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Abstract 

Silvennoinen, H., Venter, Z., Hansen, J., Fandrem, M., Lunde, L.M., Lyngstad, A., Kyrkjeeide, M.O., 
A’Campo, W. & Nilsen, E. 2023. Roadmap for generating a soil map for Norwegian pristine mires. 
NINA Report 2374. Norwegian Institute for Nature Research.  

Under the umbrella of larger project ‘Økologik tilstand’, we created a roadmap for mapping soil 
biogeochemistry of Norwegian mires. Mapping soil characteristics, especially carbon and nitro-
gen stocks as well as their other chemical parameters, as well as physical and biological varia-
bles is important to better understand the consequences of various planned disturbances as well 
as their magnitude.     

We searched for the availability of existing Norwegian contemporary and historical data to char-
acterize future data requirements and to test predictive models applying remote sensing tools. 
To the date, only two datasets are available: a small limited contemporary data set published in 
Kyrkjeeide et al. (2023) and a large historical dataset collected by ‘Myrselskapet’ (Hovde 1971) 
and published and stored by NIBIO.   

We digitalized and georeferenced this historical dataset, which is now published in Living Norway 
(Silvennoinen et al. 2023). The consists of various types of peatlands including drained and pris-
tine and used selected parts of it to test the predictive models for mapping carbon and nitrogen 
densities. This was done as a pilot project to explore the potential for remote sensing and spatial 
modelling to monitor Norwegian mires. Our pilot study revealed that although we could map 
carbon and nitrogen densities, the models were attributed with large uncertainties. The models 
explained between 22 and 24% of the variance in carbon and nitrogen densities. This highlights 
the need for gathering contemporary in-situ field data for training and ground-truthing remote 
sensing models before they can be used for developing national soil maps for mires. The limited 
amount of ‘Myrselskapet’ data which is spatially biased (ie. concentrated in selected areas in 
Norway) combined with data age (between 61 and 85 years old) makes spatial modelling of mire 
geochemistry challenging. The dataset is also limited in the amount of data for critical variables, 
namely peat depth, in order to compute carbon and nitrogen stocks reliably.   

Ongoing national soil monitoring programs concentrate on agricultural (JORVAAK - program) 
and forest soils (‘Overvåking av jordkarbon i skog og beitemark’) but fail to cover pristine mires. 
To generate a soil map for Norwegian mires, we emphasize the need for contemporary national 
data for ground-truthing remote sensing modelling methods. At this end, we recommend a one-
time intensive sampling campaign (carbon, nitrogen and basic soil physical parameters with ver-
tical and horizontal distribution along with peat depth measurements) for main mire types in Nor-
way to generate a database that can be used to calibrate results from less intensive campaigns 
with larger geographic coverage. The generated data should be maintained in open access da-
tabases.   

Estimated costs to generate a national soil map for peatlands are following: 
1. Intensive data collection from selected mires to calculate carbon stocks
2. Extensive collection of peat depth data with large national coverage
3. Modelling the soil map

Costs related to point 1 are 1 450 000 kr for sampling of selected 30 mires. These costs include per-
sonnel and analysis costs but exclude travel costs. Inclusion of nitrogen analysis will increase the 
cost estimate by 500 000 kr.  

We also recommend that soil depth measurements are included in ongoing soil monitoring programs 
on peatlands, which have broad national coverage (e.g., ANO). Costs related to point 2. are 75 000 
kr per year (coordination, planning and data-analysis), and added field sampling costs of 15 000 -
30 000 kr (without travel costs) per ANO – location. Price per ANO-location varies depending on size 
and depth of mires at the location. Adding soil sampling (for better recording of carbon stocks) will 
increase prices per ANO- location by an estimated 10 000 kr.   
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Costs related to point 3. remote sense modelling of soil carbon content in 3-5 years are estimated to 
be 800 000 kr – 1 200 000 kr, assuming that data collection presented in points 1 and 2 are carried 
out.   

Current methodology for measuring peat depth (the most critical parameter to quantify soil car-
bon stocks) is laborious and time consuming. Various methods including landscape modelling 
and remote sensing are being tested and developed internationally. Building up competence and 
incorporating such techniques in Norway would significantly expedite developing a comprehen-
sive map for soil carbon stocks in Norwegian mires.   



NINA Report 2374 

5 

Sammendrag 

Silvennoinen, H., Venter, Z., Hansen, J., Fandrem, M., Lunde, L.M., Lyngstad, A., Kyrkjeeide, M.O., 
A’Campo, W. & Nilsen, E. 2023. Roadmap for generating a soil map for Norwegian pristine mires. 
NINA Report 2374. Norwegian Institute for Nature Research.  

Kartlegging av jordegenskaper er viktig for å bedre forstå konsekvensene av menneskeskapte for-
styrrelser på jordsmonnet og omfanget av disse. I tilknytning til dette prosjektet har vi laget et forslag 
til veikart for "jordsmonnskart over norske myrer". Forslaget tar utgangspunkt i en pilot, - et modelle-
ringsprosjekt der vi har brukt myrdata som tidligere er samlet inn. I denne piloten har vi testet metoder 
og hvilke databehov som må på plass for å beregne lagre av karbon og nitrogen i norske myrer. 
Metoden som ble testet er en kombinasjon av fjernmåling og romlige modellering ved bruk at maskin-
læring.    

I piloten undersøkte vi nåværende og historiske data med relevans for piloten der vi skulle teste pre-
diktive modeller ved hjelp av fjernmålingsverktøy kombinert med feltdata for å estimere karbon og 
nitrogenlagre i myr. Vi identifiserte to datasett som var tilgjengelig for piloten: et lite, begrenset data-
sett samlet inn i nær nåtid publisert i Kyrkjeeide et al. 2023 og et stort historisk datasett samlet inn av 
Det norske Myrselskap (Hovde 1971) og publisert som pdf-er av NIBIO. Dette historiske datasettet 
fra 1900-tallet måtte digitaliseres før vi kunne benytte det i piloten. Datasettet er nå publisert i Living-
Norway (Silvennoinen et al. 2023).  Datasettet bestod av ulike typer torvmark, inkludert både drenert 
og urørt torvmark. Vi brukte utvalgte deler av datasettet som bakkesannheter til å teste fjernmålings-
modellene.  Vi vurderte dette som en mulig og effektiv tilnærming for en framtidig utforming av jords-
monnskart karbon- og nitrogenlagre i norske myrer i Norge.     

