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During 2021 and 2022 High Pathogenicity Avian Influenza (HPAI) killed thousands of
wild birds across Europe and North America, suggesting a change in infection dynamics
and a shift to new hosts, including seabirds. Northern Gannets Morus bassanus appeared
to be especially severely impacted, but a detailed account of the data available is
required to help understand how the HPAI virus (HPAIV) spread across the meta-
population, and the ensuing demographic consequences. Accordingly, we analyse infor-
mation on confirmed and suspected HPAIV outbreaks across most North Atlantic Gan-
net colonies and, for the largest colony (Bass Rock, UK), provide impacts on population
size, breeding success, and preliminary results on apparent adult survival and serology.
Unusually high numbers of dead Gannets were first noted at colonies in Iceland during
April 2022. Outbreaks in May occurred in many Scottish colonies, followed by colonies
in Canada, Germany and Norway. By the end of June, outbreaks had occurred in colo-
nies in Canada and the English Channel. Outbreaks in 12 UK and Ireland colonies
appeared to follow a clockwise pattern with the last infected colonies recorded in late
August/September. Unusually high mortality was recorded at 40 colonies (75% of global
total colonies). Dead birds testing positive for HPAIV H5N1 were associated with 58%
of these colonies. At Bass Rock, the number of occupied nest-sites decreased by at least
71%, breeding success declined by c. 66% compared with the long-term UK mean and
the resighting of marked individuals suggested that apparent adult survival between
2021 and 2022 could have been substantially lower than the preceding 10-year average.
Serological investigation detected antibodies specific to H5 in apparently healthy birds,
indicating that some Gannets recover from HPAIV infection. Further, most of these
recovered birds had black irises, suggestive of a phenotypic indicator of previous infec-
tion. Untangling the impacts of HPAIV infection from other challenges faced by seabirds
is key to establishing effective conservation strategies for threatened seabird populations
as the likelihood of further epizootics increases, due to increasing habitat loss and the
industrialization of poultry production.

Keywords: avian flu, disease, immunity, seabirds, virus outbreak.

The increasing frequency and severity of disease
outbreaks linked with climate warming require
improved methods for detecting and quantifying
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impacts (Harvell et al. 2002). High pathogenicity
avian influenza virus (HPAIV) H5Nx has nega-
tively impacted wild and domestic bird popula-
tions globally for decades (Nu~nez & Ross 2019).
However, the current global panzootic of H5Nx
has seen shifts in both the seasonality of outbreaks
and the species affected (EFSA et al. 2023). H5Nx
(A/goose/Guangdong/1/1996 (Gs/GD) H5N1)
was first detected in 1996 on a domestic goose
farm in Guangdong Province, China (Xu
et al. 1999). This goose Guangdong lineage (Gs/
Gd) has since caused significant outbreaks in a
variety of bird populations and has also raised con-
cerns about the potential zoonotic consequences
for humans (Wan 2012, EFSA et al. 2023).
Genetic reassortment has led to the emergence
and evolution of multiple subtypes and genotypes
of this group of high pathogenicity viruses on a
global scale, potentially with different epidemio-
logical properties, especially with respect to host
range in wild birds (Monne et al. 2014, Falchieri
et al. 2022). The mechanism of viral transmission
is probably a combination of infected wild bird
migration and the global domestic poultry trade or
their products, although the mechanism of spread
between colonies of seabirds may involve other
types of movements (Blagodatski et al. 2021,
Ramey et al. 2022).

Low pathogenicity avian influenza virus
(LPAIV) is widely circulating in wild aquatic birds;
Anseriformes (waterfowl) and Charadriiformes
(shorebirds) are known to act as reservoirs (Venka-
tesh et al. 2018); however, we know little about
the recent emergence, spread and impact of
HPAIV in aquatic birds, including seabirds (Burg-
graff et al. 2014, Falchieri et al. 2022, Bouli-
nier 2023, Roberts et al. 2023). HPAIVs do not
originate within wild bird populations but once
they have spilled into wild populations, they are
transmitted via infected saliva, nasal secretions and
faeces; however, shedding methods differ between
species and are not well understood (Arnal
et al. 2014, Caliendo et al. 2020).

The winter of 2021/22 saw a record number of
confirmed cases of HPAIV H5N1 in poultry, cap-
tive and wild birds across Europe (EFSA
et al. 2023). HPAIV H5N1 was first detected in
UK breeding seabirds in July 2021, when Great
Skuas Stercorarius skua on Fair Isle, Scotland,
tested positive (Banyard et al. 2022). The first case
of H5N1 detected in North American seabirds was
in a Great Black-backed Gull Larus marinus in

Newfoundland and Labrador, Canada, in Novem-
ber 2021, with phylogenetic analyses revealing
that the virus was of the European H5N1 lineage
(Caliendo et al. 2022). In early April 2022, Com-
mon Eider Somateria mollissima was the first sea-
bird species to test positive for HPAIV in the UK
that year, followed in late April by Great Skuas
(Falchieri et al. 2022). Then followed an unprece-
dented epidemic in seabirds across the North
Atlantic, with Northern Gannets Morus bassanus
(hereafter Gannet), previously unknown to have
been impacted by H5Nx, being severely impacted
(Cunningham et al. 2022).

