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Body condition of breeding females is an important driver of an individual’s fitness and
the consequent dynamics of populations. Long-term changes in female body condition
are likely to be affected by recent shifts in climatic and environmental conditions that
can result in changes to population demography. To help explain the drivers shaping
body condition during the incubation period and its consequences for reproductive suc-
cess, we examined the long-term pattern in the body condition of breeding females of
two declining sympatric diving duck species: Common Pochard Aythya ferina and Tufted
Duck Aythya fuligula. We analysed the data obtained from 139 females of Common
Pochard and 251 females of Tufted Duck breeding on fishponds in South Bohemia,
Czechia, between 2004 and 2020. We calculated the body condition index of females
during late incubation based on the residuals from the relationship between body mass
and tarsus length and used the incubation stage as an additional predictor of body mass.
Body condition of both species did not decline over the 17 years of the study. The effect
of winter weather conditions (winter temperature), water transparency (a proxy for food
availability) and reproductive investment on body condition was not confirmed. Female
body condition positively affected mean egg mass and hatchability in both studied spe-
cies, i.e. females in better body condition laid larger eggs and hatched eggs with a higher
hatching probability. We conclude that the population declines of the studied species
are probably not connected to decreasing body condition of breeding females, but other
reasons such as change in breeding propensity or offspring survival and recruitment
should be considered in future studies.

Tělesná kondice hnı́zdı́cı́ch samic je považována za důležitou individuálnı́ charakteristiku,
která ovlivňuje fitness jedinců a populačnı́ dynamiku jednotlivých druhů. Dlouhodobé
změny v tělesné kondici mohou být důsledkem působenı́ klimatických a environ-
mentálnı́ch podmı́nek na jedince, a následně mohou mı́t vliv na demografii a přežı́vánı́
populacı́. V našı́ studii jsme analyzovali vliv faktorů prostředı́ na tělesnou kondici inku-
bujı́cı́ch samic a vliv tělesné kondice na parametry reprodukce u dvou druhů potápivých
kachen – poláka velkého Aythya ferina a poláka chocholačky Aythya fuligula, u nichž je
recentně v Evropě dokládán pokles početnosti. U těchto druhů jsme hodnotili
dlouhodobý trend jejich tělesné kondice a parametrů reprodukce. Celkově byla
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analyzována data pro 139 samic poláka velkého a 251 samic poláka chocholačky
hnı́zdı́cı́ch na rybničnı́ch lokalitách v jižnı́ch Čechách (ČR) v letech 2004–2020. Pro
vyjádřenı́ tělesné kondice studovaných jedinců byl stanoven index tělesné kondice na
základě tělesné hmotnosti a délky tarsu hnı́zdı́cı́ch samic zjišťovaných v pozdnı́ fázi inku-
bace. Jako dalšı́ prediktor poklesu tělesné hmotnosti v průběhu inkubace byl do výpočtu
kondičnı́ho indexu individuálnı́ samice zahrnut počet dnı́ do lı́hnutı́. Na základě výsledků
zı́skaných v průběhu 17 let nedocházı́ k poklesu kondice inkubujı́cı́ch samic. Vliv
podmı́nek předchozı́ zimy, průhlednosti vody a investice do reprodukce na tělesnou kon-
dici hnı́zdı́cı́ch samic nebyl prokázán. Byl zjištěn signifikantnı́ vliv tělesné kondice na
průměrnou velikost vejce ve snůšce u obou studovaných druhů. Tělesná kondice studo-
vaných druhů pozitivně ovlivňovala také úspěšnost lı́hnutı́. Z výsledků studie vyplývá, že
pokles populacı́ obou druhů pravděpodobně nelze vysvětlit dlouhodobým poklesem kon-
dice hnı́zdı́cı́ch samic. Kondice hnı́zdı́cı́ch samic naopak narůstá a pozitivně ovlivňuje i
některé hnı́zdnı́ parametry. Pro dalšı́ zhodnocenı́ možných přı́čin poklesu početnosti
evropských populacı́ studovaných druhů potápivých kachen by bylo vhodné analyzovat
změny v proporci hnı́zdı́cı́ch samic v populacı́ch, stejně jako faktory ovlivňujı́cı́ přežı́vánı́
mláďat a jejich úspěšný vývoj do dospělosti.

Keywords: body condition index, climate change, diving ducks, egg mass, hatchability.

Study of the drivers shaping female body condition
and the subsequent relationship between body
condition and reproductive success is essential for
understanding the population dynamics of a spe-
cies and/or the species’ ability to face a changing
environment (Blums et al. 2005, Guillemain
et al. 2010, English et al. 2018), especially for
large-bodied species such as waterfowl. This is par-
ticularly relevant when evaluating the causes and
consequences of population change in species in
decline and designing subsequent conservation
measures (Anteau & Afton 2004).