Pilotstudien viser at det er mulig å lage jordsmonnskart for myr der både karbon og nitrogenlagre er 
beregnet. Resultatet av modelleringen ga en viss usikkerhet og modellene forklarte mellom 22 og 24 
% av variasjonen i karbon- og nitrogenlageret per arealenhet. Pilotstudien viser således at det er 
behov for å samle inn nye data fra nærmere vår tid og med en bedre romlig representativitet for videre 
modelleringsarbeid. Få og til dels gamle feltdata fra et begrenset område i Norge ga betydelige be-
grensninger for framstilling av jordsmonnkart i piloten. Nødvendige og kritiske data for framtidig mo-
dellering er særlig torvdybde. Torvdybde er nødvendig for å kunne beregne karbon- og nitrogenlagre 
på en pålitelig måte.    

Nasjonale jordsmonnsovervåkingsprogram for åpen myr er for tiden ikke dekket av noen av de pågå-
ende jordsmonnsovervåkingsprogrammene. Framover er det planlagt innsamling av jordprøver i skog 
gjennom prosjektet ‘Overvåking av jordkarbon i skog og beitemark’ og i jordbruksjord gjennom det 
nyetablerte JORDVAAK-programmet.  Vi anbefaler derfor at det for åpen myr etableres en intensiv 
innsamling av jordprøver på et utvalg lokaliteter som analyseres for karbon, nitrogen og grunnleg-
gende jordfysiske parametere med vertikal og horisontal fordeling. Ved økt kunnskap om karbon og 
nitrogeninnhold i øverste jordlag får man kunnskap som er viktig for vegetasjonen. I tillegg til den 
intensive kartleggingen er det behov for torvdybdemålinger for de viktigste myrtypene. Sammen med 
kjennskap til vertikal fordeling av jordfysiske egenskaper gir dette grunnlag for å beregne totalt kar-
boninnhold. Disse nye intensivt innsamlede dataene vil legge grunnlaget for å kalibrere innsamlinger 
av data fra mindre intensive kampanjer med større geografisk dekning. Alle data som samles inn 
anbefales å inkluderes i en åpen tilgjengelig database.   

Kostnader for å få laget et nasjonalt jordsmonnskart er knyttet til: 
1. Intensiv innsamling av data i et begrenset sett med myrer for beregning av    karbon lagre
2. Ekstensiv innsamling av torvdybdemålinger
3. Modellering av jordsmonnskart 

Kostnader for punkt 1) er beregnet til 1 450 000 kr. Dette inkluderer kostnader for intensiv prøvetaking 
av karbon i 30 myrer (inkludert personell og analysekostnader, eksklusiv reisekostnader). Hvis man 
også ønsker å inkludere nitrogenmålinger gir dette en tilleggskostnad på 500 000 kr.   
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Vi anbefaler at torvdybdemålingene legges inn pågående overvåkingsprogrammer med bred nasjonal 
dekning, der myr inngår (f.eks. ANO). Kostnader knyttet til punkt 2) er anslått til 75 000 kr per år 
(koordinering, planlegging og dataanalyse) og økt feltkostander på 15 000-30 000 kr per ANO- flate 
(uten reisekostnader da vi antar dette allerede er dekt). Prisene per lokalitet vil variere med størrelse 
og dybde på myrene på stedet. Å legge til jordprøvetaking (for bedre bestemmelse av karbonlager vil 
øke kostnadene per ANO-lokalitet med anslagsvis 10 000 kr.    

Kostnader for punkt 3) modellering av karboninnhold i jord om 3-5 år basert på fjernmålingsmetodik-
ken vi benyttet her, anslås til 800 000 -1 200 000 kr. Dette forutsetter at det er samlet inn tilstrekkelig 
med nye data i punkt 1) og 2).     

Dagens metodikk for måling av torvdyp (den mest kritiske parameteren for å kvantifisere karbonlage-
ret i jordsmonnet, er arbeidskrevende og tidkrevende. Ulike metoder, inkludert landskapsmodellering 
og fjernmåling, testes og utvikles nå internasjonalt for å utvikle en mer kostnadseffektiv måte å måle 
torvdybde på. Her kan data fra den intensive innsamlingen benyttes som bakkesannheter for de nye 
og innovative metodene. Ved å bygge opp kompetanse og ta i bruk slike teknikker i Norge, vil det 
være mulig å utvikle et omfattende kart over karbonlagrene i norske myrer.    
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Foreword  
  
‘Roadmap for generating soil map for Norwegian pristine mires’ was conducted as a sub-project 
under ‘Indikatorer for økologisk tilstand i våtmark, semi-naturlig mark og naturlig åpne områder under 
skoggrensa” (Nybø et al. 2023). This independent report allows us to present more details than in the 
report from the main project.  
  
Information on distribution, variability and vulnerability of soil carbon stocks is urgently needed in 
Norway for national and regional purposes. The scope of this project was to test the potential of 
remote sensing modelling for generating a national biogeochemistry map for mires with national cov-
erage. The project further aimed at exploring the steps required for generating such a map.  
  
The project was coordinated by Hanna Silvennoinen supported by Zander Venter. Zander Venter was 
responsible for digitalization of historical database as well as for supervising the work for the remote 
sensing modelling. Marte Fandrem searched and provided the data from ‘Det Norske Myrselskap’ 
and Linn Marie Lunde digitalized and georeferenced the dataset. Jenny Hansen and Willeke A’Campo 
carried out the modelling. Magni Olsen Kyrkjeeide, Anders Lyngstad and Marte Fandrem have par-
ticipated in developing recommendations for sampling methodology for peat depth and carbon con-
tent. Erlend Nilsen organized and imported the data under Living Norway.   
  