Gannets breed in 53 colonies of various sizes
(< 10 to > 60 000 breeding pairs and non-
breeding immatures) on sea cliffs, stacks and
islands across both sides of the North Atlantic
from Russia to northeastern North America (d’En-
tremont et al. 2022, Jeglinski et al. 2023). During
the breeding season, Gannets are medium-range
foragers, capable of travelling more than 1000 km
to find food (Hamer et al. 2007), whereas imma-
tures generally travel further and also prospect
other colonies (Votier et al. 2011, 2017, Grecian
et al. 2018). During the non-breeding period, Gan-
nets are migratory with birds from Iceland and the
eastern Atlantic occupying marine wintering
grounds in UK waters and Iberia, with the major-
ity wintering off the coast of West Africa (Veron
& Lawlor 2009, Fort et al. 2012, Furness
et al. 2018, Deakin et al. 2019). Birds from the
western Atlantic primarily winter along the coasts
of the eastern USA south to the Gulf of Mexico,
although some also winter off the coast of West
Africa (Fifield et al. 2014). Considering the oral–
faecal spread of avian influenza viruses, opportuni-
ties for spread between Gannets are most likely at
the colony, but may also occur at foraging grounds
and wintering areas by asymptomatic birds or birds
in the early stages of infection (Weber & Stiliana-
kis 2007), although this is a topic on which little
is known.

Globally, Gannets are classified as Least Con-
cern by the International Union for Conservation
of Nature (IUCN) due to their wide distribution
and growing populations in Europe and North
America (IUCN, BirdLife International 2023). The
European population comprises 75–94% of the
global population with 55.6% breeding in the UK
(IUCN, BirdLife International 2023). The Bass
Rock, Scotland (56°60N, 2°360W), is the world’s
largest Gannet colony with an estimated 75 259

© 2023 The Authors. Ibis published by John Wiley & Sons Ltd on behalf of British Ornithologists' Union.
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apparently occupied sites in 2014 (Murray
et al. 2015).

Understanding virus spread and infection out-
come is essential to evaluate how the HPAIV out-
break impacted Gannets and other seabirds. Here,
we provide the first comprehensive assessment of
the spatio-temporal detection of HPAIV outbreaks
at most Gannet colonies across their North Atlan-
tic breeding range. Moreover, to better understand
HPAIV transmission and immunity, and the
potential for population recovery, we present
detailed results from the largest gannetry at Bass
Rock, Scotland. We quantify the influence of the
2022 HPAIV outbreak on adult survival and
breeding success. Moreover, based on unusual
observations of Gannets with dark (as opposed to
the normal pale blue) irises in 2022, we test the
hypothesis that this is related to exposure based
on serology.

METHODS

Global context: HPAIV spread across
the North Atlantic Gannet
meta-population

To create an overview of the occurrence and spread
of HPAIV across the Gannet meta-population (as
defined by Jeglinski et al. 2023) we aimed to collate
the first date of detection of unusually high Gannet
mortalities for each Gannet colony. Direct observa-
tions of unusually high mortality or of its absence
(n = 1) were available for 22 of the 53 colonies (see
Supporting Online Information Table S1). Unusu-
ally high levels of mortality are hereby defined as
levels exceeding normal observable Gannet mortal-
ity during the breeding season. Gannet mortality at
the colony is very low in normal years, so relied on
the expertise of fieldworkers, wardens and local
observers familiar with the respective colonies.
There were no direct observations available for colo-
nies in Iceland, Norway and most of the Irish colo-
nies, because of their remoteness and inaccessibility,
but unusual numbers of dead Gannets (again
defined as difference to the background of very low
mortality in normal years) had been washing up on
beaches in the vicinity of these colonies and had
been reported to the relevant authorities or logged
on specific apps for bird observation. We made use
of these data by gathering information on dead
Gannet sightings for 2022 reported to the Norwe-
gian Species Observation System (http://www.

artsobservasjoner.no), to the Icelandic Food and
Veterinary Authority, and to the Department of
Agriculture, Food and the Marine’s Avian Check
App (https://aviancheck.apps.services.agriculture.
gov.ie/). Data were provided as number of car-
casses, date of observation and geographical coordi-
nates of observation, and we associated these
observations with the nearest Gannet breeding
colony.

We also collated information on positive
HPAIV tests associated with Gannet colonies
where available, based on carcasses sampled
directly at colonies or in the vicinity, based on data
from the national testing laboratories for the rele-
vant countries.

Case study: Impact of HPAIV on the
Bass Rock Gannet colony

Health and safety and biosecurity
Strict biosecurity and health and safety measures
were followed to ensure the safety of birds and
field workers. During handling, our personal pro-
tection equipment comprised coveralls, face masks,
goggles, disposable aprons and gloves. Safe4 disin-
fectant was used for disinfecting equipment and
footwear (see Supporting Online Information
Appendix S1).

Impact of HPAIV on apparently occupied sites,
breeding success, adult survival and immatures

Apparently occupied sites. To identify the number
of sites occupied by live birds, a DJI Matrice 300
RTK uncrewed aircraft system fitted with a DJI-
Zenmuse L1 LiDAR and photogrammetry sensor
was flown over Bass Rock between 3:07 and
3:19 PM on 30 June to count live and dead birds.
All flights were conducted from the southern tip
of the island with a Real-Time-Kinematic (RTK)
base station, in good light with light winds
(< 5 ms�1) enabling a flight speed of 4 ms�1, with
image side-lap of 70% and end-lap of 80%. The
resulting 102 images (captured with 0.001 s
shutter speed and auto ISO) collected at an
altitude of 100 m above ground level, were
processed through Agisoft Metashape (Agisoft
LLC, St Petersburg, Russia) to produce an
orthomosaic of the Bass Rock with a ground
sampling distance of approximately 3 cm (see
Supporting Online Information, Appendix S2).
The composite image was loaded into

© 2023 The Authors. Ibis published by John Wiley & Sons Ltd on behalf of British Ornithologists' Union.
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DotDotGoose version 1.5.3 (DotDotGoose
(amnh.org)) to allow manual counting of birds on
the colony. White birds were presumed to be
adults but could not be distinguished from 4- to 5-
year-old immatures. Birds were considered dead
based on spread wings or contorted body shape, or
alive if their posture was apparently natural. Birds
that could not be clearly categorized were classed
as alive to avoid overestimating the at-colony
mortality.

