addresses
the cost and the number of paths between two areas for
intermediate values of 0 (Van Moorter et al., 2021).

Different ecological distance metrics can be defined
based on the RSP framework (Van Moorter et al., 2021).
Here, we focused on the RSP expected cost (dSElC), which
is the cost of paths between s and ¢ multiplied by their
likelihood from the RSP distribution. The d=¢ interpo-
lates between the “commute cost” of the random walk
(which is equal to the “resistance distance” up to a con-
stant) for 6 — 0 and the cost of the least-cost path for
0 — oco. For discussion of other proximity/distance met-
rics, such as survival probability, we refer to Fletcher
et al. (2019) and Van Moorter et al. (2021).

In summary, functional habitat is the summation or
eigenvalue/eigenvector of the landscape matrix M, in
which the elements in the landscape matrix are the prod-
uct of the suitability of each pair of landscape units
(g, % q,) multiplied by their proximity (e.g., from the RSP
expected cost: ky = exp(—ady"), with ky=1 for s=1),
given a value of 0. The sum of all elements or the leading
eigenvalue measures the functionality of the habitat for a
whole landscape, whereas the column- or row-wise sum-
mation and the right or left eigenvector quantify func-
tional habitat for each mapping unit as a source or target,
respectively (Figure 3; see also Appendix S1: Section S1.2
for more details).

Demonstrations
Simulation

We illustrate the response of functional habitat to habitat
loss and fragmentation through a landscape of uniformly
suitable habitat with different levels of habitat area loss
(0%, 44%, and 75% loss) and fragmentation (one, four,
and nine habitat patches) in a factorial design (see
Figure 4). We computed functional habitat using the RSP
expected cost, both at the pixel (Equation 3) and the land-
scape level (Equation 1).

European wild mountain reindeer

Data

The European distribution of wild mountain reindeer
is restricted to the mountain ranges of southern
Norway (Figure 5). Due to infrastructure development

in the past century, the previously continuous ranges
have been fragmented, and reindeer are currently
divided into 24 isolated subpopulations (Panzacchi
et al., 2015). We have previously used a large amount
of environmental data and GPS-tracking data from the
10 largest reindeer management areas, which represent
about 65% of the species’ range, to investigate reindeer
use of environmental space through resource selection
functions (Panzacchi et al., 2015) and step selection
functions (Panzacchi et al., 2016). Both models have
been updated with newly available data and their
results and predictions can be explored in a dedicated
web app (Panzacchi et al., 2022, 2023). To study rein-
deer use of geographic space, we used those same
GPS-tracking data together with the population esti-
mates presented in Nilsen and Strand (2018), produced by
integrating different population-level monitoring data:
(1) aerial population surveys during February-March,
aiming to exhaustively count each individual in the popu-
lation (i.e., minimum counts); (2) age-sex data from
harvested animals in fall; (3) and surveys of population
structure after calving (early summer) and after the hunt-
ing season (late fall).

Analysis

We compared functional and suitable habitat in
explaining the distribution of wild mountain reindeer
(Figure 5A,D). Here, we describe the three parts of our
analytical workflow: (1) the estimation of suitable and
functional habitats from environmental (E-space) and
topological space (T-space), respectively (see Figure 3);
(2) the estimation of the reindeer distribution in geo-
graphic space (G-space); and (3) the comparison of suit-
able versus functional habitat (from part 1) to predict
reindeer distribution (from part 2). By separating our
analysis in E-space and G-space, we were able to avoid
circularity from using the same GPS-tracking data for
both parts of our analysis.