1.12.2023 Hanna Silvennoinen  
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1 Introduction   
   
Norwegian pristine mires are under pressure, especially from various building projects for differ-
ent infrastructures in local and national level. Increased awareness on vulnerability of these eco-
systems and ecosystem services they provide (e.g., carbon stock, carbon sequestration, biodi-
versity, water retention), has led to prohibition of drainage for forestry and to initiatives to prohibit 
drainage for agriculture. Legislation, monitoring, and surveillance of various construction projects 
targeting pristine mires remains insufficient.   
  
Therefore, there is an urgent need to better understand not only the distribution of pristine mires 
and mire types in Norway but also develop maps to elaborate the distribution of most important 
biogeochemical elements (carbon, nitrogen) in mires locally and nationally. Generating a bioge-
ochemistry map for Norwegian pristine mires eventually using field data with remote sensing and 
machine learning is a method that can potentially be used to reach this goal. Such method, and 
remote sensing workflow when tested, can also be used for mapping carbon stocks and other 
biogeochemical variables in other ecosystem types such as grassland, forest or land use types 
such as croplands.  
  
To spatially resolve (i.e., map) subsurface biogeochemical variables in mires, it's necessary to 
measure them directly with in situ samples, or develop models that factor in hydrological, bio-
physical, and topographic variables (Campbell et al. 2022). Hydrology, biophysical and topo-
graphic variables are the most important determinants of spatial variation in mire biogeochemis-
try. At the local scale this data can be obtained directly from the site using in situ sampling meth-
ods. However, for mapping and monitoring on a regional and global scale, a blend of in-situ data 
and remote sensing observations is essential. Although remote sensing introduces some uncer-
tainty, it is vital for identifying spatial differences that onsite data alone can't provide. A review of 
344 studies involving remote sensing of wetlands showed that the majority of work has focussed 
on mapping wetland types (Jararzadeh et al. 2022). The other application domains included an-
alysing wetland phenological changes, surface vegetation types and biomass and wetland ex-
tent. Only 5% of the studies mapped wetland chemical content (mostly carbon). Nevertheless, 
the remote sensing maps of wetland biogeochemistry can often be produced in combination with 
maps of wetland types.  
  
Carbon stock of Norwegian mires remains poorly characterized. Datasets with relatively broad 
national coverage for peatlands drained for both agriculture and forestry exist, whereas data from 
pristine mires are sparse constituting of only two datasets that can be used to compute carbon 
stocks are available. One of them is a historical data from ‘Det Norske Myrselskap’ collected as 
part of the inventory program of potential peatlands for development and use in the time period 
1930-1980 (Hovde 1971; hereinafter referred to as ‘Myrselskapet’ data or dataset) The only pub-
lic contemporary dataset for carbon stocks of pristine mires (Kyrkjeeide et al. 2023) is limited to 
few mires, that are classified by dominant mire types in Norway.   
  
This work consisted of four main components: 1) acquiring, digitalizing and georeferencing the 
‘Myrselskapet’ data (Hovde 1971), 2) importing the data to Living Norway database (Silven-
noinen et al. 2023), 3) testing the potential of remote sensing tools combined to machine learning 
to expedite generation a national biogeochemistry map for Norway using the ‘Myrselskapet’ data 
and 4) creating a roadmap for a biogeochemistry map for Norwegian pristine mires.   
  
In this report we concentrate primarily on carbon and nitrogen stocks as those data are available 
in the currently existing national data elaborated above. It is however important to keep in mind 
when evaluating the need for national soil monitoring programs and related costs, that other soil 
properties also play a critical role for ecosystems and their functioning. Peatlands are important 
in flood and fire control and function as buffer areas for leaching of nutrients. Importance of soil 
biodiversity is currently heavily emphasized at European level.  
 



NINA Report 2374 
 

11 

2 Pilot study using historical data    
   
The primary objective of this pilot study was to derive biogeochemical attributes for a set of mires 
across Norway from a historical data set, ‘Myrselskapet’ to use as response variables in models 
containing remotely sensed predictor variables. Remote sensing offers a more affordable way to 
gather knowledge, allowing for broad, detailed data collection at consistent times. This method 
yields extensive and useful data sets, as long as they accurately reflect real-world conditions 
and include measured uncertainty. It also requires a robust data infrastructure and mapping so-
lution for the final user. Internationally, many studies have shown the potential remote sensing 
has for mapping and classifying wetlands (Venter et al. 2021a). However, there is less research 
on how remote sensing can be used to map wetland biogeochemistry. Optical remote sensing 
of wetland physical and chemical content relies on using spectral responses of surface vegeta-
tion as a proxy for the sub-surface content. Alternatives to optical remote sensing are active 
radar sensors which have the ability to penetrate the surface vegetation and in some cases the 
top layer of soil. However, aerial and satellite remote sensing are not able to directly sense wet-
land soil content. Nevertheless, landscape variables such as terrain and surrounding land cover, 
climate, and satellite-derived spectral responses can all be used to model and predict wetland 
biogeochemistry in the same way it has been done for other ecosystems (e.g., Venter et al. 
2021b).  
  
In this pilot study, we used data gathered by ‘Det norske myrselskap’ to test the remote sensing 
of mire nitrogen and carbon density. We aimed to determine (1) which remote sensing variables 
might best predict biogeochemical attributes in mires across Norway, (2) how accurately ma-
chine learning models could predict mire biogeochemistry, and (3) what are the areas for im-
provement in terms of collecting better in-situ data in the future.    
   
A secondary objective is to assess the value and challenges of working with a historic data set 
like the ‘Myrselskapet’ -dataset for future carbon modelling in Norway. The dataset is from the 
period 1940-1960 and has been stored as PDFs with NIBIO. We digitized these maps by defining 
polygons around each sampled mire, linking them to the biochemistry data. Although this is an 
important resource, the age of the data, spatial distribution, and method of digitizing can pose 
some challenges for future use of the dataset.   
 