Immature Gannets, identified by their plumage,
are predominantly found on the fringes of the Bass
Rock colony alongside non-breeding adults. In
recent years, club sites (areas containing non-
breeding birds) on the Bass Rock have become
smaller and dominated by non-breeding adults and
older (4–5 years) immatures. Immature birds typi-
cally arrive at the colony later than breeding
adults, but club sites are full by the end of June.
Younger immature birds (2–3 years) typically
arrive later in the summer, during July and
August, and are predominately seen in flight
around the colony or on the lower ledges of the
colony just above sea height. A count of immature
and non-breeding birds was not possible because
the club sites were empty on the date of the
survey.

Breeding success. We monitored 93 active nests in
two study sites, during 14 visits between 15 June
and 14 August 2022. Nests are located on all
aspects of the Bass Rock, on ground varying from
vertical to horizontal. The study sites were located
on horizontal ground within the main colony on
the south-facing aspect. The sites were established
as study areas over 20 years ago for tagging and
marking and resighting colour-ringed breeding
adults (Hamer et al. 2000). Photographs of the
study areas were taken on the first visit and active
nests marked on the images to enable the outcome
of each nest to be determined. All nests had an
egg on the first visit, and those with a chick on 14
August were considered successful.

Adult survival. Visual searches for 370 colour-
ringed breeding adults (marked within three study
sites during 2010–21) took place weekly from 15
June until 30 July 2022 on a total of 12 days.
Gannets are site faithful, and breeders will return
annually to the same nest or within close
proximity. Nest-sites of colour-ringed birds were
repeatedly scanned from a distance of between c.

5 and 30 m, and the ring sequence of each bird
was recorded during a total of c. 11 person-
observation hours each day. Resighting of marked
birds has taken place on the Bass Rock annually
during July since 2011. We therefore constructed
annual encounter histories (1 for present, 0 for
absent) for each marked bird using resighting data
from visits made in July 2011–22 to estimate
apparent annual survival between 2011 and 2022.
We used Cormack–Jolly–Seber models for the
capture–mark–recapture analysis. The most
suitable models for open populations do not
distinguish between mortality and emigration and
produce estimates of apparent survival that assume
the probability of detection is equal (Lebreton
et al. 1992). A goodness-of-fit test showed that a
fully time-dependent (both survival (u) and
resighting (p) probabilities vary with time)
Cormack–Jolly–Seber model did not fit the data
well (goodness-of-fit: v234 = 73.33, P < 0.01) with
evidence of trap dependence (TEST2.CT;
z = �6.1484, two-sided test, P < 0.01) but no
evidence for transience (TEST3.SR; z = �1.9044,
two-sided test, P = 0.056). After accounting for
trap-dependence, a variance inflation factor (ĉ) of
1.212 was estimated by U-CARE (Choquet
et al. 2009). We set ĉ = 1.212 to account for the
over-dispersion in the data and a two-stage Time
Since Marking structure was applied to model re-
sightings with the first year after marking was set
to a constant probability but then allowed to vary
with time.

Models were specified in MARK (Version 9.0,
White & Burnham 1999) with the candidate
model set (n = 4) built so that the survival and
resighting probability parameters could vary with
year (t) or remain constant over time (c).

Serology and iris colour
Gannets have pale blue-grey irises, but from the
first monitoring visits on 15 and 16 June, Gannets
with completely black or mottled irises were
observed (in some cases there was variation
between the left and right eye, see Supporting
Online Information Fig. S1). The dark and mottled
eyes did not present like a dilated pupil, and we
suspected this phenotype to be linked to a previ-
ous or current HPAIV infection.

During September 2022 we caught 19 appar-
ently healthy adults and took c. 1 mL of blood
from the tarsal vein (under licence from the UK
Home Office; Project licence number

© 2023 The Authors. Ibis published by John Wiley & Sons Ltd on behalf of British Ornithologists' Union.
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PEAE7342F). Sampling effort focused on catching
equal numbers of birds with healthy blue-grey and
abnormally black irises. Where possible, birds with
chicks (n = 8) were caught preferentially to guar-
antee that they had been present throughout the
HPAIV outbreak. Birds without chicks (n = 11)
were caught if they appeared to be holding a terri-
tory; all birds with black irises fell into this second
category as there were no birds with black irises
and chicks. Birds were caught from seven distinct
locations to minimize potential bias in virus expo-
sure between clusters of nests.

