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Abstract          18 

Snow covers a maximum of 47 million km2 of Earth’s northern hemisphere each winter 19 

and is an important component of the planet’s energy balance, hydrology cycles, and ecosystems. 20 

Monitoring regional and global snow cover has increased in urgency in recent years due to 21 

warming temperatures and declines in snow cover extent. Optical satellite instruments provide 22 

large-scale observations of snow cover, but cloud cover and dense forest canopy can reduce 23 

accuracy in mapping snow cover. Remote camera networks deployed for wildlife monitoring 24 

operate below cloud cover and in forests, representing a virtually untapped source of snow cover 25 

observations to supplement satellite observations. Using images from 1,181 wildlife cameras 26 

deployed by the Norwegian Institute for Nature Research (NINA), we compared snow cover 27 

extracted from camera images to Moderate Resolution Imaging Spectroradiometer (MODIS) 28 

snow cover products during winter months of 2018-2020. Ordinal snow classifications (scale = 29 

0-4) from cameras were closely related to normalized difference snow index (NDSI) values from 30 

the MODIS Terra Snow Cover Daily L3 Global 500m (MOD10A1) Collection 6 product (R2 = 31 

0.70). Tree canopy cover, the normalized difference vegetation index (NDVI), and image color 32 

mode influenced agreement between camera images and MOD10A1 NDSI values. For 33 

MOD10A1F, MOD10A1’s corresponding cloud-gap filled product, agreement with cloud-gap 34 

filled values decreased from 78.5% to 56.4% in the first three days of cloudy periods and 35 

stabilized thereafter. Using our camera data as validation, we derived a threshold to create daily 36 

binary maps of snow cover from the MOD10A1 product. The threshold corresponding to snow 37 

presence was an NDSI value of 40.50, which closely matched a previously defined global binary 38 

threshold of 40 using the MOD10A2 8-day product. These analyses demonstrate the utility of 39 
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camera trap networks for validation of snow cover products from satellite remote sensing, as 40 

well as their potential to identify sources of inaccuracy.  41 

Keywords: validation, Norway, remote cameras, gap-filling, MODIS, snow  42 

 43 

Introduction 44 

Seasonal snow covers 31% of the Earth’s land surface each year, playing an integral role 45 

in habitat quality for wildlife, water storage for hydrological processes, and human uses such as 46 

agriculture, forestry, and tourism (Mankin et al., 2015; Rizzi et al., 2018). Warming temperatures 47 

have reduced snow cover extent globally, but these changes vary strongly among regions (Brown 48 

and Mote, 2009; Solomon et al., 2007). Accurate snow cover mapping within and across years is 49 

thus needed to inform regional forecasting and climate change mitigation efforts.   50 

Snow cover is typically measured using ground observations, modeling, and remote 51 

sensing at scales that range from point measurements (e.g., ground observations) to kilometers 52 

(e.g., passive microwave sensors at 25-km resolution). Remote sensing from satellites is a 53 

powerful tool because satellites provide information across broad spatial coverages and at fine 54 

temporal scales, enabling global and regional snow cover maps where in situ measurements may 55 

not be possible (Nolin, 2010). NASA’s Moderate Resolution Imaging Spectroradiometer 56 

(MODIS) Collection 6 product provides a daily or every other day 500-m resolution optical 57 

image from which snow maps are derived. Daily MODIS snow observations are highly suitable 58 

for continuous snow monitoring, which is desirable for many applications, including wildlife 59 

science (Boelman et al., 2019). For example, daily MODIS snow maps have been used to 60 
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successfully detect changes in bird nesting success and shifts in the timing of mammal 61 

migrations (Laforge et al., 2021; Madsen et al., 2007). 62 

The most recent version of the MODIS products (Collection 6.1) includes a daily 500-m 63 

global snow product, MOD10A1, and a daily cloud-gap filled (CGF) 500-m global snow 64 

product, MOD10A1F. Both are suitable for use as inputs in hydrological, ecological, and climate 65 

models (Bokhorst, 2016; Dong and Menzel, 2016). MOD10A1 and MOD10A1F provide 66 

normalized difference snow index (NDSI) values based on the high reflectance of snow in the 67 

visible band and low reflectance in the near-infrared band, ranging from 0 (snow-free) to 100 68 

(completely snow-covered). NDSI values lower than 100 can be completely snow-covered 69 

(Klein et al., 1998), but adjusting NDSI values to a fractional snow cover is no longer included in 70 

MODIS products as it is region-dependent and other factors may affect when MODIS 71 

underestimates snow. The overall accuracy of the MOD10A1 product is estimated to fall 72 

between 79.5- 96% depending on the tree cover density, snow depth, and solar zenith angle in 73 

the region of interest (Coll and Li, 2018; Franklin, 2020; Hall et al., 2019a; Hall and Riggs, 74 

2007). Optical sensors are obstructed by tree cover, and shallow snow might not be bright 75 

enough to reflect solar radiation since the underlying material is likely to be darker (Liang et al., 76 

2008). At high solar zenith angles, chances are higher that sensors will be obstructed by clouds 77 

and experience higher atmospheric distortion (Xin et al., 2012), both of which can also obscure 78 

or scatter light, decreasing the accuracy of observations. 79 

Cloud masking in MOD10A1 greatly reduces coverage (Hall et al., 2019a), and 80 

MOD10A1F improves coverage by filling all cloud-masked pixels. Each cloud-masked pixel is 81 

given the most recently observed snow cover value, along with a corresponding “cloud 82 
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persistence” value for the age in days of the snow observation. This product has been used in 83 

applications such as hydrological snow trend studies (Hao et al., 2022) and analyses of snow 84 

cover impacts on wildlife (Mahoney et al., 2018). The cloud-gap filled product has been shown 85 

to return similar accuracy as MOD10A1 in the western US where cloudy periods are typically 86 

brief (Hall et al., 2019a), whereas accuracy is lower in the northeastern and northwestern US 87 

where longer cloudy periods are common (Gao et al., 2011; Hall et al., 2010). Beyond the US, 88 

validation of the MOD10A1F product is sparse due to the recency of the product availability. 89 

Weather stations and other sensors improved MOD10A1F maps in China (Hao et al., 2022), but 90 

more work in diverse areas with longer cloudy episodes, such as high latitude regions, is needed 91 

to understand the accuracy of the MOD10A1F product in those areas. Understanding accuracy 92 

may inform a region-dependent threshold after which additional cloudy days may result in 93 

unreliable snow cover estimates, and indicate when alternative sources for snow cover, such as 94 

weather stations or other ground observations, should be used instead of gap-filled values.  95 

Binary products can be developed from the current MODIS snow-cover products and 96 

may be used to map snow presence/absence. Early MODIS snow-cover products categorized 97 

pixels as “snow” if the NDSI was greater than 40, using Landsat fractional snow-covered area 98 

maps from Prince Albert National Park in Saskatchewan, Canada (Klein et al., 1998). Later, a 99 

binary map developed from MOD10A2 categorized a pixel as “snow” if any pixel within an 8-100 

day period had an NDSI value greater than 10 (Hall et al., 2002). The lower threshold increased 101 

snow detection but at the cost of increased false positives. Now, the threshold for snow presence 102 

is considered region dependent (Thapa et al., 2019; Zhang et al., 2019), and the end-user is 103 

recommended to determine the threshold above which the corresponding pixel should be 104 
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identified as snow covered (Riggs et al., 2017). Given the utility of binary snow products for 105 

monitoring snow phenology and subsequent applicability to wildlife studies (Curk et al., 2020; 106 