2.1 Methods   
   
2.1.1 Study area   
   
The study area (Figure 1) encompasses Norway, with records in five counties and 49 municipal-
ities. Counties containing mires are: Innlandet, Møre og Romsdal, Nordland, Troms og Finnmark, 
Trøndelag, and Viken. Municipalities that have at least one mire are: Alstahaug, Andøy, Aremark, 
Aukra, Averøy, Brønnøy, Bø, Dønna, Elverum, Giske, Hadsel, Halden, Hamar, Hareid, Harstad, 
Herøy, Hustadvika, Indre Fosen, Kvæfjord, Leirfjord, Lurøy, Løten, Meløy, Molde, Namsos, Nær-
øysund, Osen, Ringsaker, Rosse, Rødøy, Smøla, Sortland, Steigen, Steinkjer, Sømna, Sør-Va-
ranger, Trysil, Træna, Ulstein, Vardø, Vega, Vestnes, Vestvågøy, Vågan, Våler, Øksnes, Ørland, 
Åfjord, and Ålesund.   
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Figure 1. Map of Norway showing mire locations (centroids). Topographical variation in terrain 
around the mires can be seen in the region.   
 
2.1.2 Data and mire polygons   
  
The ‘Det norske myrselskap’ dataset was obtained from NIBIO in the form of PDF documents 
with tables of biogeochemistry measurements and associated hand-drawn maps. When consol-
idated, the dataset comprises various biogeochemical variables unevenly sampled from mires 
across Norway. We digitized 348 polygons from <source>, in manually outlining the hand-drawn 
mire polygons in QGIS using landscape features and orthophotos for reference. We then linked 
the polygons by name to the ‘Myrselskapet’ data. Specifically, we extracted values for ash per-
centage, bulk density, peat depth, and nitrogen content (measured in kg per dekar up to a 20 cm 
depth). To calculate the carbon stock per mire, we employed the formula:    
  
Peat depth × Bulk density × (Ash percent ÷ 100) × 0.5  
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where ash percent was used as loss of ignition corresponding to the amount of soil organic 
matter. 0.5 is a conversion factor soil organic matter/soil organic carbon according to Pribyl 
(2010).  
  
 We divided the original nitrogen data by 1000 to obtain nitrogen stock in kilograms per square 
meter. The density distribution of carbon and nitrogen stocks are shown in Figure 1. We suc-
cessfully matched 320 digitized polygons with corresponding biogeochemical variables (from 
time period 1930-1980) for use in our modeling procedure.  
  
It is important to note that when we refer to “stocks” we are referring to C or N density per square 
meter of mire which is commonly referred to as “density”. To calculate actual C or N stock for a 
mire, the density would be multiplied by the area of the mire.  
   
2.1.3 Remote sensing variables   
   
We imported the 320 polygons into Google Earth Engine (GEE) as a feature collection and ag-
gregated predictor variables over each polygon. Predictor variables are the terrain, climate and 
remote sensing variables used to extrapolate (ie. predict) mire nitrogen and carbon densities 
over space. Below is a list of remotely-sensed variables that were extracted for each mire poly-
gon and used as predictor variables for the models.   
  
Terrain variables were extracted from the Norwegian digital terrain model and digital surface 
model (https://hoydedata.no/LaserInnsyn2/) with 10 m resolution and are as follows: minimum 
elevation, mean elevation, maximum elevation, slope, aspect, and canopy height model (CHM).    
  
Climate variables were extracted from the WordClim data set (Fick and Hijmans 2017) and are 
as follows: isothermality, annual mean precipitation, precipitation seasonality, precipitation of 
coldest quarter, precipitation of warmest quarter, precipitation of driest month, precipitation of 
driest quarter, precipitation of wettest month, precipitation of wettest quarter, annual mean tem-
perature, temperature annual range, mean diurnal range, temperature seasonality, mean tem-
perature of coldest quarter, min temperature of coldest month, mean temperature of warmest 
quarter, max temperature of warmest month, mean temperature of driest quarter, and mean 
temperature of wettest quarter.    
  
Biological variables were extracted from the Sentinel 2 satellite imagery available on GEE. We 
term these “biological” because the spectral responses from mires are a god proxy for the surface 
vegetation structure and composition. The spectral data extracted include: median blue band 
reflectance, median green band reflectance, median red band reflectance, median R1 reflec-
tance, median R2 reflectance, median R3 reflectance, median NIR reflectance, median SWIR1 
reflectance, median SWIR2 reflectance, NBR standard deviation, spring NDVI, fall NDVI, sum-
mer NDVI, 5th percentile of NDVI, 25th percentile of NDVI, median NDVI (50th percentile), 75th 
percentile of NDVI, 95th percentile of NDVI, NDVI texture standard deviation, 5th percentile of 
NDSI, 25th percentile of NDSI, median NDSI (50th percentile), 75th percentile of NDSI, and 95th 
percentile of NDSI.    
  
We also extracted synthetic aperture radar backscatter from the Sentinel 1 imagery on GEE. 
Radar responds to the vegetation structure and moisture content and can be given complemen-
tary information to optical data (Sentinel-2). The variables extracted included: median dual-po-
larization ascending orbit, median VH polarization ascending orbit, VH polarization standard de-
viation ascending orbit, median VV polarization ascending orbit, VV polarization standard devia-
tion ascending orbit, median dual-polarization descending orbit, median VH polarization 
descending orbit, VH polarization standard deviation in descending orbit, median VV polarization 
in descending orbit, and VV polarization standard deviation in descending orbit.   
  
Prior to use in models, predictor variables were checked for missing values, outliers, and collin-
earity. In every type of predictor (terrain, climate, and biological), several variables were highly 
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collinear (ie. they were strongly correlated with one another). This partially informed our choice 
to use random forest regression, which is typically not affected by multicollinearity of predictor 
variables.   
  
2.1.4 Statistical analysis   
   
Due to the constraint of limited sample sizes (at most n = 294 for nitrogen stock), three separate 
models for each response variable (6 total training models – 2 response variables x 3 types of 
predictor variables) were constructed to prevent overfitting. These grouped models were fit for 
1) terrain, 2) climate, and 3) biological variables. Prior to fitting models, we imputed missing 
values for the predictor variables.   
   