We took external cloacal swabs from 18 of the
19 birds to test for any possible asymptomatic
HPAIV infection. Blood and cloacal swabs were
stored in a cool bag with ice blocks in the field,
then stored at c. 4°C before being transported
directly to the UK reference laboratory for avian
influenza at the Animal and Plant Health Agency.
Blood samples were tested for an indication of pre-
vious infection using a haemagglutination inhibi-
tion assay to detect antibodies to H5 avian
influenza virus (clade 2.3.4.4b) using a viral anti-
gen homologous to the outbreak virus. Birds that
tested positive for H5 antibodies were presumed
to have been infected with and recovered from
H5N1 during the 2022 outbreak. Swabs were
tested for influenza A virus nucleic acid following
RNA extraction using a matrix (M) gene-specific
real-time reverse-transcriptase polymerase chain
reaction assay (Nagy et al. 2021) and an HPAIV-
specific H5 polymerase chain reaction assay (James
et al. 2022). Birds that tested positive for avian
influenza virus were assumed to have a current
H5N1 infection. Unless already ringed, birds were
fitted with a metal British Trust for Ornithology
ring and a blue plastic Darvic ring engraved with a
unique alphanumeric code to allow future
identification.

A Fisher’s exact test was used to determine the
associations between iris colour and exposure sta-
tus. Statistical analyses were performed using R
4.1.1 (R Core Team 2016).

RESULTS

Global context: HPAIV spread across
the North Atlantic Gannet
meta-population

We gathered evidence of confirmed and suspected
HPAI outbreaks at 41 of the 53 colonies.

Unusually large numbers of dead Gannets were
detected at 40 of the 41 colonies during the breed-
ing season; only one colony (Bjørnøya) was not
affected, and 12 colonies were not monitored or
associated with observations of dead Gannets
(Fig. 1). Positive H5N1 samples were associated
with 24 of the 41 sampled colonies (58%), either
through direct sampling of dead Gannets from the
colony or by proximity of dead Gannets to colo-
nies. A small colony at Store Ulvøyholmen, Nor-
way (330 apparently occupied nests in 2015,
Barrett et al. 2017), was reported abandoned
(Børge Moe, pers. comm.) and, as dead Gannets
were reported close to the colony, this may have
been due to HPAI. One Gannet sample from a
bird found dead at Kjelmøya (Norway) tested pos-
itive for H5N5.

The first outbreaks to be detected occurred in
the northeast Atlantic in Iceland (at Eldey, Bran-
dur and Raudinupur during mid- to late April),
followed by Shetland, Scotland (Noss and Herma-
ness in early May) then the Outer Hebrides, Scot-
land (St Kilda, 10 May). Subsequent outbreaks
were then detected from early June in southern
Norway (Runde, 8 June). The concurrent, south-
wards detection occurred along the east coast of
the UK (e.g. Troup Head, mid-May, Bass Rock
early June). By mid-June, HPAIV outbreaks were
detected in northern Norway (Syltefjord, mid-
June), the southern North Sea (Heligoland, mid-
June), the Channel Islands (Les Etacs and Ortac,
late June) and the southernmost colony Rouzic,
France (early July). In July and early August, signs
of HPAI were detected in northwest Norway, the
Faroe Islands (Mykinesh�olmur) and in a clockwise
progression around the UK, followed by Wales
(Grassholm, mid-July) and then in Ireland (Clare
Island, Lambay, Bull Rock, Little Skellig, Great
Saltee, Ireland’s Eye; mid- to late August, and
early to mid-September, respectively). The north-
ernmost colony Bjørnøya (52 apparently occupied
nests in 2016, Barrett et al. 2017) appeared unaf-
fected by HPAIV. No information was available
for several remote colonies in the west and north-
west of Scotland but unusually high mortality at
Sule Skerry was detected after the breeding season
in October (Harris & Wanless 2023).

The outbreaks in the northwest Atlantic meta-
population appeared to develop in parallel to these
in the northeast, with the earliest outbreaks
detected between early and mid-May in the three
colonies in the Gulf of St Lawrence (at Rochers

© 2023 The Authors. Ibis published by John Wiley & Sons Ltd on behalf of British Ornithologists' Union.
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Figure 1. The timing of HPAIV outbreaks across the Gannet meta-population in 2022, based on the first date unusual mortalities in
adults were observed. Affected colonies (n = 40) are indicated by circles, coloured by date. Colonies where information was unavail-
able (n = 12) are indicated by open diamonds. Letter combinations indicate colony name abbreviations (for full colony name see Sup-
plementary Online Material, Table S1). (a) Geographical context; (b) colonies in the west Atlantic; (c) colonies in the east Atlantic. A
filled diamond indicates Bjørnøya (Bj, Norway, the northernmost colony, H. Strøm pers. obs.) where no signs of HPAIV were
observed. The Store Ulvøyholmen colony (SU) was found abandoned (confirmation received 29 June 2022 in litt.) No signs of HPAIV
were detected in the colony Ailsa Craig (AC) between Northern Ireland and Scotland on 28 July 2022, but there was no visit later in
the season when the surrounding colonies were affected.

© 2023 The Authors. Ibis published by John Wiley & Sons Ltd on behalf of British Ornithologists' Union.
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aux Oiseaux, Magdalen Islands and Île Bonaven-
ture) followed by the colonies in Newfoundland
throughout June (Cape St Mary’s, Baccalieu Island
and Funk Island).

Case study: Impact of HPAIV on the
Bass Rock Gannet colony

Unusually high Gannet mortality during incuba-
tion in early June 2022 was the first suggestion of
an HPAIV outbreak at the Bass Rock and subse-
quent testing of four carcasses from 4 June proved
positive for clade 2.3.4.4b HPAIV H5N1.