Madsen et al., 2007; Thapa et al., 2019), more work is needed to develop daily binary snow maps 107 

for specific regions.  108 

In this study, we use cameras deployed in remote locations for wildlife monitoring, often 109 

referred to as “camera traps,” to evaluate the MODIS/Terra MOD10A1 and MOD10A1F 110 

products and derive a regional threshold for daily binary snow-covered maps in Scandinavia. 111 

Wildlife camera trap networks have underutilized potential for satellite validation that could be a 112 

valuable supplement to traditional validation methods based on other satellites (Crawford, 2015; 113 

Huang et al., 2011), weather stations, and ground collection (Negi et al., 2007). Cameras provide 114 

environmental monitoring (Brown et al., 2016; Sonnentag et al., 2012), with visual information 115 

about environmental conditions along with a timestamp. While single cameras have a limited 116 

field of view, they can be set up in networks of up to many hundreds of cameras across large 117 

regions (Forrester et al., 2016; Garvelmann et al., 2013). Databases are increasingly available to 118 

archive camera images across networks, furthering the potential for global camera networks to 119 

improve environmental monitoring (Steenweg et al., 2017). For example, Wildlife Insights 120 

currently hosts over 35 million images from 20,000 camera deployments worldwide 121 

(https://www.wildlifeinsights.org/home). Cameras operate below cloud cover and tree canopy, 122 

and they are particularly advantageous for monitoring snow cover because they can operate for 123 

months or years in sub-freezing conditions and difficult-to-reach locations (Tobler et al., 2015).  124 

Wildlife camera traps have been used successfully to evaluate satellite measures of 125 

greenness (Sun et al., 2021) and to provide information on snowpack dynamics at localized 126 

http://dx.doi.org/10.1016/j.rse.2023.113648


 
Breen, Catherine; Vuyovich, Carrie; Odden, John; Hall, Dorothy; Prugh, Laura. 
Evaluating MODIS snow products using an extensive wildlife camera network. Remote Sensing 
of Environment 2023 ;Volum 295. s. - 10.1016/j.rse.2023.113648 
 
 

spatial scales (Hofmeester et al. 2021; Sirén et al., 2018).  Hofmeester et al. (2021) visually 127 

categorized snow cover from camera trap images to assess changes in spring and autumn molting 128 

of mountain hare (Lepus timidus). Sirén et al. (2018) found strong correlations between depth 129 

readings on snow poles and data from the Snow Data Assimilation System (SNODAS) at 80 130 

cameras in Vermont. However, extracting information from camera images can be challenging. 131 

Camera traps use an infrared flash in low light settings, resulting in grey-scale images that can 132 

make differentiating among objects more difficult (Beery et al., 2020). Camera traps therefore 133 

have great potential but require more work investigating their utility as ground-based remote 134 

sensing networks for monitoring snow at broader scales.  135 

Using three years of camera trap images from a network of 1,181 cameras in Norway and 136 

Sweden managed by the Norwegian Institute for Nature Research (NINA), we compared snow 137 

data extracted from camera images to MOD10A1 and MOD10A1F NDSI snow cover products. 138 

We quantified agreement between snow cover values from cameras and MODIS NDSI, 139 

examining factors we hypothesized a priori would affect agreement. We predicted the following: 140 

1. Agreement would be higher between cameras and NDSI at extreme values for snow 141 

cover, whereas agreement would be lower when the snow is patchy (i.e., moderate 142 

NDSI values) due to differences in scales between MODIS pixels (500 m) and 143 

camera fields of view (~20-80 m).  144 

2. Factors that have been shown to affect MODIS accuracy will affect camera and 145 

MODIS agreement, such that agreement will be lower when canopy cover and 146 

latitude are higher (Xiao et al., 2022; Xin et al., 2012).  147 
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3. Factors that have been shown to affect image quality will affect camera and MODIS 148 

agreement, such that images with low lighting taken in grey-scale (i.e., with infrared 149 

flash) will have lower agreement with NDSI than images taken in full color.  150 

4. Camera observations should agree more with MODIS observations on clear sky days 151 

compared to cloudy days, and cloud persistence should decrease the agreement 152 

between cameras and the cloud gap filled NDSI product. 153 

We derived a binary MOD10A1 product of snow cover, using camera data to identify a NDSI 154 

threshold corresponding to snow presence. 155 

 156 

2. Methods 157 

2.1. Study Area 158 

We used images from camera traps in the Scandcam network. Scandcam is a long-term, 159 

year-round study established in 2010 by the Norwegian Institute for Nature Research to monitor 160 

recovering Eurasian lynx (Lynx lynx). Our dataset includes images from three winter seasons: 1) 161 

January 1 – March 2018, 2) October 1, 2018 – March 2019, and 3) October 2019 – March 2020.  162 

Scandcam camera trap locations are optimized for lynx detection across Norway and southern 163 

Sweden (59° – 69° N, 8° – 16° E), with no more than one camera per 2 km2 area across a 164 

350,000 km2 area (Fig. 1; Carricondo-Sanchez et al., 2017). Cameras span a 10° latitudinal 165 

gradient, with deeper snow generally occurring in the north and inland than along the coast 166 

(Saloranta, 2012). Snow usually arrives in Norway and Sweden in early October at high 167 

elevations and northern areas and melts by early April, although sites farther north can remain 168 

snow-covered into summer (Saloranta, 2012). Because the cameras were deployed to detect lynx, 169 
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they were placed in lynx habitat such as forests and sub-alpine areas, but they varied in whether 170 

they were under closed-canopy or open-canopy areas. Southern Norway and Sweden are 171 

characterized by boreal coniferous forest dominated by Norway spruce (Picea abies) and Scots 172 

pine (Pinus sylvestris). In the north, forest composition transitions to alpine vegetation 173 

dominated by birch species (Betula pendula and Betula pubescens) (Bouyer et al., 2015).  174 

 175 

 176 

 177 
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Figure 1. Locations of Scandcam cameras (yellow points, n = 1,181) in Norway and Sweden shown over a 178 

composite snow cover map created from MOD10A1 Version 6 that shows mean NDSI snow cover values across the 179 

three winters of this study (January – March 2018, October 2018 – April 2019, October 2019 – April 2020). 180 

 181 

2.2. Data 182 

2.2.1. MODIS data 183 

NDSI values were extracted at all camera locations (n = 1,181) for all days in the study 184 

period from the MOD10A1 product on the Google Earth Engine public data archive (n = 770 185 

days; Hall et al., 2016). To quantify the percentage of usable MOD10A1 NDSI values during our 186 

study period, we divided the number of non-null NDSI values by the total number of values 187 