First, in E-space (see Figure 3), we used the resource
selection function (RSF) and step selection function (SSF)
from earlier work (respectively, Panzacchi et al., 2015,
2016) to characterize respectively the likelihood of
selecting a pixel i as a proxy for its suitability (q;) and its
permeability to the movement (a;). See Figure 5 for the
predicted maps of suitable habitats from the RSF
(Figure 5B) and permeable habitats from the SSF
(Figure 5C). Unfortunately, we could not directly esti-
mate the cost of movement between adjacent pixels ¢, as
we did not have access to data on energy expenditure,
and the mortality of marked individuals was virtually
zero. Therefore, we assumed that the cost of movement
would be a decreasing function of the SSF; more precisely,
we assumed a logarithmic relationship (c; = —log(a;)).
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FIGURE 4 Impact of habitat loss and fragmentation on suitable and functional habitats. We used simulations to illustrate the response
of suitable (panel A) and functional (panel B) habitat to loss of suitable habitat (along the y-axis) and to loss of connectivity (fragmentation
along the x-axis), occurring separately or simultaneously. The upper square in panel (A) and upper-left one in panel (B) show for the same
pristine reference landscape the amount of suitable and functional habitats, respectively. In each row, we reduce the amount of habitat

from 0%, 44%, to 75% habitat loss. While for each row in panel (B) we keep the amount of habitat constant, across columns we increase the

level of fragmentation from 1 to 4 and 9 fragments. The figure shows that, while the amount of suitable habitat remains constant in each

row and does—by definition—not change with fragmentation, the amount of functional habitat reduces in response to both habitat loss and

fragmentation.

In addition to the landscape graph, two other parameters
affect the ecological proximity between areas in T-space:
the randomness of the movement 6 and the distance scal-
ing parameter a (Van Moorter et al., 2021). We evaluated
6 € (1.0, 0.1, 0.001), which covers the continuum from
nearly optimal to virtually random. The proximities
between pairs of locations were computed using an expo-
nential decay of the RSP expected cost (K= exp(—aA)).
For comparison with earlier work, we also used proxim-
ities based on least-cost and Euclidean distances for the
landscape matrix. We used four different distance scaling
values (o) to represent a range of movement capabilities
or neighborhood sizes from more global to more localized
(ae(1,1.5, 2, 3)); the distance scaling was applied after
the distances were standardized using two points 32km
apart in the central area of the largest continuous rein-
deer area (hence, these two points had a proximity kg for

the different values of a, respectively: 0.37, 0.22, 0.14, 0.05).
In other words, for the Euclidean distance, the neighbor-
hood (K > 0.05) for these four values of « had a radius of
about 100, 65, 50, 30km, respectively. From the land-
scape matrix we computed functional habitat for each
200m pixel based on summation, as eigenanalysis for
such large landscapes was computationally not feasible.
Second, to estimate the reindeer distribution in
G-space, we adapted the weighted kernel utilization den-
sity (kernelUD) estimator approach from Fieberg (2007)
to account for the spatial stratification of our sample. The
GPS-tracked individuals were randomly sampled from
each population (of females), however the number of
marked individuals was not necessarily proportional to
the population size. As sampling was spatially stratified,
following Fieberg (2007), we weighted the kernelUD
from each population with the average estimated annual
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FIGURE 5 The last remaining populations of wild mountain reindeer in Europe are found in Norway and, due to fragmentation, are

now subdivided into 24 management units (all green areas [A]). The black points depict the GPS-tracking data used in this study, referring
to 10 of the largest management units (dark green; A), during the summer. Panels (B) and (C) show the summer maps of habitat suitability
and of permeability, respectively, used in this study as input to estimate functional habitat (panel E; Figure 3). Panel (D) illustrates the

kernel utilization distribution, weighted by population size.

population size from Nilsen and Strand (2018). For each
individual, we computed the kernelUD from the
GPS-tracking data. These individual-level kernelUDs
were combined into subpopulation-level kernelUDs by
summing the individual kernelUDs from each individual
in the subpopulation. The population-level distribution
was then computed as the weighted sum of the
subpopulation-level kernelUDs, weighted by the size of
the subpopulation. We obtained the index for population
size through data integration by combining population
counts, harvest statistics, and population structure from
Nilsen and Strand (2018), see details therein.