Impact of HPAIV on apparently occupied sites,
breeding success, adult survival and immatures

Apparently occupied sites. A total of 21 227 live
birds were counted on 30 June 2022. An
additional 5035 birds were identified as dead,
approximately 3.3% of the breeding population
(assuming 150 518 breeding adults from 75 259
apparently occupied sites, Murray et al. 2015);
however, many additional birds will have died at
sea. The distribution of dead birds across the areas
of the colony appeared uneven with clusters
observed in flatter areas of the colony and below
slopes. The club sites, traditionally full of non-
breeding adults and older immature birds by the
end of June, remained empty throughout the
entirety of the 2022 breeding season – before,
during and after the outbreak. Given the almost
complete absence of immatures and non-breeders
at the colony during June, it is highly likely that
the majority of birds counted, both live and dead,
would have been breeding adults.

Breeding success. Monitored nests declined from
93 to 23 (75% decline) between 15 June and 14
August. However, empty nest-sites on 15 June
indicated that nests had already failed before the
start of monitoring (Fig. 2). The majority of the
93 nests had failed by the beginning of July with
nest abandonment leaving gaps within the colony
(Fig. 2; Fig. S2). An index of breeding success was
estimated as 0.247 based on the presence of 23
large, apparently healthy chicks in the study areas
on 14 August. Clinical signs of viral infection,
seizures and lethargy were observed in a small
number of chicks (aged 2+ weeks) outside our
study areas, but as they were not monitored their
fate is unknown.

Adult survival. The top model showed strong
support for survival probability varying with time
and for re-sightings to vary with time following
the first year after marking (Table 1). Apparent
adult survival between 2021 and 2022 was 0.455
(95% confidence interval (CI) 0.153–0.794)
compared with an average apparent annual
survival of 0.940 (95% CI 0.771–0.993) between
2011 and 2021. The resighting probability during
2022 was 0.615 (95% CI 0.144–0.938) compared
with an average of 0.839 (95% CI 0.626–0.973)
between 2011 and 2021.

Fourteen dead recoveries of colour-ringed birds
from Bass Rock were recorded during 2022; seven
were found during June and July 2022 on the
North Sea coasts of the UK, Sweden and Den-
mark, and eight were found dead on the colony in
October. Between 2015 and 2021 three dead
recoveries of colour-ringed birds were recorded.

Serology and iris colour
All 18 birds tested negative for viral nucleic acid
from cloacal swabs, indicating that they were not
currently infected. Of the 19 blood samples, two
were insufficient for testing and eight tested positive
for H5 antibodies, indicating a previous infection.

The likelihood of testing positive for HPAIV
H5 antibodies was higher in birds with black irises
(77.7%) compared with birds with normally
coloured eyes (12.5%; Fisher’s exact test;
P < 0.05). The haemagglutinin binding antibody
levels in serum samples, assessed by a haemaggluti-
nation inhibition test, were 1/16 (n = 3) and 1/32
(n = 5, including the sample from the bird with
healthy irises; Table 2; Table S2).

DISCUSSION

We provide the first comprehensive account of the
spatio-temporal detection of HPAIV outbreaks in
Gannets at 75% of global breeding colonies. At
the world’s largest gannetry, Bass Rock, the impact
was severe with a conservative estimate of c. 3%
breeding adults dead at the colony, and annual
survival and breeding success both substantially
lower than would be expected compared with
long-term averages. However, in addition we also
found evidence from serological testing that Gan-
nets can recover from infection with H5N1 and
that a change in eye colour from pale blue to black
is a likely phenotypic indicator of a previous
infection.

© 2023 The Authors. Ibis published by John Wiley & Sons Ltd on behalf of British Ornithologists' Union.
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Global context: HPAIV spread across
the North Atlantic Gannet
meta-population

During summer 2022, HPAIV H5N1 was
recorded for the first time in Gannets, causing
mortality on an unprecedented scale across their
entire Atlantic breeding range. Positive tests from
58% of monitored colonies mean it is likely that
unusually high mortality in the 16 untested colo-
nies in 2022 was due to HPAI. Of the 41 colonies
associated with unusually high levels of Gannet
mortality, only one, Bjørnøya, the most northerly
colony in the meta-population, was confirmed to

have been unimpacted/unaffected. In addition,
strong evidence of an HPAIV outbreak at a colony
unmonitored during the breeding season, Sule
Skerry, northern Scotland (Harris & Wanless 2023),
suggests that it is likely some of the 12 colonies
where information is lacking were also affected.
The data on first detection of unusual Gannet
mortalities probably associated with HPAIV that
we present here vary in spatial and temporal preci-
sion because of the inherent differences in observa-
tion methods between different data sources.
Although Gannets are a well-studied species, we
note that sampling effort was not standardized
among colonies (e.g. uncertainty in data from
northern Norway, Iceland and some of the Irish
colonies is largely the result of the use of passive
surveillance data rather than direct colony moni-
toring), but given the scale of the mortality (e.g.
reported here for the Bass Rock colony) an out-
break would probably be obvious with only low-
intensity monitoring. Despite the acknowledged
uncertainty, the data that we present here repre-
sent the best data available at the time of writing
and they allow us to document the probable tem-
poral progression of HPAIV spread throughout the
global distribution of the Gannet. Following the
first confirmed cases in Iceland during April 2022,
HPAIV was detected almost simultaneously across
the northeast and northwest Atlantic meta-
populations. HPAIV outbreaks, confirmed and
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Figure 2. The number of active nests within two study areas
on Bass Rock; area 1 as circles, area 2 as triangles. Dotted
vertical line indicates 4 June, the date carcasses were col-
lected for testing by the Animal Plant Health Agency.

Table 1. Candidate model set for estimating annual survival of Northern Gannets from Bass Rock between 2010 and 2022. Inflation
factor (ĉ) = 1.212.