(including cloud-masked pixels with “NA” values). The MOD10A1F product was downloaded 188 

as GeoTiffs for the same days from the EarthData platform (https://search.earthdata.nasa.gov/) 189 

and uploaded to Google Earth Engine (GEE). MOD10A1F NDSI and corresponding cloud 190 

persistence values were extracted for all cameras for the same days after ensuring both MODIS 191 

products matched projections (Appendix A1). Since MOD10A1F is not offered in the GEE 192 

archive, MOD10A1F was uploaded as individual tiles. In total, we processed 3,392 tiles for the 193 

MOD10A1F product. We used the GEE Collection 6 MOD10A1 product rather than Collection 194 

6.1 from EarthData, because Collection 6 is commonly used in other studies, and GEE has limits 195 

on the number of original assets one can store on the server. We used Collection 6.1 for 196 

MOD10A1F (cloud-gap filled) NDSI and cloud persistence products to make use of the most up-197 

to-date version. Previous work has demonstrated that Collection 6.1 and Collection 6 have 99% 198 

correspondence, with revisions considered minor (Riggs et al., 2019).  199 

http://dx.doi.org/10.1016/j.rse.2023.113648
https://search.earthdata.nasa.gov/


 
Breen, Catherine; Vuyovich, Carrie; Odden, John; Hall, Dorothy; Prugh, Laura. 
Evaluating MODIS snow products using an extensive wildlife camera network. Remote Sensing 
of Environment 2023 ;Volum 295. s. - 10.1016/j.rse.2023.113648 
 
 

 200 

2.2.2. Camera images 201 

Cameras with either infrared flash or white flash (Reconyx model HC500, HC600, 202 

PC800, or PC900) were secured to trees approximately 1 m above the ground. Cameras were 203 

programmed to take a daily “timelapse” image at 8 AM or 12 AM, as well as anytime the camera 204 

was triggered by motion (e.g., from an animal walking by). For all cameras, for every day in our 205 

study years that there was a corresponding non-null MOD10A1 value, we selected one image per 206 

day from the Scandcam image inventory. The vast majority of photos were taken under low-light 207 

conditions resulting in a grey-scale image. To achieve a more balanced dataset to evaluate the 208 

effect of image color mode on snow labeling accuracy, we manually inspected all of the images 209 

to select a color image if available. We deferred to the timelapse image when taken in white flash 210 

or daylight hours, or a daytime motion-triggered image, when available. Images from the prior 211 

day or the day after the image of interest were also inspected and labeled if it was hard to discern 212 

snow due to lighting conditions.   213 

To assess the effects of cloud cover, we labeled a subset of images that corresponded to 214 

250 random days from the MOD10A1F product (100 days for each of the full winter seasons, 215 

and 50 days for the partial season). Additionally, we included images that were inspected while 216 

labeling MOD10A1 images (n = 510 images). These included both before and after images 217 

corresponding to MOD10A1 values to help confirm the amount of snow. While there is 218 

potentially a bias that these images would favor lower cloud persistence values, we examined a  219 

histogram and found a similar distribution of cloud persistence values compared to the 220 

distribution of cloud persistence values from the full MOD10A1F dataset (Appendix A2).   221 
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Images were labeled using Timelapse (http://saul.cpsc.ucalgary.ca/time-lapse/), a freely 222 

available camera trap labeling software for wildlife ecologists. The software automatically 223 

extracts metadata including time and date, and it provides a customizable interface that observers 224 

use to label photos. All data can then be exported as a .csv file. Snow cover was manually 225 

labelled using the software’s user interface on an ordinal scale that ranged from 0 (no snow) to 4 226 

(full snow coverage). These categories matched those used for snow cover classification at 227 

Norwegian weather stations (Lussana et al., 2018): 0 corresponded to 0% snow cover, 1 to ~25% 228 

snow cover, 2 to ~50%, 3 to ~75%, and 4 to ~100% (Fig. 2). Images were initially labeled by 229 

two people, but testing of a double-labeled subset revealed low agreement among observers 230 

(kappa coefficient 𝜅𝜅 = 0.45; McHugh, 2012). There was complete agreement at label 0, moderate 231 

agreement for values 1 – 3 (𝜅𝜅 = 0.51) and low agreement for label 4 (𝜅𝜅 = 0.10). The low 232 

agreement at label 4 was a result of the less-experienced labeler incorrectly labelling low-light 233 

images with snow as “no snow.” Thus, the more-experienced observer (C. B.) labeled all images.  234 

 235 
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Figure 2. Example remote camera images for snow classification. Snow cover was classified using an ordinal scale 236 

from 0 – 4, where 0 = 0% snow cover, 1 = ~25%, 2 = ~50%, 3 = ~75%, and 4 = ~100%. 237 

 238 

2.3. Assessing agreement between camera images and MODIS snow values 239 

 To evaluate the relationship between image labels and MOD10A1 (H1), we fit a general 240 

linear model using the ordinal image labels as a continuous predictor variable and MOD10A1 241 

NDSI as the response variable. Since NDSI values have been noted to “plateau” at higher snow 242 

values depending on the normalized difference vegetation index (NDVI) at that pixel (Klein et 243 

al., 1998), a polynomial term was included to account for potential non-linearity. All models 244 

were fit using program R (version 4.2.1).  245 

To test our prediction that agreement between MODIS and images would be highest at  246 

extreme values (H1), we compared agreement between MODIS NDSI snow cover values and 247 

snow cover from labeled camera images (hereafter called “image labels”) across the ordinal 248 

image labels. We calculated agreement as:  249 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑚𝑚𝐴𝐴𝑚𝑚𝑚𝑚 = 100 − |𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 − 𝐶𝐶𝐶𝐶𝑚𝑚𝐴𝐴𝐴𝐴𝐶𝐶|     (1) 250 

Where MODIS is the NDSI value and Camera is the labeled image value after converting 251 

ordinal labels (0-4) to their corresponding percent cover values (0, 25, 50, 75, and 100).  252 

Agreement could range from 0 (i.e., complete disagreement) to 100 (i.e., complete agreement). 253 

Some amount of disagreement was expected from comparing ordinal image labels to continuous 254 

NDSI values. Thus, we caution that agreement levels should not be compared directly to R2 255 

values from traditional validations. Other studies that assessed MODIS NDSI accuracy using 256 

cameras and other ground sources converted NDSI values to binary snow and no snow values 257 
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using a threshold and confusion matrix (Thapa et al., 2019; Zhang et al., 2019). We made use of 258 

the full range of NDSI values by not thresholding the values for agreement assessment, in order 259 

to statistically assess covariates that affected the level of agreement. We equate NDSI to a scale 260 

of 0-100% snow cover to represent the relationship between NDSI and snow cover in the 261 

absence of factors that may affect satellite accuracy. Taking the absolute value of agreement 262 

allowed for clearer interpretation of how different covariates affected the magnitude of 263 

disagreement regardless of its direction (see 2.4). We expected agreement to be highest at the 264 

extremes (i.e., labels ~0% and ~100%) and lowest for intermediate labels (i.e., labels ~25%, 265 

50%, and 75%), so we fit a linear model with a polynomial term to allow for a parabolic shape.  266 

 267 

2.4. Assessing agreement between MODIS snow products and factors influencing agreement 268 

 To identify factors affecting agreement between snow cover from image labels and the 269 

MOD10A1 product (H2 and H3), we used a general linear mixed-effects model to determine 270 

how tree canopy cover, latitude (a proxy for solar zenith), and image color mode affected the 271 

agreement between image labels and MOD10A1 NDSI values (Table 1; Eqn. 2). We first tested  272 

 273 

Covariate Range Resolution Hypothesized effect on agreement 

Daily MODIS NDVI -1.0 – 1.0 500 m 
Increasing vegetation will prevent 
MODIS obs., decreasing agreement with 
ground obs. 
 