For each model, the dataset was divided into training and testing sets, with 75% of the data used 
for training and 25% reserved for testing, through stratified (strata = response variable) random 
sampling. We created a dataset from bootstrap resampling to perform cross validation and fine-
tune the hyperparameters of the Random Forest models. We used a grid of size = 50 to randomly 
try different combinations of the following hyperparameters: number of trees in the forest (trees), 
number of variables sampled at each split (mtry), and minimum number of data points in a node 
(min_n). Hyperparameters were tuned using the tune grid function from the ‘ranger’ (Wright and 
Ziegler 2017) package in R and performance metrics were used to select the best fitting model 
for each response variable.    
   
We evaluated the importance of predictors for each group model to determine which variables 
would be retained for the final set of models. Post-training, a variable importance plot was gen-
erated using the ‘vip’ (Greenwell and Boehmke 2020) package to rank the importance of each 
predictor. We used importance values combined with collinearity to select the final variables. 
Variables were selected in order of the importance and could not have a relatedness coefficient 
greater than ±0.7 with any of the other predictors in the model.   
   
We took the retained predictors from each grouped model and created a final model that con-
tained all predictors from the terrain, climate, and biological groups that were found to be im-
portant. The procedure for fitting and assessing the final models was identical to that of the 
grouped models.   
   
2.1.5 Model prediction/performance   
  
In order to generate spatially-explicit predictive maps of carbon and nitrogen stock, we identified 
a subset of 2061 mires from the county of Møre og Romsdal. Mires were identified from the 
arealressurskart ‘AR5’ map produced by the Norwegian Institute for Bioeconomy (NIBIO 2021) 
and the subset obtained in QGIS. We then extracted the same terrain, climate, and biological 
variables in GEE over each of the polygons in the Møre og Romsdal subset. This data served 
as the ‘new data’ in the prediction function from which we obtain spatially-explicit predictions of 
carbon and nitrogen stocks. We used three metrics to determine model performance for each of 
the final models, root mean square error (RMSE), mean absolute error (MAE), and R-squared. 
We extracted RMSE and MAE values from the fitted model objects and compared those to a null 
model to determine the ‘improvement’ of the fitted model over the null. We used the R2 value to 
determine how well the predictors explain variation in the response variable data. The formulas 
for determining performance improvement are as follows:  
  
Percentage Improvement in RMSE = ((RMSENULL - RMSERF) / RMSENULL) x 100   
Percentage Improvement in MAE = ((MAENULL - MAERF) / MAENULL) x 100   
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2.2 Results   
   
2.2.1 Descriptive   
   
From the data gathered by ‘Det norske myrselskapet’, we obtained 139 observations for carbon 
stock and 294 observations for nitrogen stock. The distributions of these response variables are 
shown in Figure 2 and descriptive statistics are provided in Table 1. Most of the remote-sensed 
predictor variables were extracted over 320 mires, with some exceptions. The C:N ratios ranged 
from 15 to 70 which is within the range expected for Norway. However, the C density of mires in 
‘Myrselskapet’ data averaged 7.4 kg/m2 which is lower than expected (Bargmann et al. 2023 and 
references therein). From our experience digitizing the mires, we found that many of them were 
under anthropogenic pressures and were likely drained for forestry or agriculture in the past 
which has lowered their C densities. It is also possible that the ‘Myrselskapet’ dataset was biased 
to easily-accessible areas and that the more carbon-rich mires in remote locations were under-
represented.    
  

   
Figure 2. Side-by-side plots displaying the density distributions of carbon (left panel) and nitrogen 
(right panel) stock in kg/m². Both plots show log-transformed density distributions and histograms 
to improve interpretation. However, the x-axes are labeled with the original, untransformed scale. 
Dashed vertical lines represent mean values (carbon = 7.68 and nitrogen = 0.556)   
   
Table 1. Summary statistics for response variables collected in 308 mires across Norway. Sta-
tistics include the number (N) of samples available, mean, standard deviation, minimum and 
maximum values recorded.   
 
Variable   N   Mean   Std. Dev.   Min   Max   
Carbon stock   153   7.44   10.02   0.69   70   
Nitrogen stock   308   0.56   0.23   0.05   1.38  
   
2.2.2. Importance of predictor variables   
  
For both C and N stocks, climatic variables were most important predictors (Figure 3). This indi-
cates that the largest variation in C and N are due to climatic gradients over Norway due to the 
large geographical spread of the ‘Det norske myrselskap’ data (Figure 1). Terrain variables like 
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elevation and slope were also important predictors, emphasising the significance of topographic 
position which influences the hydrological formation of mires. Remote sensing variables were 
also important with radar variables from Sentinel-1 being more important for predicting C stock 
compared to N stock. In contrast, optical variables like NDVI were more important for predicting 
N stock compared to C stock.  
  
Carbon stock - After running the grouped models, the following predictors were found as im-
portant and used in the final model for carbon stock: elevation, Canopy Height Model, precipita-
tion in the wettest month, temperature seasonality, isothermality, median red band reflectance, 
50th percentile NDVI, median SWIR2 reflectance, median NIR reflectance, median dual-polari-
zation ascending, and median VH ascending (Figure 3).    
  
Nitrogen stock- After running the grouped models, the following predictors were found as im-
portant and used in the final model for nitrogen stock: elevation, slope, temperature in the driest 
quarter, precipitation in the coldest quarter, precipitation seasonality, isothermality, 25th percen-
tile NDVI, 95th percentile NDSI, and median red band reflectance (Figure 3).   
   

   
Figure 3.  Predictor variables identified as ‘important’ following Random Forest modelling for a) 
carbon stock and b) nitrogen stock. Predictors are arranged in order from most to least im-
portant.   
  
The fitted carbon stock model had an RMSE of 6.71 and an MAE of 5.19, compared to the null 
model's RMSE of 7.43 and MAE of 5.38. This shows a 9.68% improvement in RMSE and a 
3.52% improvement in MAE over the null model. The R2 value for the fitted model was 0.235, 
which indicates that the fitted model explains approximately 23.5% of the variance in carbon 
stock.   
  