Model QAICc DQAICc AICc weights Model likelihood Num. Par. QDeviance

φ(t) p(c/t) 2031.27 0.00 0.912 1.000 24 377.31
φ(c) p(c/t) 2036.85 5.58 0.056 0.061 13 405.39
φ(t) p(c/c) 2037.94 6.67 0.032 0.036 14 404.45
φ(c) p(c/c) 2225.89 194.62 0.000 0.000 3 614.63

Effects fitted to apparent survival (u) and resighting probabilities (p) (t, time dependent; c, time constant). AICc, Akaike Information
Criterion for small samples; ΔAICc, difference in AICc between model in question and best model; Num. Par., number of parameters.

Table 2. Serological results from 17 adult Gannets from Bass
Rock tested for H5 antigen.

Iris condition

HPAIV H5 antibody status

Positive Negative

Black 7 2
Healthy 1 7

© 2023 The Authors. Ibis published by John Wiley & Sons Ltd on behalf of British Ornithologists' Union.
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inferred from dead untested birds, occurred in at
least 75% of all 53 known Gannet colonies. A
thorough estimation of Gannet mortality during
the 2022 HPAIV outbreak is beyond the scope of
this paper, but would be a highly valuable future
contribution to better understand the impact of
the 2022 HPAIV outbreak on Gannet colony and
meta-population recovery.

All positive samples collated across the north-
east and northwest Atlantic meta-populations were
subtype H5N1 apart from a single Gannet sample
testing positive for subtype H5N5 from the Sør-
Varanger municipality in Troms and Finnmark
county, Norway. In Norway, subtype H5N5 has
also been detected in 30 birds from different spe-
cies, including White-tailed Eagles Haliaeetus albi-
cilla, gulls (Laridae), Great Skuas and corvids
(Corvidae; S. Granstad pers. comm., 26 March
2023).

Possible mechanism of HPAIV
transmission between Gannet colonies

The scale and speed at which HPAIV spread
through the Gannet meta-population was dra-
matic, but the mechanism of transmission and the
subsequent spread between colonies is unclear. A
possible source may have been infectious Gannets
returning from their wintering areas. During the
spring migration, Gannets in the eastern North
Atlantic frequently perform a clockwise loop
around the UK, with Icelandic breeders arriving
earlier than those breeding on the Bass Rock (Fur-
ness et al. 2018). However, Gannets from different
colonies show some overlap in the wintering areas
(Fort et al. 2012, Furness et al. 2018), making the
sequential nature of the spread less likely to be
due to differences in migratory timing. Conversely,
the unprecedented stranding of dead adult Gan-
nets on the Dutch coast during April 2022 may be
attributable to HPAIV (although none of these
birds were tested; Camphuysen et al. 2023). The
possibility exists therefore that the disease arrived
earlier in the northeast Atlantic than colony data
suggest.

The timing of outbreaks on each side of the
Atlantic and throughout the northeast meta-
population might point towards HPAIV transmis-
sion via other infected seabirds. Great Skuas were
severely affected by HPAIV H5N1 in Scotland in
2021 (Banyard et al. 2022) and again in 2022
(Camphuysen et al. 2022, Falchieri et al. 2022).

Great Skuas breed near Gannets in Iceland, the
Faroes and northern Scotland (Birdlife Interna-
tional 2023) and these species overlap in winter
from both sides of the North Atlantic (Magnus-
dottir et al. 2012, Fifield et al. 2014, Grecian
et al. 2016). Great Skuas kleptoparasitize Gannets
(Andersson 1976) and they feed together behind
trawlers, which might explain cross-taxon spread.
Brown Skuas Stercocarius antarcticus are probably
vectors of avian cholera on Amsterdam Island,
Indian Ocean (Gamble et al. 2019), and we spec-
ulate a similar role for Great Skuas triggering the
HPAIV outbreak in Gannets in 2022. Yet this
does not explain the subsequent spread through
the Gannet meta-population, and questions
remain about why spill-over into Gannets may or
may not have occurred during the 2021 outbreak
among skuas. Similarly, waterfowl and gull spe-
cies have been found to play an important role in
intercontinental transmission of both LPAIV and
HPAIV via Iceland, the link between the East
Atlantic and North American Atlantic Flyways
(Dusek et al. 2014). Gulls are known to frequent
seabird colonies to opportunistically prey on eggs
and chicks (Donehower et al. 2007, pers. obs.)
and may therefore have played a role in virus
spread.

The subsequent clockwise spread around the
UK seems unlikely to be linked to centrally placed
adults foraging at sea, based on current evidence.
During chick-rearing, Gannets have colony-specific
foraging ranges with limited overlap (Wakefield
et al. 2013) and tend to have individual specific
foraging grounds (Wakefield et al. 2015, Votier
et al. 2017). However, the HPAIV outbreak may
have altered their movement behaviour, leading to
increased inter-colony contact (Jeglinski et al. In
Review; d’Entremont & Montevecchi unpubl.
data). Immature Gannets are another possible
route for spreading the virus while prospecting
among colonies (Votier et al. 2011). They also
have larger foraging ranges than breeders (Votier
et al. 2017, Grecian et al. 2018), and therefore a
greater chance of inter-colony overlap. Neverthe-
less, immature Gannets tend to return to the col-
ony much later than adults, being scarce during
April/May and only appearing in large numbers
during June/July (Wanless 1983, Nelson 2002), so
were unlikely to have played a role during out-
breaks during April and May, although they may
have played a role during outbreaks later in the
breeding season (Fig. 1).