Landsat tree canopy cover 0 – 100% 30 m 
Increasing tree canopy cover will prevent 
MODIS obs., decreasing agreement with 
ground obs. 

Table 1. Covariates used to analyze agreement between MODIS and image-labeled snow values. Range of each 

factor is provided. MODIS cloud persistence values were only used to assess MOD10A1F (i.e., the cloud-gap 

filled product) agreement with camera images.  
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Image color mode 
Color (1) or 
Grey-scale 

(0) 
20-30 m1 

The infrared red flash will decrease the 
saturation of the image (converting it to 
grey-scale), increasing the difficulty of 
differentiating snow from other aspects of 
the landscape. 
 

Latitude 59.0 – 69.0 1 degree 

Increasing latitude increases angle of 
MODIS obs., increasing angular 
distortion and decreasing agreement with 
ground obs. 
 

MODIS Cloud Persistence 0 – 40 days 500 m 
Increasing cloud cover days increases 
possibility of missed accumulation or 
melt events, decreasing agreement with 
ground obs. 

 

1 Resolution derived from the approximate range that wildlife cameras detect (Urbanek et al., 2019). 

 274 

covariates for correlation to avoid overfitting the model. We used Pearson’s method for 275 

correlation between continuous variables and Kendall’s method for correlation between 276 

continuous and our categorical variable (i.e., image color mode) and found that all correlations 277 

were below the commonly-used threshold of 0.7 (Dormann et al., 2013; Appendix A3). All 278 

correlations were also below the threshold for moderate correlations (|r| = 0.4), except for tree 279 

canopy cover and latitude, which was -0.404. To further examine multicollinearity among 280 

predictors, we implemented the variance inflation factor (VIF) test. All factors were below 1.2, 281 

lower than the conservative threshold of 3 (Zuur et al., 2010; Appendix A4). Temporal and 282 

spatial autocorrelation in snow datasets can inflate parameter estimates and type 1 error 283 

(Reinking et al., 2022). To evaluate spatial autocorrelation, we conducted Moran’s I test using 284 

the spdep package in R (Bivand, 2022). We failed to detect spatial autocorrelation (Moran’s I 285 

statistic = -0.007, p = 0.55), but we included Camera ID as a random effect to account for lack of 286 

independence among images taken from the same camera. To test for temporal autocorrelation, 287 

http://dx.doi.org/10.1016/j.rse.2023.113648
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we followed the approach of Sirén et al. (2018), and created a relative date variable for each 288 

observation using the timeDate package in R (Wuertz et al., 2023). The package contains a 289 

function to convert a date to a relative number of days from a specified origin, defaulting to 290 

January 1, 1970. We tested for improved model fit using Akaike Information Criterion (AIC) 291 

values with and without including the relative date in an auto-regressive correlation structure 292 

(i.e., an “ar1” term) with camera station ID included as a grouping variable. Incorporating the 293 

ar1 correlation structure had a lower AIC score [(∆AIC = -1830.2 compared to the model 294 

without a correlation structure]. We therefore proceeded to use this structure for modeling 295 

agreement in Eqn. (2). We included all covariates in a general linear mixed effects model with a 296 

Gaussian family using the glmmTMB package in R (Brooks et al., 2023): 297 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑚𝑚𝐴𝐴𝑚𝑚𝑚𝑚 ~ (1 | 𝐶𝐶𝐶𝐶𝑚𝑚𝐴𝐴𝐴𝐴𝐶𝐶 𝑀𝑀𝑀𝑀) +  𝑑𝑑𝐶𝐶𝑑𝑑𝑑𝑑𝑑𝑑 𝑁𝑁𝑀𝑀𝑁𝑁𝑀𝑀 +  𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴 𝐶𝐶𝐶𝐶𝑚𝑚𝐶𝐶𝐶𝐶𝑑𝑑 𝐶𝐶𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴 + 𝐿𝐿𝐶𝐶𝑚𝑚𝑑𝑑𝑚𝑚𝐿𝐿𝑑𝑑𝐴𝐴 + 298 

𝑀𝑀𝑚𝑚𝐶𝐶𝐴𝐴𝐴𝐴 𝐶𝐶𝐶𝐶𝑑𝑑𝐶𝐶𝐴𝐴 𝑀𝑀𝐶𝐶𝑑𝑑𝐴𝐴 + 𝐶𝐶𝐴𝐴1(𝐴𝐴𝐴𝐴𝑑𝑑𝐶𝐶𝑚𝑚𝑑𝑑𝐶𝐶𝐴𝐴 𝑑𝑑𝐶𝐶𝑚𝑚𝐴𝐴 + 0 | 𝐶𝐶𝐶𝐶𝑚𝑚𝐴𝐴𝐴𝐴𝐶𝐶 𝑀𝑀𝑀𝑀)     299 

Agreement was calculated as described above in Eqn. (1). Image color mode was 300 

classified as “Color” or “Grey-scale” by inspecting image saturation. Images taken with infrared 301 

flash have low light saturation and appear as black-and-white, grey-scale images (Fig. 3). After 302 

inspecting a histogram of saturation values from a subset of 60 images, there was a clear break 303 

between images in grey-scale and color at saturation values of 0.02 (Appendix A5). We then 304 

evaluated this threshold using a random subset of 1,000 images and found 100% accuracy, so we 305 

labeled all images with values below 0.02 as grey-scale and above 0.02 as color.   306 

(2) 
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 307 

Figure 3. A grey-scale and color image from the camera on 22 November 2018 illustrates how light saturation 308 

affects the ability of an observer to identify snow cover. The image on left was the daily timelapse photo taken at 309 

08:00h during low light conditions, which triggered the camera to take the image in grey-scale (i.e., with infrared 310 

flash). The image on the right was triggered by a wolf (Canis lupus) passing by at 14:03h, when there was enough 311 

light for a color image. The amount of snow in the color image is much easier to see. 312 

 313 

Previous studies found that dense forests affected MODIS NDSI by causing an 314 

underestimation of the snow cover, using daily NDVI as a proxy for forest canopy (Hall and 315 

Riggs, 2007; Klein et al., 1998). MODIS NDVI is a vegetation index that provides information 316 

on vegetation canopy greenness, along with leaf area, and chlorophyll and canopy structure 317 

(Didan, 2015). NDVI in Norway varies spatially due to differences in vegetation from boreal, 318 

deciduous trees in southern Norway to alpine shrubs in northern Norway. Within a winter 319 

season, NDVI is highest in October and November and lowest in February and March, likely 320 

reflecting both deciduous trees losing canopy leaves in the fall, and seasonal snow covering 321 

ground vegetation in January to March (Appendix A6). To test the efficacy of NDVI as a proxy 322 

for tree canopy cover, we extracted the corresponding daily MODIS NDVI value at 500-m for 323 

each labeled image. We also extracted tree canopy cover from the 30-m Landsat Vegetation 324 
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Continuous Fields tree cover layer, which estimates the percentage of horizontal ground covered 325 

by woody vegetation greater than 5 meters in height from 2015 (Townshend, 2016). Continuous 326 

predictor variables – tree canopy cover, latitude, and NDVI – were normalized by subtracting by 327 

the mean and dividing by the standard deviation. Model fit was evaluated by examining residuals 328 

for dispersion and outliers from the DHARMa package in R (Hartig, 2022; Appendix A9). 329 