Finally, we tested the ability of suitable versus functional
habitats to explain the distribution of wild mountain rein-
deer in our study areas. The habitat suitability of each pixel
was estimated using RSFs (Panzacchi et al, 2015).
As discussed above, we included several variants of func-
tional habitat. As the distribution of reindeer was heavily

zero-inflated, that is >65% of pixels were not occupied by
reindeer, we opted to fit it with a hurdle model. Hurdle
models are often used for zero-inflated abundance data,
where the full model consists of two parts: an occurrence
model describing presence/absence, and an abundance
model describing variability in abundance for nonzero data
(Zeileis et al., 2008). The log-likelihood of these two parts can
be combined to assess the likelihood of the full hurdle model.
The occurrence part of the hurdle model was fitted using
logistic regression, while the abundance part was fitted using
linear regression. We then tested the ability for suitable habi-
tat (in E-space), the neighborhood habitat suitability index
(NHTE; using different o values for the exponential decay of
the Euclidean distance), and functional habitat with the
RSP expected cost (using different 6 and a parameters,
see above) and with the least cost (equivalent to RSP
expected cost, with 6 — o) to explain the population dis-
tribution. Both the NHI and functional habitat
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values were square-root transformed, as the environmen-
tal suitability of both the source and target nodes are
multiplied for their computation, for example,
Equation (3). This transformation is similar to the one in
Saura et al. (2011), to compute the “equivalent connected
habitat” (see Van Moorter, Kivimiki, Noack, et al., 2023
for further discussion). Our aim was not to obtain the
best possible parameter estimates, but rather to test
which variable best explains the spatial patterns of popu-
lation abundance. Therefore, we did not include a latent
variable to account for spatial autocorrelation, as this
could artificially improve the apparent performance of a
variable. We compared models using AIC and
sum-of-squared-residuals (SSR).

For our demonstration, we focused our analysis on
the summer period (1 July to 15 August), as during the
summer reindeer are most affected by habitat fragmentation
due to both natural sources of fragmentation (e.g., lakes are
not frozen) and human disturbances (e.g., due to recreational
use of the mountains during the holiday period). Except for
one out of the 10 subpopulations, the seasonal ranges
showed clear overlap. We therefore did not consider connec-
tivity among seasonal habitats as a major issue for the pur-
pose of this study, as the animals were able to access the
seasonal habitat available for each subpopulation. As subpop-
ulations are determined based on their isolation from each
other, we analyzed the functional habitat for each subpopula-
tion separately. Network analyses were conducted in Julia
software (Bezanson et al., 2017) using the ConScape-library
(Van Moorter, Kivimiki, Noack, et al., 2023), whereas all
other analyses were performed in R (R Core Team, 2015).

RESULTS
Simulation

Figure 4 shows that functional habitat responds to both
habitat loss and fragmentation (see also: Rubio & Saura,
2012), whereas habitat suitability in E-space ignores—by
definition—the fragmentation of the landscape. Hence,
functional habitat allows for the integrated assessment of
habitat loss and fragmentation. Figure 4 shows that the
impact of habitat loss on functional habitat increases in
the presence of habitat fragmentation, which has signifi-
cant consequences for impact assessment and sustainable
land planning.

European wild mountain reindeer
In G-space, we estimated the kernel utilization distribu-

tion (kernelUD; Calenge, 2006) from the GPS-tracking
data for each individual. The average smoother (h) from

the least-squares cross-validation for each individual was
386. We added these individual kernelUDs to compute
the utilization distribution for each subpopulation. These
subpopulation UDs were added after weighing using the
population size index. By weighing the UDs with the pop-
ulation size, the volume under each subpopulation’s utili-
zation distribution was proportional to its size; hence, we
can consider Figure 5D an estimate of the reindeer distri-
bution across the monitored areas.