© 2023 The Authors. Ibis published by John Wiley & Sons Ltd on behalf of British Ornithologists' Union.
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More research into virus incubation and length
of infectious period in addition to possible trans-
mission pathways between species that overlap in
their wintering, migratory and breeding areas is
paramount (Hill et al. 2022).

Case study: Impact of HPAIV on the
Bass Rock Gannet colony

A routine visit to the Bass Rock on 28 May 2022
indicated nothing untoward at the colony, yet
fresh dead Gannets found on the beaches closest
to the Bass Rock on 30 May prompted a visit on
4 June, during which unusual levels of mortality
and sick birds were seen. Increasing numbers of
dead and sick birds were seen throughout June,
and July saw a reduction in sick and dying birds
and an increase in birds seemingly returning to
previously occupied sites; we estimate that the
disease had passed through the colony by 23 July.
Footage from the uncrewed aircraft system on 30
June recorded 5035 dead individuals at the col-
ony, which represented c. 3% of breeding adult
Gannets on Bass Rock. Our conservative count
means that this is likely to be an underestimate of
the total number of adults that died because some
dead birds may have been counted as alive, it
excludes decomposed birds or those that died at
sea (Himes Boor & Ford 2019), and it does not
account for the colony growth since 2014 (Mur-
ray 2017). This figure compares with an esti-
mated (from ring recovery data) 3500–4300 dead
adult birds from the Alderney colonies (Atkinson
unpublished) and 3100 dead Gannets (< 4% of
birds) from the two largest Irish colonies detected
in aerial surveys (Paradell et al. 2023). In addi-
tion, 7% mortality was estimated at Mykinesh�ol-
mur, Faroe Islands (unpublished), and 6% at Sule
Skerry, Scotland (Harris & Wanless 2023), both
from aerial counts, although the Sule Skerry
count was performed at the end of the breeding
season. Variation in mortality rates could be
linked to the timing of the outbreak in relation to
the stage of the breeding season, with mortality
rates higher at colonies affected earlier in the sea-
son when colony attendance is higher (Paradell
et al. 2023). Evidence from other colonial seabirds
badly affected in 2022, particularly Great Skuas
and Sandwich Terns Thalasseus sandvicensis, indi-
cates that outbreak timing had an impact on the
severity with higher numbers of dead adults
found in the colony when the outbreak occurred

earlier in the season (Camphuysen et al. 2022,
Knief et al. 2023).

Uncrewed aircraft system counts in late June
indicated that the colony was c. 71% smaller than
during the last full colony count in 2014 (Murray
et al. 2015). However, the colony had grown since
2014 (Murray 2017) so again, this is almost cer-
tainly an underestimate, although the different
methodologies and counting units make a direct
comparison difficult.

The almost complete absence of immature birds
at club sites throughout the breeding season was
striking and the reason for this is unknown. The
mass stranding of Gannets along the Dutch North
Sea coast during April and May 2022 was predom-
inately made up of adult birds, though in May, a
notable increase in the proportion of birds with
immature plumage compared with the long-term
average was recorded (Camphuysen et al. 2023),
perhaps indicating that non-breeding adults and
immature birds had been disproportionately
affected at sea while on their return migration.
However, these birds were never tested and the
lack of data on both live and dead immature birds
at both the Bass Rock and across the meta-
population means the impact of HPAI on imma-
ture birds is difficult to assess.

Around one-quarter of nests with an egg on 15
June still had a chick in late August, which is
much lower than the mean UK Gannet breeding
success during 1961–2018 (mean � standard devi-
ation 0.72 � 0.12; Jeglinski et al. 2023). There are
methodological differences in approach, but the
comparison provides a further indication of the
severe impact of the virus. The primary cause of
breeding failure appeared to be nest abandonment,
either when adults did not return from foraging
trips or died at the nest.

Apparent adult survival in 2021/22 was 0.455,
substantially lower than the average of 0.940 (95%
CI 0.771–0.993) between 2011 and 2021. Not-
withstanding the inflated uncertainty in the 2022
survival estimate, the reduction in the number of
re-sighted colour-ringed birds, in association with
the unusually high number of dead recoveries,
indicates that a large proportion of adults failed to
return to the colony in 2022 as a result of mortal-
ity or disturbance; however, a full assessment of
the impact on adult survival will have to wait until
2023 when visual searches will be made for
returning birds. Similar to most seabirds, Gannets
are a long-lived species, making their populations

© 2023 The Authors. Ibis published by John Wiley & Sons Ltd on behalf of British Ornithologists' Union.
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particularly sensitive to changes in adult survival,
so the consequences of a significant reduction in
adult survival could be considerable (Croxall &
Rothery 1991). The distribution of dead birds
across the colony suggests an influence of topogra-
phy on virus spread, with flatter areas appearing to
contain higher numbers of carcasses. However, it
is not known how many of these birds were from
other areas of the colony; sick birds nesting on
steeper ground are likely to have fallen straight
into the sea and gone undetected in the count.

Despite a modest sample size, our study suggests
that Gannets infected with HPAIV H5N1 can sur-
vive, with important implications for the long-term
consequences of the virus. We also found that black
iris coloration in otherwise apparently healthy Gan-
nets was a probable indicator of previous infection.
One seropositive bird had healthy irises, but this
may be related to a different subtype of HPAIV or
LPAIV (Wilson et al. 2013), to waning antibody
levels following previous infection, or may suggest
that not all infected birds develop black irises. We
suggest that the two birds with black irises that
tested negative for antibodies had previously been
infected but had already lost the antibodies; how-
ever, further investigation is needed to inform on
antibody persistence. That no birds with black eyes
were seen to have chicks at the time of sampling in
September when chicks would be expected to be
close to fledging was an interesting observation, and
we suggest that this indicates infected birds aban-
doned their nesting attempts when infected but
subsequently returned when recovered to maintain
their territory.