Body condition is regarded as an indicator of
the health and physiological properties of an indi-
vidual and is influenced by a combination of fac-
tors (Schluter & Gustafsson 1993, Klimas
et al. 2020). Generally, low food supply (Delnicki
& Reinecke 1986, Anteau & Afton 2008), distur-
bance or unfavourable weather conditions (Janke
et al. 2019), reproductive status, parasitic and
infectious diseases (Arsnoe et al. 2011), high pre-
dation pressure, and high inter- and intraspecific
competition are considered the most critical fac-
tors resulting in deteriorating body condition of
breeding females (Birkhead et al. 1983, Devries
et al. 2008). Furthermore, feeding conditions at
one stage of the annual cycle can affect the perfor-
mance of migrating birds at a later stage, as has
been shown for numerous species of ducks (Arzel
et al. 2006, Drent 2006, Newton 2007, Sedinger
& Alisauskas 2014). For example, feeding

conditions in the wintering areas can influence
subsequent breeding success, and spring/summer
conditions can influence subsequent overwintering
survival. These factors cause carry-over effects on
individuals, influencing individual survival and
reproduction, and have been revealed as cross-
seasonal effects on the breeding populations and
their dynamics (Devries et al. 2008, Guillemain
et al. 2008, Newton 2013, Sedinger & Alisaus-
kas 2014, Podhrázský et al. 2017).

In recent decades, climate warming has consid-
erably increased the availability of wetlands suit-
able for wintering waterbirds (Maclean et al. 2008,
Thomas et al. 2012, Pavón-Jordán et al. 2015,
Musilová et al. 2018, Pavón-Jordán et al. 2019).
Some species are responding to this phenomenon
by altering their migratory behaviour (Sauter
et al. 2010, Gunnarsson et al. 2012, Adam
et al. 2015). For example, long-term climate
warming (Hurrell & Deser 2010) has allowed
some species to extend the length of the breeding
season (Halupka et al. 2008, Lv et al. 2020),
shorten their migration distance (Sauter
et al. 2010) and alter the time of arrival from win-
tering grounds (Hüppop & Hüppop 2003,
Podhrázský et al. 2017). In the temperate zone, an
earlier arrival to the breeding grounds can allow
breeders to acquire a greater amount of nutrients
for clutch formation during pre-breeding periods
(Drent & Daan 1980, Bêty et al. 2003) and hence
restore their body condition after spring migration

© 2023 The Authors. Ibis published by John Wiley & Sons Ltd on behalf of British Ornithologists' Union.

2 D. Gajdošová et al.
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to the breeding areas. Hence, waterbirds’ body
condition is also expected to change (Guillemain
et al. 2010), linked to these observed phenologi-
cal/behavioural responses to climate change. In
addition to the direct climate-driven changes in
body condition, climate change also alters the con-
ditions of wetland habitats (Moss et al. 2011).

Fishponds represent an important breeding hab-
itat for waterbirds, especially diving ducks (Broyer
& Bourguemestre 2020). Changes in the food web
structure of fishponds are related to the high den-
sity of stocked fish, especially Carp Cyprinus car-
pio. The low water transparency (overloading of
organic matter, bloom of phytoplankton, low den-
sity of invertebrates) of fishponds indicates a poor
trophic status (Šimek et al. 2019). In the Czech
Republic, fishponds are the main breeding habitat
for waterbird species. The low food availability for
waterbirds often found in these ponds is associated
with the current intensive management of fish-
ponds in central Europe, which could result into
lower body condition of breeding females at a later
stage in the annual cycle (Behney 2020).

Body condition – as a qualitative assessment of
a bird health – is directly related to its Darwinian
fitness. Breeding duck females in poor body condi-
tion may delay the onset of breeding (Öst
et al. 2011) due to a lack of nutrients (especially
lipids and proteins) that are allocated to reproduc-
tion (Drobney & Fredrickson 1985, Ankney &
Afton 1988, Descamps et al. 2011) in contrast to
nutrients required for self-maintenance (Wil-
liams 2008). The need for appropriate replenish-
ment of nutrients for breeding in individuals with
poor body condition is time-consuming and
reduces the opportunity for renesting and finding a
suitable feeding habitat for ducklings, and/or
shortens the female care period of rearing duck-
lings (Sedinger & Raveling 1986, Paasivaara &
Pöysä 2007, Both et al. 2010, Reséndiz-Infante &
Gauthier 2020). Hence, body condition is directly
linked to individual productivity and fitness.

Ducks are an ideal group for studying alter-
ations in body condition due to their large body
size, high visibility and marking possibilities com-
pared with smaller birds. Yet, comparative studies
on duck body condition and reproductive success
in the Palaearctic are scarce compared with those
in the Nearctic (Barboza & Jorde 2002, Devries
et al. 2008, English et al. 2018).

This paper aims (i) to assess changes over time
in female body condition of two declining diving

duck species, Common Pochard Aythya ferina and
Tufted Duck Aythya fuligula, in a 17-year study,
and (ii) to gain a better understanding of the rela-
tionship between female body condition and
breeding success. These sympatric and congeneric
diving duck species use the same breeding habitat,
and are precocial and benthophagous, feeding pri-
marily on invertebrates during the breeding season
(Snow & Perrins 1998, Kear 2005, Šťastný &
Hudec 2016), but differ in body size, timing of
breeding, and egg and clutch size (Kear 2005).