For nitrogen stock, the fitted model had an RMSE of 0.212 and an MAE of 0.167, compared to 
the null model's RMSE of 0.237 and MAE of 0.185. This represents a 10.67% improvement in 
RMSE and a 9.84% improvement in MAE, indicating that the fitted model performs significantly 
better than the baseline null model. The R2 value of 0.217 suggests that the fitted model explains 
approximately 21.7% of the variance in nitrogen stock.   
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2.2.3 Predictive modelling   
  
We identified 2061 mire polygons in Møre og Romsdal to use for spatially-explicit predictive 
mapping. After extracting the predictor variables from corresponding GEE scripts, they were 
compiled into a unified dataset by merging them on a common attribute. From the newly-gener-
ated predictors, we included only those that were identified as important from our fitted carbon 
and nitrogen stock models.   
  
After applying the pre-trained Random Forest models to the dataset containing the new predic-
tors, we generated new predictions for carbon and nitrogen stocks across the Møre og Romsdal 
mires, which we integrated back into our original spatial framework. These spatially explicit pre-
dictions were used to generate prediction maps for carbon stock (Figure 4) and nitrogen stock 
(Figure 5).   
  

  
Figure 4. Prediction map of carbon stocks across 2061 mires in Møre og Romsdal county in 
Norway.   



NINA Report 2374 
 

18 

  
Figure 5. Prediction map of nitrogen stocks across 2061 mires in Møre og Romdsal county in 
Norway.   
   
2.3 Conclusions of the pilot study  
   
The pilot study using the ‘Myrselskapet’ data was useful to explore the possibility of mapping 
mire biogeochemistry using satellite remote sensing and machine learning. We found that cli-
matic and edaphic variables were slightly more important than remote sensing data in explaining 
the spatial variation in C and N densities over Norway. Although we were able to create maps of 
C and N stock densities over a test area, the spatial models were uncertain. We were only able 
to explain between 22 and 24% of the variation in N and C densities, respectively. The model 
root mean square errors were large relative to the range of values in the ‘Myrselskapet’ dataset. 
For instance, the C density root mean square error was 6.67 kg/m2. In the example of Møre and 
Romsdal (Figure 5), this is nearly 50% of the range of predicted C density for this landscape 
(range between 8 and 17 kg/m2). This means that one could not distinguish mire C stocks in this 
landscape with high statistical confidence.  
  
Several challenges and opportunities have arisen during our analysis:   
  
1.Sample Limitation: Our data covers a limited number of mires, leaving substantial regions of 
Norway underrepresented. Therefore, our results are not generalizable to all mires in Norway. 
For instance, we suspect that the ‘Myrselskapet’ data was biased to disturbed mires with lower 
C stocks. It therefore remains to be seen how well spatial modelling can predict the full range of 
C and N content in pristine mires over Norway.  
  
2. Data Age: The age gap between our historic and modern data ranges from 61 to 85 years. 
Changes in land use and climate during this period could reduce the accuracy of our predictions 
based on modern data. Ideally, the response variables and predictor variables in a spatial model 
should be from the same period to ensure most accurate results.   
  
3. Limitations of remote sensing: The pilot study revealed the limitations to remote sensing 
and spatial modelling of mire biogeochemistry. Although the errors in the models could have 
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been due to the temporal mismatch between ‘Myrselskapet’ data and predictor variables, there 
is a finite limitation to how well satellite- or airborne sensors can detect subterranean content. 
Aerial remote sensing will always have to rely on surface vegetation as a proxy for mire biogeo-
chemistry and therefore always be an indirect measure with associated uncertainties. Neverthe-
less, the true potential for remote sensing and spatial modelling can only be quantified when we 
have an up-to-date and spatially representative field dataset of mire biogeochemistry to work 
with.  
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3 Recommendations for future monitoring  
 
As concluded above, in situ measurements of carbon stocks are needed for ground-truthing pre-
dictive modelling with remote sensing tools, that may be used to generate a high-resolution map 
of carbon stocks with national coverage. Here, we make recommendations for the steps required 
to generate such map as time as cost-efficiently as possible.  
   

3.1 Harmonizing sampling and monitoring methods   
  
Currently, there is a large interest both at national and regional level to characterize different 
peatland areas to guide various construction projects. Multiple soil sampling programs are also 
ongoing and starting (See section 3.2 below). It is critical that methodologies, especially those 
used for quantifying soil carbon stocks, are harmonized and standardized per ecosystem in order 
to ensure quality of the quantification and to allow use of the data to build a national database 
for soil carbon spanning critical ecosystems (agricultural, forestry and mires). Municipalities are 
currently under pressure to define carbons stocks for decision-making regarding various infra-
structure building. Using standardised methodologies per ecosystem in the various projects ini-
tiated by this need as well as open sharing of the resulting data for national mapping purposes 
would help building up databases to ground-truth national mapping efforts.  
   

3.2 National peatland database   
  
As a part of the GRAN-project (NFR grant 282327) NINA built a peatland database tailored 
mainly for quantifying soil carbon stocks (Kyrkjeeide et al. 2023). The data contains carbon stock 
variables for main mire types in Norway (bogs, poor fens, intermediate fens and rich fens). The 
physical and chemical variables contributing to peatland carbon stock vary depending on the 
type of the mire (various types spanning from ombrotrophic bogs to nutrient rich fens) but appear 
to be similar within mire types. The aim of the peatland database is to allow for retrieving values 
for parameters other than peat depth (e.g., bulk density, carbon content) for target areas, which 
will make monitoring carbon stocks less laborious and more cost-efficient on a national and re-
gional levels (https://carbonviewer.nina.no). Further data collection is, however, needed to re-
duce the uncertainty of the parameter values within peatland types pertaining to the limited data 
currently available in the database.     
  
We recommend carrying out a one-time sampling campaign covering 30 sites of dominant mire 
types located so that sampling with heavy gear is feasible. To cover vertical and horizontal vari-
ability, peat profiles of each mire should be sampled from five sampling points on a gradient 
spanning from mire edges to the centre. The peat profiles should be sampled from 0 – 250 cm 
(below vegetation) using corers tailored for peat sampling with 50 cm intervals resulting to up to 
5 samples per profile and up to 25 samples per mire. As a minimum recommendation, bulk den-
sity, dry weight and loss of ingnition should be measured. Additional analysis for nitrogen would 
allow computing nitrogen stocks in addition to carbon stocks. In addition, peat depth should be 
measured every 20 m as specified in Kyrkjeeide et al. (2023) to report total carbon stocks for the 
sites.    
  