Table 1 shows the comparison of suitable habitat (S) and
functional habitat (K) in explaining reindeer distribution.
Overall, the reindeer distribution was best explained by
VK with =0.001 (relatively random movements) and
o =3 (a neighborhood size of about 30 km). Model perfor-
mance dropped first with increasing neighborhood size;
within each neighborhood size the models were ranked
based on their randomness, suggesting that animals are
investing in exploring their environment. Most versions
of functional habitat (X and NHI) outperformed the
model based on suitable habitat S, only functional habi-
tat computed with very large neighborhood sizes
(100km) performed worse. Interestingly, the perfor-
mance of the metrics on the subcomponents of the hur-
dle model (occurrence and abundance) mirrored the
results of the full model for the neighborhood size a.
However, different variants of functional habitat
performed better at the different parts of the hurdle
model. The occupancy part of the hurdle model was best
explained based on the Euclidean distance in the /NHI
followed by intermediate values of randomness 6 for VK,
while the abundance part was best explained based
on the least-cost distance followed by more random
values of 0 (actually, Euclidean distance performed poorly
on the abundance part). While the models with functional
habitat consistently outperformed those with suitable
habitat, the differences in the sum-of-squared-residuals are
small (see Table 1). This is not surprising given the similar-
ity between these habitat metrics (see Figure 5B,E),
Spearman’s correlation between S and VK (06=0.001 and
a=3) is very high (r>0.92).

DISCUSSION

The “functional habitat” niche framework formally inte-
grates the suitability of habitat in environmental space
(E-space) with its accessibility in geographic space
(G-space) using advances in landscape ecology and network
sciences, in topological space (T-space). The prediction
(in G-space) of a species’ niche (defined in E-space), hereaf-
ter referred to as “suitable habitat” (Hirzel & Le Lay, 2008),
ignores topological relationships between areas. However,
virtually all authors agree that ignoring spatial relationships
is merely a simplification dictated by the lack of an
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TABLE 1 Comparison of models for reindeer distribution based on suitable versus functional habitat.
Variable® Zero density Nonzero density Combined
0 o Coefficient SE AAIC Coefficient SE AAIC %ASSR® AAIC®
VK 0.001 3 1.06e-01 2.62e-04 1699 8.44e-04 2.84e-06 906 0.01 0
VK 0.1 3 1.03e-01 2.56e-04 710 8.14e-04 2.76e-06 2318 0.07 423
N 1.0 3 1.05e-01 2.64e-04 2997 8.19e-04 2.76e-06 1058 0.04 1451
/NHI 3 9.66e-02 2.36e-04 0 7.84e-04 2.73e-06 5971 0.29 3367
N co 3 1.08e-01 2.74e-04 6836 8.32e-04 2.78e-06 0 0.00 4231
VK 1.0 2 7.54e-02 1.94e-04 19,119 6.14e-04 2.13e-06 5046 0.76 21,560
VK 0.1 2 7.33e-02 1.88e-04 20,329 6.09e-04 2.12e-06 5970 0.81 23,695
VK 0.001 2 7.40e-02 1.90e-04 22,293 6.24e-04 2.16e-06 4955 0.81 24,643
N co 2 7.64e-02 1.99¢-04 22,975 6.20e-04 2.14e-06 4495 0.77 24,865
/NHI 2 6.92e-02 1.75e-04 21,568 5.92e-04 2.10e-06 8315 0.94 27,278
N 1.0 1.5 6.08e-02 1.60e-04 31,444 5.16e-04 1.81e-06 7220 1.24 36,059
VK (3] 1.5 6.06e-02 1.62e-04 37,243 5.17e-04 1.82e-06 7117 1.32 41,756
N 0.1 1.5 5.83e-02 1.54e-04 36,373 5.10e-04 1.81e-06 8180 1.35 41,948
VK 0.001 1.5 5.85e-02 1.55e-04 38,591 5.19¢-04 1.83e-06 7430 1.38 43,416
/NHI 1.5 5.55e-02 1.45e-04 38,374 4.98e-04 1.79¢-06 9888 1.45 45,657
VK 1.0 1 4.72e-02 1.27e-04 46,677 4.23e-04 1.51e-06 9413 1.81 53,485
S 6.69e+00 1.86e-02 55,424 5.76e-02 2.10e-04 12,035 1.69 64,854
VK © 1 4.54e-02 1.25e-04 57,424 4.19e-04 1.51e-06 10,089 2.04 64,908
N 0.1 1 4.39e-02 1.20e-04 58,145 4.14e-04 1.50e-06 10,826 2.07 66,366
VK 0.001 1 4.38e-02 1.21e-04 60,227 4.18e-04 1.51e-06 10,362 212 67,984
NHI 1 4.22e-02 1.15e-04 60,551 4.06e-04 1.48e-06 11,975 2.16 69,922