To test our prediction that agreement between MODIS and camera data would decline as 330 

the number of cloudy days (i.e., cloud persistence) increased (H4), we modeled the agreement 331 

between snow cover from image labels and the MOD10A1F product as a function of the cloud 332 

persistence value. Because we expected the relationship between agreement and the number of 333 

cloudy days to be non-linear, we ran a generalized additive mixed model with camera ID 334 

included as a random effect using the mgcv package in R (Eqn. 3; Wood, 2017). We selected 335 

eight knots for the model, following recommendations for knots to be larger than the degrees of 336 

freedom (i.e., 6) plus 1 (Wood, 2017). Cloud persistence values equal to 0 (MOD10A1 values) 337 

were included to allow agreement comparison to clear sky days.  338 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑚𝑚𝐴𝐴𝑚𝑚𝑚𝑚 ~ (1 | 𝐶𝐶𝐶𝐶𝑚𝑚𝐴𝐴𝐴𝐴𝐶𝐶 𝑀𝑀𝑀𝑀) + 𝑀𝑀𝑀𝑀𝑀𝑀10𝐴𝐴1𝐹𝐹 𝐶𝐶𝑑𝑑𝐶𝐶𝐿𝐿𝑑𝑑 𝑃𝑃𝐴𝐴𝐴𝐴𝑃𝑃𝑑𝑑𝑃𝑃𝑚𝑚𝐴𝐴𝑚𝑚𝑃𝑃𝐴𝐴                              (3) 339 

Agreement was calculated as described in 2.3 (Eqn. 1). Data was sparse for persistence 340 

times > two weeks, (3% of data), so we limited analysis to 14 days.  341 

 342 

2.5 Deriving a threshold for daily binary snow mapping in Norway 343 

Image labels were converted from the 5-class ordinal scale to a binary classification by 344 

reclassifying all images labeled 1 – 4 as “snow” (with a corresponding 1 label), and all image 345 

labeled with a 0 as “no snow” (with a corresponding 0 label). We identified an optimal threshold 346 
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for the MOD10A1 product by counting the number of true positives and false positives when 347 

converting to a binary product at each NDSI value. We plotted the true positive rate against the 348 

false positive rate at each threshold value to create a receiver-operating-characteristic (ROC) 349 

curve using the pROC package in R (Robin et al., 2011). The top left corner of the ROC curve is 350 

known as Youden’s Index, or the maximum difference between the true positive and false 351 

positive rate (Youden, 1950). Because it weighs both true positive and false positive rates 352 

equally, it is considered the optimum threshold for a classifier when there is equal preference for 353 

both classes (Liu, 2012). In addition to generating a threshold for all cameras, we repeated this 354 

analysis separately for cameras within closed canopy (> 20% canopy cover; n = 6,229 images) 355 

and open canopy (< 20% cover; n = 2,731 images) because thresholds tend to be lower in areas 356 

of closed canopy cover (Chokmani et al., 2010).  357 

 358 

3. Results 359 

3.1. Labeled image and MODIS comparisons  360 

Of the 1,703,702 MOD10A1 snow cover values obtained at all 1,181 cameras during 361 

winters 2018 – 2020, 1,311,249 (76%) were null (cloud-masked). Daily labeled images 362 

corresponding to non-null values from MOD10A1 spanned 665 cameras (n = 8,918 images). 363 

Cameras not included either had no corresponding non-null MODIS value or did not have 364 

images on file during our study period. There was a strong correlation between snow 365 

classification from the images and MOD10A1 NDSI values (R2 = 0.70, NDSI = -3.50*image2 + 366 

28.02*image + 10.90, where image is the labeled value on the 0 - 4 scale), but the NDSI values 367 

from MODIS products plateaued at about 75 (Fig. 4A). We found overall strong agreement 368 
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between snow cover from MODIS NDSI and camera images (x� = 80.5%, 95% CI = 80.1 – 80.8; 369 

Fig. 4B). Consistent with H1, agreement was highest for images with label 0 (corresponding to 370 

~0% snow cover; agreement x� = 89.2%, 95% CI = 88.6 – 89.8). Contrary to H1, however, 371 

agreement was lowest for images with label 4 (corresponding to ~100% snow cover; agreement x� 372 

= 67.1%, 95% CI = 66.7 – 67.5, Fig. 4B).  373 

 374 

Figure 4. A) Distribution of MOD10A1 NDSI values within each snow cover classification from labeled camera 375 

images, and B) agreement of snow cover values between MODIS and images within each snow cover classification. 376 

Images were labeled using an ordinal classification with 5 levels (0 – 4) corresponding to snow cover percentages 377 

shown. Agreement was defined as 100 minus the absolute difference between the image label and MOD10A1 NDSI 378 

snow value. Red lines show the best fit using linear models with polynomial terms. 379 

 380 

3.2 Factors that influence agreement between cameras and MODIS 381 
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As predicted by H3, latitude and tree canopy cover negatively affected agreement 382 

between snow cover derived from cameras and MOD10A1. However, only canopy cover had a 383 

statistically significant effect (Table 2). Although significant, the effect was relatively weak, and 384 

mapping the agreement at each camera relative to tree canopy cover showed that agreement was 385 

high in many areas with closed canopies (Fig. 5A-D). Contrary to expectations, NDVI was not 386 

strongly correlated with tree canopy cover (r = 0.09, Appendix A3) and had a significant positive 387 

effect on agreement: image labels and MODIS-derived snow cover were in better agreement in 388 

areas with higher daily NDVI. Average NDVI values in October were twice as high as any other 389 

month (Appendix A6), and October likewise had a relatively high proportion of 0 values with 390 

high agreement (Fig. 4B). Thus, we examined the effect of removing October observations from 391 

our model and found the effect of NDVI on agreement changed from strongly positive 392 

(coefficient value = 6.60) to weakly negative (coefficient = -0.075; Appendix A7). Our dataset 393 

was roughly split between color (n = 4,184 images) and grey-scale (n = 4,733 images), and 394 

image color mode positively affected agreement as predicted by H4 (Table 2).  395 

 396 

Table 2. Coefficient estimates, standard error (SE), t-values, and p-values from a general linear mixed model 397 

assessing factors that affect MODIS and camera agreement (n = 8,808) for the three winter seasons: 1) January 1 - 398 

March 2018, 2) October 1, 2018 – March 2019, and 3) October 2019 – March 2020. Continuous variables were 399 

normalized by subtracting the mean and dividing by the standard deviation prior to analysis. Image color mode is a 400 

categorical variable (1: color image; 0: grey-scale image). Camera identification was included as a random effect (n 401 

= 658). Model results without observations from October 2018 and October 2019 are included in Appendix A7. 402 

