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migrants are more sensitive to local environmental conditions, which may help them 

to adapt to ongoing changes in climate.



|TAVERA ET AL.

et al., ; Kullberg et al., 2015 2021

et al., 2020 2018

2017 -

-

-

-

-

-

cies traits and environmental cues on phenological responsiveness in 

2013; 

2020 -

-

2014 2015; 

Saunders et al., 2022 Pluvialis 

dominica Calidris alba C. alpina

C. melanotos C. pusilla

C. mauri Phalaropus 

lobatus P. fulicarius

-

son and measure phenological responsiveness across species by 

-

-

-

nological responsiveness by evaluating spatial variation in respon-

range, this widely distributed species uses distinct strategies during 

-

-

-

2017; Hicklin & Gratto- Trevor, 2020

-

-

2010; 

Klaassen et al., 2001 -

-

2017 -

2018; Kwon et al., 

responsive to variations in SOS than western populations.

|

|

Table 1;  1

mainly by sedges, grasses, and moss combined with small ponds 

2017

Cassiope and Dryas heather and wet 

2008

2018

et al., 2014

2021

year, and species combinations with greater than 30 observations 

n

Data on shorebird nesting were collected during the pre- laying 

-

-

2014

birds, opportunistically while monitoring previously discovered nests, 

et al., 2014

2006; Sandercock, 

-

2015

-

-

2007

-

n



| TAVERA ET AL.

 S2

|

; Tavera et al., 

2024 -

-

2010

et al., 2021

2020; Epstein et al., 2012

et al., 2014

https:// ltdr. nas-

com. nasa. gov

2006

75° due to 

42° due to 
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2015
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2

cloud cover were smoothed by linearly interpolating between the 

0.05 were assigned 

TA B L E  1
n

Site name (abbreviation) Location (latitude, longitude) Region Years (range) (n) Start of spring (range) Nests (n)

1343

303

June 17 to July 1 3155

June 21 to July 1 288

June 20 to July 1 66

June 27 to July 1

June 17 to July 2

June 21 to June 25 170

June 11 to June 24 1506

Canada
June 21 to June 27 80

June 4 to June 14 65

June 17 to June 24

June 13 to June 30

June 27 40

June 25 to July 6

276

Krasnoyarsk, Russia 148

Chukotka, Russia June 18 33
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being generally earlier at lower latitudes and in more western locations 

 2 -

lier springs, however, annual variation in SOS was substantial across all 

TA B L E  2

Species
Migration 
distancea (km) Seasonal timing of breeding (NID) (mean; range)b Body massa (g)

Expected female 
reproductive effort (days)c

Western Sandpiper 10,772 31

Semipalmated Sandpiper 27 25.36

Dunlin 45.1 28.86

7618 37.4 11.2

12,071 65.1 46.6

10,564 57.2 12

Sanderlingd 8473 June 16; June 1 to July 4 55.4 30.2

146.0 33.6

a 2020
b

cTable S1.
d 2020
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only the SOS data included in our analyses, similar patterns were ob-
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 3  indicated that phylogenetic 
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day included migration distance and its interaction with the SOS, 
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than medium and short- distance migrants, like Dunlin, Red- necked 

 4

|
responsiveness

varied strongly across sites, with earliest nesting at westerly sites 

wi

TA B L E  3

Model structurea Kb L AIC wi

53,126.1 0.0 1.0

12 53,276.4 113.7 0.0

Species 11 125.7 0.0

SOS 5 1005.0 0.0

Intercept 4 1016.8 0.0

L wi
aThe 

included.
b
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gest over time, nesting phenology is advancing at variable rates 
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2014 2017

species, Semipalmated Sandpipers. Species with longer migration 

distances showed a stronger relationship with the SOS than those 

legend.
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tudes are adapted to highly seasonal and variable environments. 

2003 2012
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TA B L E  4

species traits that we evaluated. Species, site, and year within site 

Model structurea Kb L AIC wi

8 53,166.2 0.0 1.0

8 53,268.7 0.0

Breeding
8 53,277.2 0.0

8 53,308.1 133.8 0.0

7 53,313.1 135.8 0.0

SOS 6 53,315.5 135.3 0.0

Intercept 5 53,332.2 0.0

L wi
aThe 

included.
b

with species grouped according to estimated migration distance. Observed annual means are indicated by site, as indicated in the legend.

TA B L E  5
consistent with variation in phenological responsiveness across 

models.

Model structurea Kb L AIC wi

Site 12 15,727.3 0.0 0.8

21 15,711.7 2.4 0.2

SOS 4 15,803.8 60.5 0.0

Intercept 3 15,830.6 0.0

L
wi

a The 

included.
b
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and two highly vagile species that are opportunistic in site settle-

interaction between breeding site and changes in spring phenology, 

longitude directly, our results suggest that Semipalmated Sandpiper 

SOS values across their breeding distributions, their responses to 

site- level variation in SOS is remarkably consistent. In apparent con-
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in response to climate change with increasing breeding latitude, and 
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