Abbreviations: %ASSR, percentage increase in the sum-of-squared-residuals compared to the minimum value; AAIC, difference in AIC between models.
“Three types of variables were used to explain reindeer distribution: habitat suitability (S), neighborhood habitat index (NHI; Hanski, 1999), and functional
habitat (K) using a range of 6-values (6 € [0, 1.0, 0.1, 0.001], where oo corresponds to the least-cost distance); for both NHI and K we used several distance
scaling factors (a € [1, 1.5, 2, 3]). The NHI and K values were square-root transformed to obtain a value similar to the “equivalent connected habitat”

(Saura et al., 2011; Van Moorter, Kivimiki, Noack, et al., 2023).

bPercentage increase in sum-of-squared-residuals (SSR) compared with the minimum value.

“AAIC based on the combined log-likelihood from both hurdle components.

adequate framework, and recognize that species’ move-
ments do shape their geographic distribution (Soberon &
Peterson, 2005). Indeed, the failure to account for spatial
relationships contributes to the mismatch often observed
between species’ distributions and their fundamental
niche, fueling a debate about the utility of the niche concept
in nature management and conservation (e.g., Angilletta Jr.
et al., 2019; Matthiopoulos, 2022). Indeed, for management
applications, Hirzel and Le Lay (2008) recommended to
“consider discarding suitable patches that are too small,” in
recognition of the fact that the viability of an area for a spe-
cies does not exclusively depend upon E-space, but also
upon its size, accessibility, and centrality (Figure 1).
Building upon approaches from metapopulation and
network theory, the “functional habitat” niche framework

formally reconnects the E-space and G-space by repre-
senting the niche in T-space, including not only local
biotic and abiotic characteristics, but importantly also
the functional connectivity between suitable habitat
areas. Indeed, the development of the functional habitat
framework has been largely driven by the need to
produce a theoretically sound modeling approach to
support sustainable land planning for conservation (e.g.,
Panzacchi et al, 2022, 2023). In the popular BAM
(biotic-abiotic-movement) niche framework (Soberon &
Peterson, 2005), the concept of functional habitat corre-
sponds to areas that are simultaneously suitable due to
appropriate biotic and abiotic conditions, and function-
ally connected, that is, accessible through movement
(Figure 1). Functional habitat is analogous to what has
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been called the “actual distribution” (in contrast to the
potential distribution) in the context of species distribu-
tions (Soberon & Peterson, 2005), but it can also be
applied at smaller scales, such as population or individual
ranges. The functional habitat definition implies that, if
there is no fragmentation and movements are not ham-
pered (movement cost C=0), functional habitat would
correspond to suitable habitat (Figure 4). However, if
landscape permeability to movements is limited (i.e.,
C > 0), the amount of functional habitat in a landscape
becomes smaller than the amount of suitable habitat.
The differences between functional and suitable habitat
increases as landscape permeability decreases, and is
highest in the extreme case where impermeable barriers
block movements between suitable habitat patches.
This has major implications for species’ management,
as sustainable land planning cannot continue to ignore
the highly interdependent and often multiplicative
effects of habitat loss and fragmentation (Figure 4).

Using the ConScape-library (Van Moorter, Kiviméki,
Noack, et al., 2023; Figure 3), we computed the func-
tional habitat for reindeer in Norway, and we tested its
performance in describing the population distribution of
wild mountain reindeer. Specifically, we predicted that
functional habitat would be better able to describe popu-
lation distribution compared with traditional suitable
habitat throughout the European distribution range of
wild reindeer (Figure 5). In support of our hypothesis, we
found that functional habitat in T-space explained rein-
deer distribution better than the mere suitability of the
local habitat in E-space. This result was consistent for vir-
tually all variants of functional habitat tested, that is,
using different levels of randomness in the movement
and selecting different neighborhood sizes. However, as
expected, the differences between functional and suitable
habitats were relatively small (1%-2%). Two main factors
contributed to these small effect sizes: first, functional
habitat is a subset of suitable habitat (Figure 1), and these
two metrics are therefore necessarily strongly correlated
(r > 0.92). Second, suitable habitat was estimated here
using a conditional logistic regression to fit an RSF classi-
fying used and available locations within each herd
(Panzacchi et al., 2015). In other words, the RSF was
explicitly trained to explain the population distribution
within each herd, while functional habitat was not.
Hence, our test was very conservative. Future research
could investigate the direct estimation of the species’
landscape network based on occurrence and movement
data to allow for a more accurate comparison of suitable
and functional habitats. For instance, the integrated step
selection analysis (Avgar et al., 2016; Beyer et al., 2016)
and the MCMC step selection models (Michelot et al.,
2019, 2020) are promising developments in this
direction.