Results from the model without October data are similar, except that the effect size of NDVI changes from strongly 403 

positive to weakly negative.   404 
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Parameter Estimate SE t-value p-value 

Intercept 78.88 0.40 196.37 <0.005 

Latitude -0.48 0.35 -1.37 0.17 

NDVI 6.60 0.35 29.12 <0.005 

Tree canopy cover -0.93 0.32 -2.84 <0.005 

Image color mode 
(color image) 

1.73 0.47 3.63 <0.005 

 405 

 406 
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 407 

Figure 5. Average agreement between snow cover from labeled images and MOD10A1 snow cover at Scandcam 408 

cameras between winter months for 2018 – 2020. The four boxes correspond to four example clusters in counties 409 

from north to south: A) north Nordland and Troms og Finnmark; B) south Nordland; C) Innlandet; and D) south 410 
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Viken. The base map is tree canopy cover from 30-m Landsat. Triangles represent cameras within closed canopy 411 

areas (≥ 20%) and circles represent cameras within open canopy areas (< 20%). 412 

 413 

3.3 Image labels and MOD10A1F product comparison 414 

Cloud persistence was a significant predictor for agreement between image labels and 415 

snow values from the MOD10A1F product. Agreement was highest (78.5%) on clear sky days 416 

(i.e. cloud persistence = 0) and decreased by almost one third (to 56.4%) within the first 3 days 417 

before leveling off just after (Fig. 6).  418 

 419 

 420 

Figure 6.  Agreement between image labels and MOD10A1F NDSI snow values as a function of number of cloudy 421 

days (i.e., cloud persistence) using a generalized additive model. Agreement was defined as 100 minus the absolute 422 

difference between the image label and MOD10A1F NDSI snow value.  423 
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 424 

3.4. Optimal threshold derivation for binary snow cover mapping 425 

At the Youden’s Index point of the ROC curve, the true positive rate was 88% and the false 426 

positive rate was 11%. This point corresponded to a MOD10A1 NDSI snow cover value of 40.5 427 

(Figure 7). At the commonly used threshold value of 40 (Hall et al., 2019a), the true positive rate 428 

was 89% and the false positive rate was 11%, showing that for a slightly higher true positive 429 

rate, there is not much difference in the false positive rate. The current MOD10A2 product 430 

employs a threshold of 10, which has a 97% true positive rate and 31% false negative rate. When 431 

 432 

 433 

Figure 7:  A) A Receiver-Operator Characteristic (ROC) curve when images are reclassified for snow or no-snow by 434 

cutting the data with a label >=1 as ‘snow.’ The ROC curve shows the performance of the classifier at each 435 

threshold, in this case the value of the NDSI snow cover. The closer the curve is to the top left corner, the better the 436 

performance of the model. The blue point closest to the top left corner is (0.11, 0.88) is referred to as Youden’s 437 

Index. B) The true negative rate (orange) and the true positive rate (red) graphed separately for every MOD10A1 438 

http://dx.doi.org/10.1016/j.rse.2023.113648


 
Breen, Catherine; Vuyovich, Carrie; Odden, John; Hall, Dorothy; Prugh, Laura. 
Evaluating MODIS snow products using an extensive wildlife camera network. Remote Sensing 
of Environment 2023 ;Volum 295. s. - 10.1016/j.rse.2023.113648 
 
 

NDSI snow cover value alongside the Youden’s Index, the difference in between (green). The MOD10A1 value at 439 

the maximum value of the Youden index is 40.50. The maximum value of the Youden index is the minimum 440 

between the true positive rate and true negative rate when both classes are given equal weight. The blue points on 441 

both graphs represent the same cut point in the data. 442 

we conducted separate analyses for closed canopy (≥ 20%) and open canopy (< 20%) sites, the 443 

threshold was the same for closed canopy locations (40.5) and slightly higher for open canopy 444 

locations (41.5). Appendix A8 shows the change in true positive and false positive rates with 445 

different threshold values, along with the results for open and closed canopy analyses.   446 

 447 

Discussion 448 

In this study, we identified strong agreement between snow information obtained from 449 

wildlife cameras and MODIS at a regional scale, demonstrating the ability of cameras to 450 

supplement MODIS snow observations. Previous studies have found strong agreement using 451 

fewer than 100 cameras in tandem with satellites at localized spatial scales (Raleigh et al., 2013; 452 

Sugiura et al., 2013), and our findings show this relationship holds across a large region and 453 

multiple winter seasons. As predicted, we found strongest agreement at low snow cover values, 454 

but agreement was worse than expected at high snow cover values because NDSI values 455 

plateaued around 75 instead of 100. Cameras, thus, demonstrated that an NDSI value of 75 456 

represents 100% snow cover for this region. We also demonstrated the ability to customize 457 

MOD10A1 to create binary snow maps using a camera-derived threshold of 40.5, which was 458 

nearly identical to the commonly used 40 threshold from previous MODIS products (Klein et al., 459 

1998). These findings highlight that despite large differences in scales, wildlife camera networks 460 
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have potential to improve satellite monitoring for snow and create new products at fine temporal 461 

scales. 462 

 Our finding of strong agreement between camera image snow values and MODIS snow 463 

values may be attributed in part to our method of classifying snow cover into five classes. While 464 

not a continuous measure, a 5-class ordinal labeling scheme for images extracts more 465 

information about the amount of snow cover than previous work using binary labels (Berman et 466 

al., 2018; Sugiura et al., 2013). There are caveats to this classification scheme, as agreement was 467 

lower at labels 1 (i.e., ~25% snow cover), 2 (i.e., ~50%), and 4 (i.e., ~100%), which may 468 

highlight MODIS uncertainties. For example, MODIS is less accurate when snow is thin or 469 

patchy, such as labels 1 and 2 (Berman et al., 2018; Dong and Menzel, 2016). Similarly, low 470 

agreement at label 4 highlights the tendency of MODIS to underestimate snow cover in boreal 471 

regions (Klein et al., 1998). In this region, maximum NDSI equating to 100% snow cover 472 

appears to be 75, when MODIS plateaus. Cameras can thus be used to adjust NDSI for fractional 473 

snow-covered maps. However, discrepancies in agreement at different classification schemes 474 

highlights drawbacks to using cameras in tandem with satellite products: patchy snow in cameras 475 

may be missed or interpreted as complete snow cover. Furthermore, labeling for snow cover 476 

values can be subjective and have uncertainty, as highlighted by low correspondence among 477 

labels by two observers found during pilot testing. We recommend a single, experienced labeler 478 

when labeling wildlife photos, and testing for agreement among labelers early on. Despite lower 479 

agreement within certain classes and among observers, strong agreement overall suggests that 480 

cameras can be an effective method of snow classification when used in tandem with satellites.  481 
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 We predicted that latitude (i.e., solar zenith angles), ground vegetation, and the image 482 

color mode (i.e., grey or color scale) would limit MODIS and camera image agreement (Xiao et 483 

al., 2022; Xin et al., 2012). Although mapping the agreement at each of our cameras showed a 484 

general decline in agreement as latitude increased, the effect was not significant, and there was 485 

still strong agreement even at high latitudes. Overall, our findings indicated that latitude and 486 

canopy cover had relatively minor effects on the accuracy of MODIS snow cover, highlighting 487 

its robustness for monitoring snow trends across Scandinavia. Images in grey-scale had lower 488 

overall agreement with satellites, and they took much longer to label due to the need to study the 489 

image more carefully to separate snow from vegetation and rocks. Humans and artificial 490 

intelligence have more difficulty extracting information about environmental conditions and 491 

wildlife from grey-scale images (Beery et al., 2019; Favorskaya and Buryachenko, 2019). 492 