Estimated costs for such sampling campaign sum up to 1450 – 1 750 KNOK, consisting of 300 
KNOK for field sampling, 150 KNOK for planning, coordination, and data-analysis as well as 130 
KNOK and 300 KNOK for analysis costs without and with analysis for nitrogen stocks, respec-
tively. Travel costs and compensations are not included in this estimation, as specified site se-
lection will significantly affect them.    
  

3.3 National monitoring program for mires    
  
Large scale soil monitoring programs prompted by EU-driven initiatives are starting and ongoing 
in Norway, namely JORDVAAK -program targeted for agricultural soils (JordVAAK - 
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Implementering av nasjonalt jordovervåkingsprogram på jordbruksjord - Nibio)  and ‘Overvåking 
av jordkarbon i skog og beitemark’ (Overvåking av jordkarbon i skog og beitemark - Nibio) tar-
geted to forests and meadows. To our knowledge, monitoring carbon stocks from pristine mires 
is not included in any of the ongoing or planned national programs.   
  
Peat depth varies greatly between sites, depending on e.g. mire type and region. We recom-
mend, as a minimum, to add peat depth measurements for locations, where mires appear, in the 
ongoing ANO- monitoring program (Arealrepresentativ naturovervåking (ANO) (nina.no)). This 
will improve the knowledge base for average peat depth in Norway and can be used for improved 
estimates and modelling of total carbon stocks in Norway. At this end, we recommend using a 
calibrated methodology where peat depth is measured every 20 m (Kyrkjeeide et al. 2023). Cost 
estimates for executing such measurement may vary greatly depending on the size and depth 
of mires at ANO-locations. In a recent case study, Lyngstad et al. (2023) followed this method-
ology, and found that it was possible to measure peat depth in 0.4 ha per day. The method 
requires two persons for efficient data collection. A coarse average estimate computed with 2-4 
additional technical staff to carry out the field measurements (excluding travel costs and travel 
compensations) would increase the current costs of the ANO -programme by 15 KNOK per ANO-
location and by an estimated 75 KNOK/year for planning, coordinating and data-analysis.  
  
Additional soil sampling to generate more reliable estimates for soil carbon stocks is generally 
recommendable, and an absolute necessity if the above-described intensive field sampling for 
peatland database is not carried out. Standard methods using soil cores are not feasible for this 
purpose, due to logistical challenges pertaining to the ANO – program (remote areas, poor ac-
cessibility). We therefore recommend collecting five 10 x 10 cm soil samples from the top peat 
(0-50 cm below vegetation) using light sampling equipment along a gradient so that both the 
edges and the centre of the mire is included in the replication. Concentrating on simple soil var-
iables (i.e. bulk density, dry weight and loss of ignition) renders the added costs reasonable, 
while generating sufficient data for estimating carbon stocks of the measured mires as well as 
providing data for remote sensing modelling for generating a national map of carbon stocks for 
mires (see below). Incorporating such light soil sampling would add to the costs per ANO site by 
10 KNOK. This includes personnel costs but excludes travel costs and compensations.  
  
While in situ field surveys are accurate, they are point-based samples with limited spatial cover-
age. For exploring municipal-level patterns, calculating ecosystem condition, and reporting to 
Eurostat on ecosystem services, we require wall-to-wall maps of soil biogeochemistry. There-
fore, spatial modelling is useful and necessary for some use purposes. Another advantage is 
that wall-to-wall maps can be used to design and stratify future field surveys. The soil field data 
from JORDVAAK, ‘Overvåking av jordkarbon i skog og beitemark’ and (if implemented) an ANO 
soil program could serve as reference data for training satellite-based machine learning models 
to map soil biogeochemistry over the whole country. To be useful for satellite-based mapping, 
the survey data would need to be precisely geolocated using a precision GPS and need to cover 
a spatial footprint of at least 10x10m to match the spatial resolution of contemporary satellites 
like Copernicus Sentinels. As illustrated in the previous section of the report, the reliability of 
such satellite-based maps would need to be explored and quantified before the maps can be 
used for management purposes.  
  
At present, the dominant, major nature type (e.g. open fen or bog) is recorded for each ANO-
locality. This vegetation-based classification is likely useful for upscaling using satellite-based 
machine learning models but adding information about mire massif types (hydromorphological 
classification) is likely even more useful. Both the mire massif types, and the major nature types 
are defined in Nature in Norway – NiN (Halvorsen et al. 2020) and can be used in mapping. 
Hence, we suggest recording mire massif type as part of the ANO-monitoring. In intact areas the 
mire massif types are generally stable across centuries, so in most cases it will suffice recording 
this information once.  
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Assuming we had a national soil biogeochemistry survey dataset for mires in 3-5 years’ time, we 
propose a rough budget frame for producing a pilot national map of soil C and N stocks: Option 
1: 500 to 800k NOK – using the same data outlined in section 2 of this report. Option 2: 800 to 
1200k NOK – using the same data outlined in section 2 plus additional satellite data from Planet 
Labs. Option 2 would involve purchasing 3m resolution PlanetScope imagery which gives richer 
temporal information which can capture phenological differences in mire types and could in-
crease the accuracy of mire C and N stock maps.  
  

3.4 Build up competence for remote sensing and modelling 
techniques   

  
Remote sensing and spatial modelling competence in needed to characterize 1) peatland 
area/extent: Use of satellite-based methods to characterize and map peatland areas will provide 
necessary tools for improving existing knowledge rapidly and relatively cost-efficiently (e.g. 
Bakkestuen et al. 2023) peatland types: the type of mire is an important predictor of biogeochem-
istry and is therefore useful for estimating a range of variables including C stocks. This has been 
done in other countries including Canada (Amani et al. 2019) which holds promise for its feasi-
bility in Norway.   
  