By definition, the difference between suitable and
functional habitats increases as landscapes become more
fragmented and less permeable to the movement
of organisms (Figure 4). However, fragmentation and
landscape permeability are species and process depen-
dent, mediated by life history characteristics (“functional
connectivity for whom?” Ewers & Didham, 2006;
Tischendorf & Fahrig, 2000). Traits, such as body size, tro-
phic level, mobility, and dispersal ability, sociality, diet
breadth, and generation time are known to affect species
responses to habitat fragmentation (Amburgey et al., 2021;
Barbaro & Van Halder, 2009; Ewers & Didham, 2006) and
are likely to strongly influence functional habitat. As land-
scapes get more fragmented for a species and process, due
to barriers that hinder movements and establishment
in new areas, the difference between suitable and func-
tional habitats is expected to increase, making the latter
increasingly more important for species and landscape
conservation.

Effective connectivity is dependent upon the focal
ecological process (i.e., “connectivity for what?” Fletcher
et al., 2016; Van Moorter et al., 2021). The first metrics to
assess the amount of connected habitat were developed
focusing on metapopulation dynamics (Hanski, 1999;
Hanski & Ovaskainen, 2000), that is, on the likelihood of
colonization through dispersal movements. In our dem-
onstration, we focused on daily movements and on the
functional connectivity within reindeer summer ranges,
which is highly relevant for conservation and land plan-
ning due to the large amount of transportation and tour-
istic activities that hamper reindeer movements in that
season. We did not focus on other processes such as
seasonal migration, dispersal, or colonization, as most
migration routes have been lost in the past century, and
the current reindeer range is highly fragmented
(Panzacchi et al., 2016). However, our approach is highly
flexible and suitable to assess functional connectivity
focusing on a range of ecological processes such as migra-
tory movements, colonization, and dispersal, which are
important for a range of other species, including several
other Rangifer subspecies (Vors & Boyce, 2009). Indeed,
the integration of the randomized shortest path algo-
rithm within the functional habitat framework allows
taking into account both the number of alternative paths
and the cost of paths between functional area units
(Van Moorter et al., 2021), thus providing a flexible
framework applicable to a variety of movement patterns
and ecological processes (e.g., metapopulation dynamics).

One of the strengths of the proposed approach is that
the landscape network can be parameterized using
empirical, high-resolution animal movement data from
GPS collars (see also: Van Moorter et al., 2021). Both suit-
ability and permeability of habitat were estimated explic-
itly using RSFs and SSFs, respectively (Panzacchi
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et al., 2015, 2016). This allowed us to make data-driven
inferences regarding the functionality of specific land-
scape elements in our study area (Chetkiewicz &
Boyce, 2009). However, note that movement data are not
strictly necessary to compute functional habitat, which
can be computed based on the proxies of suitability and
permeability. For instance, in the absence of movement
data, occurrence data can provide a useful estimation of
genetic connectivity between populations (Zeller et al.,
2018). Similarly, functional habitat for forest-dwelling
and wetland-dwelling species could be calculated
through expert-based classification of the quality and per-
meability of land cover classes, and information on the
species’ movement characteristics (e.g., Koen et al., 2014;
Stange et al., 2019).