Changes in iris colour in birds is not abnormal,
with age being the most commonly identifiable
factor (Corbett et al. 2023), which does occur in
Gannets; juvenile Gannet eyes change from either
dark blue-grey or dark brown to pale blue-grey by
adulthood (J.V. Lane and M. Sheddan pers. obs.).
Evidence of changes in colour and eye condition
related to disease is limited, but cloudy eyes have
been observed in Herring Gulls Larus argentatus
and ducks experimentally infected with HPAIV
(Brown et al. 2008, Yamamoto et al. 2016).
Changes in human eye colour in association with
disease have also been documented (Soydan &
Kaymaz 2023). Our study is the first we are aware
of to document changes to the iris colour of wild
seabirds previously infected with HPAIV but a
post-mortem examination will be required to
determine the mechanism.

If black eyes can be used as a non-invasive diag-
nostic method for monitoring recovered and now
immune individuals, this has important implica-
tions for population modelling through establishing
potential impacts of the virus on fecundity and
longer-term survival.

Black eyes have been reported in Gannets once
before, but the reason is unknown (J. Swales pers.
comm., Balfour 1922). During the HPAIV out-
break in 2022, Gannets with black irises were also
reported from colonies in the UK (Bempton Cliffs,
Grassholm and Ortac), France (Rouzic), Germany
(Heligoland) and Canada (̂Ile Bonaventure). In
early spring 2023, Gannets with black irises were
observed at the Bempton Cliffs, Bass Rock, Troup
Head, Rouzic and Les Etacs colonies, suggesting
the potential for a longer-lasting or even perma-
nent modification of the iris.

Study challenges

The outbreak of HPAIV H5N1 across North
Atlantic seabird colonies during 2022 was unprec-
edented and presented challenges for even the
most experienced field teams to deliver the
detailed studies warranted for such a novel and
serious threat to seabird populations. Our work
presents evidence of the temporal detection of the
virus across the Gannet meta-population and how
the largest, and one of the best studied, colonies
was impacted. There is still considerable work to
be done to understand the full impacts across the
meta-population and we intend for the work pre-
sented here to contribute to our understanding
while acknowledging its limitations and highlight-
ing knowledge gaps.

CONCLUSION

Future research should quantify changes in demog-
raphy (i.e. population size, adult survival and breed-
ing success) of Gannets and other impacted seabirds
while also assessing space-use during breeding and
non-breeding seasons and whether previously
infected birds have developed immunity in order to
model disease progression and long-term impacts of
HPAIV (Cunningham et al. 2022, Hill et al. 2022,
Pearce-Higgins et al. 2023). Additionally, assess-
ments of infection and mortality rates in different
age classes, and of how previous infection might
influence fertility or the outcome of a second infec-
tion are also needed (Wilson et al. 2013). Juvenile

© 2023 The Authors. Ibis published by John Wiley & Sons Ltd on behalf of British Ornithologists' Union.
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Gannets have been found to carry antibodies to
HPAIV (Gr�emillet et al. 2023) but it is unknown
whether these were maternally derived or produced
in response to infection (DeVriese et al. 2010).

Black irises may provide a useful non-invasive
diagnostic tool, but more work is required to bet-
ter understand its efficacy, if it applies to any other
species, and whether there are any potential costs
in terms of vision. Ophthalmology examinations or
histopathology examinations are also required to
determine what is causing the black coloration. It
is also desirable to better understand the circula-
tion of LPAIVs and previous exposure to antigeni-
cally related HPAIV sub-types in seabird
populations to better understand potential cross-
protective immunity, as well as the potential for
compensatory recruitment to offset mortality
(Votier et al. 2008, Jeglinski et al. 2023).

If sampling for live virus, we recommend cloa-
cal swabs be taken in conjunction with oropharyn-
geal swabs (van den Brand et al. 2018, Suarez
et al. 2000) because of possible differences in virus
genotype detectability (Slomka et al. 2023). Pri-
mary flight feathers can also be used as a diagnos-
tic indication of systemic viral infection as
infectious virus can be detected in these samples
(Nuradji et al. 2015).

The 2022 HPAIV H5N1 outbreak has provided
another significant stressor to those already faced
by our rapidly declining seabird populations (Dias
et al. 2019, Careen et al. 2023) – quantifying and
perhaps even mitigating its impact is therefore cru-
cial if we hope to see a healthy seabird assemblage
across the world’s oceans.
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SUPPORTING INFORMATION

Additional supporting information may be found
online in the Supporting Information section at
the end of the article.

Appendix S1. Health and Safety, and Biosecur-
ity Protocols – working on Bass Rock.

Appendix S2. Collection of Uncrewed Aircraft
System data – detailed methodology.

Figure S1. Images of Gannets on the Bass Rock
colony in 2022 with black flecking in their irises.

Figure S2. Images of nest failures, apparent
from gaps between birds, and dead birds in study
area 2 of the Bass Rock and comparison photos of
the same area from before the outbreak in 2022
and in 2021.

Table S1. Names, abbreviations and the first date
when unusually high mortality in adult Gannets was
detected at colonies across the meta-population.

Table S2. Serology results for H5 antibodies
and iris colour of 17 Gannets on Bass Rock in
September 2022.
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