Nighttime images are inevitable when using motion-triggered wildlife cameras for environmental 493 

monitoring, but we recommend maximizing the number of color images either through 494 

prioritizing color photos as we did here, or by scheduling timelapse photos to occur during 495 

daylight hours. Because low-light images were also the main reason why images from one 496 

labeler had to be relabeled, prioritizing color photos may increase both agreement between 497 

camera and satellite as well as agreement among labelers.  498 

Using cameras to assess agreement demonstrated drawbacks of using NDVI alongside 499 

MODIS NDSI. Contrary to our hypothesis, NDVI positively affected the agreement. While daily 500 

NDVI is often included to account for the effects of vegetation on MODIS snow detection (Hall 501 

et al., 2002; Klein et al., 1998; Xin et al., 2012), NDVI has multiple interpretations, including 502 

green-up, biomass, and plant stress (Huang et al., 2021). The positive effect of NDVI on snow 503 
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cover agreement suggests that daily NDVI during winter may not have represented vegetation 504 

that was obscuring the sensor, but rather the absence of snow. We included snow values ranging 505 

from 0 – 100, but values equal to 0 for both camera images and MODIS will have exact 506 

agreement whereas our estimates for the other snow labels were approximations. When we 507 

excluded images from the month October, the month that also has the highest average NDVI at 508 

the camera locations, we found the expected negative relationship between NDVI and agreement 509 

for months between November and March. October data was important to include in our study 510 

because the “snow-on” date typically occurs during October in Norway, and this date is critical 511 

for deriving snow cover phenology metrics used by wildlife ecologists studying migration timing 512 

and other seasonal phenomena. However, the strong effect of October on the NDVI estimate 513 

reinforces that NDVI was reflecting the absence of snow rather than canopy cover. We also 514 

examined maximum NDVI over each snow-covered season as a covariate instead of daily NDVI, 515 

and we found similar results (Appendix A7). In contrast, the tree canopy cover covariate had a 516 

negative effect on agreement as expected, even with October data included. The Landsat tree 517 

canopy cover product is a more direct measure of obstructing vegetation than NDVI (Potapov et 518 

al., 2021; Sexton et al., 2013), and our findings indicate that direct canopy products may be 519 

preferable to NDVI for snow mapping applications.  520 

Agreement was also affected by cloudy days, supporting previous literature on limitations 521 

of cloud-gap filled products in cloudy regions (Gao et al., 2011; Hall et al., 2019b). However, 522 

agreement did not decrease linearly with time, but instead decreased rapidly and then leveled off 523 

after 3 days. This result is likely due to clouds changing the snow conditions, such as 524 

snowstorms increasing snow cover or increased humidity accelerating snowmelt (Zhang et al., 525 
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1996). Backfilling pixels with the most recent cloud-free value thus has limitations even for short 526 

cloud persistence durations. In cases when clouds persist for much of the winter, our results 527 

show that gap-filled products may be highly inaccurate, and wildlife camera data in these regions 528 

is especially valuable. While cloud-masked MOD10A1 values had substantially higher 529 

agreement with camera images than gap-filled MOD10A1F values, use of the MOD10A1 530 

product comes at the cost of substantial data loss, as only 23% of pixels were usable due to cloud 531 

masking. Similarly, a study examining how snow properties affect movements of GPS-collared 532 

Dall sheep (Ovis dalli dalli) in Lake Clark National Park, Alaska, was only able to use 2.2% of 533 

their dataset when using cloud-masked MODIS products (Mahoney et al., 2018). Ultimately, 534 

spatial products of snow cover may be able to automate the inclusion of snow values from 535 

camera networks when satellite values are not accurate or available, utilizing AI and machine 536 

learning to produce spatially and temporally fill gaps. 537 

Gap-filling accuracy with camera-labeled values will depend on classification accuracy, 538 

and image classification error may be further reduced by using a binary classification, although 539 

some information is lost. However, binary maps can be especially useful for identifying snow-on 540 

and snow-off dates, with important applications for monitoring changing snow phenology and 541 

impacts on seasonal migrations and breeding seasons. The threshold NDSI value of 40.5 we 542 

identified using wildlife cameras in Scandinavia was remarkably similar to the value of 40 543 

derived for MODIS from Landsat fractional snow-covered area maps in Canada (Klein et al., 544 

1998). Thresholds in forested areas tend to be lower than open canopy thresholds because some 545 

snow visibility is blocked by the trees (Chokmani et al., 2010). Our findings were consistent with 546 

these trends, but the effect of canopy cover was minor (40.5 vs 41.5 for closed vs open canopy 547 
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sites, respectively). By employing Youden’s index to select the optimal threshold, we assumed 548 

equal weight to both snow and no snow classes. However, depending on the mapping needs, 549 

other threshold values could be used. For example, higher thresholds for snow might be desirable 550 

when making maps of the first “snow on” date in the fall to prioritize snow detection. Other 551 

studies have found adjustments to the threshold can increase regional accuracy (Chokmani et al., 552 

2010; Da Ronco et al., 2020; Luo et al., 2022). While our study found that MODIS detected 88% 553 

of snow-covered pixels, Luo et al. (2022) found that MODIS identified just 14-18% of snow-554 

covered pixels in forests when using conventional MODIS thresholds. MODIS snow detection 555 

tends to be less accurate in steep areas with complex topography (Rittger et al., 2021), and the 556 

Luo et al. (2022) study occurred in alpine terrain with sites > 2700 m a.s.l. and slopes between 19 557 

and 34 degrees. Our study occurred at much lower elevations (0 – 800 m a.s.l.), with moderate 558 

slopes between 0.5 to 20 degrees. These differences reinforce our findings that agreement 559 

between camera and satellite may depend on environmental factors, and when using the two for 560 

validation or in-tandem, it is important to account for external context. Generally, a threshold of 561 

40 is robust for this region, similar to other studies creating binary maps from forested 562 

ecosystems. A threshold of 10 from MOD10A2 would be low for this region, thus researchers 563 

should be aware that deriving their own binary thresholds is an important step for MODIS 564 

Collection 6 products. Future studies could employ this approach to create custom thresholds 565 

from cameras in their regions of interest.  566 

Because our cameras were optimized for lynx detection, we did not control for field of 567 

view. Previous work suggests that wider field of views are more advantageous for snow cover 568 

monitoring (Parajka et al., 2012). Our results suggest that even narrow fields of view offer 569 
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insight into snow conditions, but wider fields should provide a better observation of snow 570 

conditions at a scale more similar to satellite remote sensing. Additionally, we did not control for 571 

possible observation delays, which could be up to 24 hours depending on when the satellite 572 

passes over the area of interest and when the camera image is taken (Sugiura et al., 2013). One 573 

camera trap image per day appeared sufficient to connect to MODIS, but we recommend 574 

multiple images per camera each day to increase labeling options. Examining the outliers from 575 

our model evaluations aligns with these recommendations, because outlier images consisted 576 

primarily of those with narrow fields of view and active weather (Appendix A9). Continuous 577 

indices of vegetation greenness have been derived from camera images using RGB values as 578 

proxies for vegetation (Sun et al., 2021), but to our knowledge, no automated method of 579 

extracting continuous snow cover indices from camera images has been developed. AI 580 

algorithms for automated snow detection from camera images are a promising area of 581 

development to increase the utility of wildlife camera networks for environmental monitoring. 582 