This network-based habitat functionality approach
allows a high degree of flexibility in the representation of
the spatial configuration of landscape elements. Hence,
landscapes can be modeled in relatively realistic ways,
including (semipermeable) barriers to movement, which
contributes to its potential to concretely guide sustainable
land planning. The amount of functional habitat in a
given landscape can be synthesized into one number,
which integrates the amount and connectivity of suitable
habitat; thus, the amount of functional habitat can be
compared among current, past, or alternative landscape
scenarios. This is particularly useful in studies of cumula-
tive impact assessments, to quantify the effect of anthro-
pogenic land use or climate change, or to rank the
expected effect of mitigation measures and off-set actions.
As habitat functionality operates in T-space, and is able
to account for changes in the spatial configuration of a
multitude of landscape elements simultaneously (includ-
ing infrastructures representing barriers to movements,
changes in land use, tourism development, etc.), the sus-
tainability of entire land plans can be assessed. The habi-
tat functionality framework is currently being tested to
support sustainable land planning and the identification
of the most efficient mitigation measures in Norwegian
wild reindeer areas, focusing on issues such as hydro-
power development, transportation, and tourism (Dorber
et al., 2023; Panzacchi et al., 2022, 2023).

Previous approaches to include movement constraints
into species distribution models have focused on
connecting the current species’ distribution range to future
predicted suitable habitat and using, for instance, scenarios
of climate change (e.g., Bateman et al., 2013; Engler
et al., 2012; Holloway et al., 2016). These approaches have
relied upon either some forms of dispersal kernel based on
Euclidean distances or on some estimates of ecological
distances (Landguth et al., 2017; Miller & Holloway, 2015).
The network-based approach presented in this paper can
be used to estimate the functional connectivity between

the current range and the forecasted suitable habitat.
Specifically, in Equation (4), g, would then represent the
current occupancy of a source pixel and g, the forecasted
future suitability of a target pixel, which would allow the
assessment of functional habitat over longer time scales.

A major area for future research is the link between
functional habitat and population dynamics. Recently,
Matthiopoulos (2022) has proposed a mathematical
framework for augmenting E-space to incorporate spatial
relationships in niche models, which allows bridging the
gap between habitat and demography. While this aug-
mented E-space is conceptually powerful and is not a
mathematical problem, “the curse of dimensionality” is
however a real statistical one (Matthiopoulos, 2022). This
is likely to limit the applicability for such an approach for
applied land-planning studies with many different land-
scape features and complex configurations, especially in
situations in which barriers play a significant role in
shaping movements. The functional habitat approach is
computationally less demanding and can be efficiently
computed using the ConScape-library (Van Moorter,
Kivimiki, Noack, et al., 2023) for large, high-resolution
landscapes. Therefore, it can support future develop-
ments linking complex landscape patterns to demogra-
phy and population dynamics.

CONCLUSION

The functional habitat framework is a step toward the
integration of E-space and G-space into the environmen-
tal niche concept, thus allowing researchers to model
connected habitat in T-space functionally and effectively.
From an empirical perspective, functional habitat proved
to be robust in describing the population distribution of
wild mountain reindeer throughout their European
distribution range, outperforming traditional suitable
habitat metrics. From a theoretical perspective, the
framework builds on metapopulation theory, including
more flexible assumptions and broadening its applicability.
By integrating the effects of both habitat degradation and
loss of connectivity or fragmentation into a quantitative
metric (Rubio & Saura, 2012), the habitat functionality
framework goes beyond simplistic dichotomies that might
hinder conservation practice (whether to manage single
large or several small habitat patches; Riva & Fahrig, 2023;
Szangolies et al., 2022) and has great potential to guide
sustainable land planning. This makes the framework
ideally suitable for assessing the cumulative impacts
of anthropogenic activities, including infrastructure
development, land-use changes and climatic changes
(Dorber et al., 2023). The concept of a functionally
connected niche is fundamental for better describing
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current species distributions, and it is essential for
predicting how species’ distribution could respond to
climatic or landscape changes. The functional habitat
framework we propose will enable researchers to
address both these aspects with a high level of realism
in the representation of species’ movements. Finally,
its computational efficiency enables it to be operated in
large, high-resolution landscapes (Van Moorter,
Kivimiki, Noack, et al., 2023), thus addressing one of
the most challenging demands from conservation and
management.
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