Accurate quantification of soil carbon stocks will require spatially representative and relatively 
intensive depth measurements, which currently are primarily done manually. New techniques 
that involve technology to perform proximal sensing of peatland condition are evolving (Minasnay 
et al. 2023). The term “proximal sensing” denotes sensors that function near the Earth’s surface, 
as opposed to remote sensing methods, which detect reflected or emitted radiation from a dis-
tance. Proximal geophysical sensors offer precise mapping and characterization of soil proper-
ties, providing detailed information at depths ranging from less than a meter to tens of meters. 
These sensors are commonly employed in geophysical surveys and have undergone testing to 
determine their effectiveness in measuring peat depth. Examples of such sensors include elec-
trical resistivity tomography (ERT), electromagnetic induction (EMI), and ground-penetrating ra-
dar (GPR). See Silvestri et al. (2019) for an example of airborne EM for measuring peat depth in 
Norway. See Pesdir et al. (2021) for an example of hand-held GPT in Slovenia for measuring 
peatland depth. These sensors primarily rely on the distinctive properties of peat, such as its 
high organic matter content, significant porosity, and elevated water content, resulting in low 
electrical conductivity. Most of those techniques are under development and the uncertainty in-
troduced by them is unknown. If better calibrated against state-of-the-art methods, they have 
large potential to simplify and speed up the work needed for characterizing peatland carbon 
stocks, especially in Norway with partially poorly accessible and heterogeneous landscape.    
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Appendix  
 
Table A1. Summary statistics of terrain predictor variables used in Random Forest models for 
carbon and nitrogen stock.   
    

 
        

Type  Variable  N Mean Std. Dev. Min Max  
Terrain  Elevation  312 171 219 3.5 796  
  Max Elevation  312 186 220 5.4 802  
  Min Elevation  312 158 218 0.1 790  
  Slope  312 2.6 2 0.1 15  
  Aspect  312 147 41 20 260  
  Canopy Height Model  304 0.23 0.28 0.0048 3  
  
  
Table A2. Summary statistics of climate predictor variables used in Random Forest models for 
carbon and nitrogen stock.  

            
Type  Variable  N Mean Std. Dev. Min Max 
Climate  Isothermality  307 2.7 0.19 2.2 3.1 
  Annual mean precipitation  307 1232 420 456 2412 
  Precipitation seasonality  307 29 4.9 17 41 
  Precipitation of coldest quarter  307 320 142 93 674 
  Precipitation of warmest quar-

ter  307 285 63 160 495 

  Precipitation of driest month  307 58 19 18 115 
  Precipitation of driest quarter  307 203 75 63 422 
  Precipitation of wettest month  307 155 51 55 300 
  Precipitation of wettest quarter  307 418 134 163 778 
  Annual mean temperature  307 4.4 1.8 -0.2 7.3 
  Temperature annual range  307 22 4.8 14 31 
  Mean diurnal range  307 5.9 1.1 3.7 7.9 
  Temperature seasonality  307 56 13 38 81 
  Mean temperature of coldest 

quarter  307 -2.4 3.4 -10 2.8 

  Min temperature of coldest 
month  307 -5.5 3.9 -14 0.81 

  Mean temperature of warmest 
quarter  307 12 1.2 8.3 15 

  Max temperature of warmest 
month  307 16 1.6 12 20 

  Mean temperature of driest 
quarter  307 3.7 5 -7.6 8.4 

  Mean temperature of wettest 
quarter  307 5.7 3.2 0.13 13 
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Table A3. Summary statistics of biological predictor variables used in Random Forest models for 
carbon and nitrogen stock.  

            
Type  Variable  N Mean Std. Dev. Min Max 
Biological  Median blue band reflectance  312 411 83 257 964 
  Median green band reflectance  312 631 87 445 1059 
  Median red band reflectance  312 676 138 317 1252 
  Median R1 reflectance  312 1256 163 904 1838 
  Median R2 reflectance  312 2291 300 1535 3787 
  Median R3 reflectance  312 2645 354 1788 4447 
  Median NIR reflectance  312 2917 382 1930 4918 
  Median SWIR1 reflectance  312 1987 213 1333 2607 
  Median SWIR2 reflectance  312 1077 129 744 1524 
  NBR standard deviation  312 0.13 0.049 0.063 0.4 
  Spring NDVI  312 0.37 0.2 -0.083 0.65 
  Fall NDVI  311 0.63 0.096 -0.0032 0.9 
  Summer NDVI  312 0.63 0.079 0.25 0.85 
  5th percentile of NDVI  312 0.26 0.22 -0.99 0.59 
  25th percentile of NDVI  312 0.5 0.13 -0.045 0.72 
  Median NDVI (50th percentile)  312 0.61 0.079 0.24 0.83 
  75th percentile of NDVI  312 0.69 0.066 0.3 0.88 
  95th percentile of NDVI  312 0.74 0.059 0.4 0.93 
  NDVI texture standard deviation  312 0.041 0.014 0.012 0.11 
  5th percentile of NDSI  312 -0.62 0.07 -1 -0.36 
  25th percentile of NDSI  312 -0.56 0.044 -0.64 -0.28 
  Median NDSI (50th percentile)  312 -0.53 0.05 -0.6 -0.24 
  75th percentile of NDSI  312 -0.4 0.23 -0.57 0.84 
  95th percentile of NDSI  312 0.13 0.48 -0.49 0.98 
  Median dual-polarization ascending orbit  312 -7.6 0.99 -10 -5.6 
  Median VH polarization ascending orbit  312 -18 1.1 -21 -15 
  VH polarization standard deviation ascend-

ing orbit  312 -20 0.87 -23 -17 

  Median VV polarization ascending orbit  312 -10 0.91 -13 -7.8 
  VV polarization standard deviation ascend-

ing orbit  312 -13 0.9 -16 -10 

  Median dual-polarization descending orbit  312 -7.5 0.95 -10 -5.7 
  Median VH polarization descending orbit  312 -18 1.2 -21 -15 
  VH polarization standard deviation in de-

scending orbit  312 -20 0.98 -23 -17 

  Median VV polarization in descending orbit 312 -11 0.97 -14 -7.5 
  VV polarization standard deviation in de-

scending orbit  312 -14 1.1 -17 -9.3 
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