 Our study focused on comparing snow cover from cameras to MODIS snow products, and 583 

we found surprisingly strong agreement considering differences in spatial resolution. The Visible 584 

Infrared Imaging Radiometer Suite (VIIRS) instrument has a snow product similar to MODIS at 585 

375-m spatial resolution (Riggs et al., 2017). Future work could explore incorporating multiple 586 

cameras in one satellite pixel to improve snow monitoring of patchy snow conditions, such as 587 

during snow accumulation and snow melt. Alternatively, camera images could be matched to 588 

finer-resolution snow products derived from satellites such as Landsat, Sentinel, and Planet 589 

CubeSat (Cannistra et al., 2021; Chokmani et al., 2010, 2010; Riggs et al., 2017). Snow maps 590 

must be derived by manually creating the NDSI maps from Landsat, Sentinel, and Planet 591 
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sensors, but these products have spatial resolutions at 30 m, 10 m, and 0.7-3 m, respectively, 592 

closer to the camera field of view (Cannistra et al., 2021).    593 

 594 

Conclusion 595 

As the remote sensing community continues to develop new global products, the wildlife 596 

ecology community continues to expand camera trap networks for continuous biodiversity 597 

monitoring (Pettorelli et al., 2014; Steenweg et al., 2017). Connecting camera traps to satellite 598 

data represents an important step towards an interconnected network of ground-based remote 599 

sensing data that can improve researchers’ and the public’s ability to determine environmental 600 

changes and subsequent impacts on sensitive species. In Norway, snow cover extent has 601 

decreased by more than 20,000 km2 (6% of the country area) since 1961 due to changes in 602 

temperature and precipitation (Rizzi et al., 2018; Skaugen et al., 2012). When these trends are 603 

incorporated into climate impact models, predictions suggest accelerated rates of local 604 

extinctions across 273 species of Norwegian vegetation (Niittynen et al., 2018). With the 605 

increasing number of cameras operating as environmental monitoring devices, we can improve 606 

our understanding of both environmental and wildlife responses in a changing climate. 607 

 608 

 609 

 610 

 611 

 612 

 613 
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Data Availability 615 

A selection of photos is publicly available at https://viltkamera.nina.no. Analysis code can be 616 
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 900 

 901 

List of Figure Captions 902 

Figure 1. Locations of Scandcam cameras (yellow points, n = 1,181) in Norway and Sweden 903 

shown over a composite snow cover map created from MOD10A1 Version 6 that shows mean 904 

NDSI snow cover values across the three winters of this study (January – March 2018, October 905 

2018 – April 2019, October 2019 – April 2020). 906 

 907 

Figure 2. Example remote camera images for snow classification. Snow cover was classified 908 

using an ordinal scale from 0 – 4, where 0 = 0% snow cover, 1 = ~25%, 2 = ~50%, 3 = ~75%, 909 

and 4 = ~100%. 910 

 911 

Figure 3. A grey-scale and color image from the camera on 22 November 2018 illustrates how 912 

light saturation affects the ability of an observer to identify snow cover. The image on left was 913 

the daily timelapse photo taken at 08:00h during low light conditions, which triggered the 914 

camera to take the image in grey-scale (i.e., with infrared flash). The image on the right was 915 
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triggered by a wolf (Canis lupus) passing by at 14:03h, when there was enough light for a color 916 

image. The amount of snow in the color image is much easier to see. 917 

 918 

Figure 4. A) Distribution of MOD10A1 NDSI values within each snow cover classification from 919 

labeled camera images, and B) agreement of snow cover values between MODIS and images 920 

within each snow cover classification. Images were labeled using an ordinal classification with 5 921 

levels (0 – 4) corresponding to snow cover percentages shown. Agreement was defined as 100 922 

minus the absolute difference between the image label and MOD10A1 NDSI snow value. Red 923 

lines show the best fit using linear models with polynomial terms. 924 

 925 

Figure 5. Average agreement between snow cover from labeled images and MOD10A1 snow 926 

cover at Scandcam cameras between winter months for 2018 – 2020. The four boxes correspond 927 

to four example clusters in counties from north to south: A) north Nordland and Troms og 928 

Finnmark; B) south Nordland; C) Innlandet; and D) south Viken. The base map is tree canopy 929 

cover from 30-m Landsat. Triangles represent cameras within closed canopy areas (≥ 20%) and 930 

circles represent cameras within open canopy areas (< 20%). 931 

 932 

Figure 6.  Agreement between image labels and MOD10A1F NDSI snow values as a function of 933 

number of cloudy days (i.e., cloud persistence) using a generalized additive model. Agreement 934 

was defined as 100 minus the absolute difference between the image label and MOD10A1F 935 

NDSI snow value.  936 

 937 
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Figure 7:  A) A Receiver-Operator Characteristic (ROC) curve when images are reclassified for 938 

snow or no-snow by cutting the data with a label >=1 as ‘snow.’ The ROC curve shows the 939 

performance of the classifier at each threshold, in this case the value of the NDSI snow cover. 940 

The closer the curve is to the top left corner, the better the performance of the model. The blue 941 

point closest to the top left corner is (0.11, 0.88) is referred to as Youden’s Index. B) The true 942 

negative rate (orange) and the true positive rate (red) graphed separately for every MOD10A1 943 

NDSI snow cover value alongside the Youden’s Index, the difference in between (green). The 944 

MOD10A1 value at the maximum value of the Youden index is 40.50. The maximum value of 945 

the Youden index is the minimum between the true positive rate and true negative rate when both 946 

classes are given equal weight. The blue points on both graphs represent the same cut point in the 947 

data. 948 

 949 

List of Table Captions 950 

Table 1. Covariates used to analyze agreement between MODIS and image-labeled snow values. Range of each 951 

factor is provided. MODIS cloud persistence values were only used to assess MOD10A1F (i.e., the cloud-gap filled 952 

product) agreement with camera images. 953 

 954 

Table 2. Coefficient estimates, standard error (SE), t-values, and p-values from a general linear mixed model 955 

assessing factors that affect MODIS and camera agreement (n = 8,808) for the three winter seasons: 1) January 1 - 956 

March 2018, 2) October 1, 2018 – March 2019, and 3) October 2019 – March 2020. Continuous variables were 957 

normalized by subtracting the mean and dividing by the standard deviation prior to analysis. Image color mode is a 958 

categorical variable (1: color image; 0: grey-scale image). Camera identification was included as a random effect (n 959 

= 658). Model results without observations from October 2018 and October 2019 are included in Appendix A7. 960 
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Results from the model without October data are similar, except that the effect size of NDVI changes from strongly 961 

positive to weakly negative.   962 

 963 

 964 

 965 
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