Based on current knowledge concerning long-
term climate warming (Hurrell & Deser 2010) that
could result in lower energetic costs for wintering
birds in recent decades (Sauter et al. 2010, Gun-
narsson et al. 2012, Adam et al. 2015), and the
velocity of the changes in climatic conditions and
species’ responses (Parmesan & Yohe 2003, Chen
et al. 2011, Pacifici et al. 2015), we hypothesized
an increasing positive effect of drivers of body con-
dition acting prior to nesting (winter temperature)
as opposed to drivers acting at the time of nesting
(water transparency) over the study period. This
assumption is highly relevant in view of the
capital–income breeding dichotomy (Drent &
Daan 1980, Janke et al. 2015). Waterfowl in gen-
eral are expected to be partial capital breeders,
with little evidence for temperate-nesting species,
which rely on a combination of stored and locally
acquired nutrients for clutch formation and incu-
bation (Alisauskas & Ankney 1992, Guillemain
et al. 2008) at arrival in breeding areas. Under
increasingly favourable wintering conditions acting
prior to nesting, we expected a long-term
improvement in female body condition, especially
in breeding seasons after milder winters (Lehikoi-
nen et al. 2006).

Regarding the body condition–reproductive per-
formance relationship (Bêty et al. 2003, Warren
et al. 2014, Folliot et al. 2017), body condition
acts as a key predictor of the reproductive perfor-
mance (laying date, egg mass, clutch size and
hatchability). Given the high energetic costs of
reproduction (Owen & Black 1990), we expected
a lower body condition of breeding females imme-
diately after a higher reproductive investment
(expressed by loss of body condition as a nutri-
tional investment in clutch formation and egg
incubation). We also hypothesized that females in
better late-incubating body condition would have
an earlier laying date, higher egg mass, larger
clutch size and higher hatchability (Blums

© 2023 The Authors. Ibis published by John Wiley & Sons Ltd on behalf of British Ornithologists' Union.
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et al. 1997) compared with females with lower
body condition. This variation in body condition
will also be reflected in long-term changes in
breeding performance. Allocation of stored body
nutrition limits clutch formation (Bengtson 1971,
Pehrsson 1991, Eichholz & Sedinger 1999), and
hence we predicted that higher values of body
condition would be associated with the laying of
larger eggs (expressed as mean egg mass) and/or
with the laying of larger clutches (expressed as
total clutch size/non-parasitized clutch size).
Regarding the benefits of early breeding, we
expected females in better body condition to breed
earlier in the season (Blums et al. 2005, Devries
et al. 2008).

METHODS

Study area

The field data were sampled on 173 fishponds in
the Třeboň Biosphere Reserve and surrounding
area in South Bohemia, Czech Republic (48.97–
49.26°N, 14.66–14.97°E) between 2004 and
2020. Fishponds are permanent, shallow and
eutrophic waterbodies with a small stream or canal
for water inflow and represent the most common
wetland type in the study area as well as in the
Czech Republic. As commercial subjects aimed at
stocking and production of fish (mostly Carp),
fishponds were formed in the Middle Ages (mostly
in the 16th century) with artificially managed
water levels, chemistry and nutrient input
(Musil 2006, Musilová et al. 2021). The water sur-
face area of the observed fishponds varied between
0.21 and 298.00 ha (mean� sd = 16.97� 39.82
ha) and the proportion of cover of emergent vege-
tation varied between 1.03% and 90.0% (mean�
sd= 21.30� 16.26%). Most of the emergent vege-
tation, namely Common Reed Phragmites australis,
Cattail Typha latifolia, sedges Carex spp., Great
Manna Grass Glyceria maxima and willows Salix
spp. (Janda et al. 1996, Čehovská et al. 2019), was
located along shorelines or in the shallow water
centres of fishponds.

Nest survey and catching females

Nest surveys were performed by slow walking, and
systematically and carefully searching in vegetation
on islands and in the emergent vegetation of fish-
ponds with constant monitoring effort (Čehovská

et al. 2019). All eggs in each observed nest were
numbered, measured in length and width to the
nearest 0.1 mm using a digital calliper, and their
colour and shape were recorded (to exclude para-
sitic eggs, see Dugger & Blums 2001). We identi-
fied 106 (5.4%) parasitic eggs in 40 (20.6%)
clutches of Common Pochard and 115 (3.4%) in
44 (13.7%) clutches of Tufted Duck. Incubation
stage of clutches was estimated using a flotation
technique (Westerskov 1950) and candling
(Weller 1956) during regular visits of the nests
and corrected according to hatching date and the
last egg-laying date. Breeding females of Common
Pochard and Tufted Duck were caught on their
nests in the late incubation stage using drop-door
traps (Weller 1957). Incubation stage at capture
did not change significantly over the study period
(Common Pochard: r=−0.045, P= 0.533, n=
194; Tufted Duck: r=−0.006, P= 0.908, n=
322). Clutch size was obtained based on total egg
count (total clutch size; maximum number of eggs
present in the nest) and after subtracting number
of eggs considered as parasitic (non-parasitized
clutch size; maximum number of non-parasitic
eggs present in the nest). There was only one
record of re-nesting in the study period, which
was excluded from the data analyses. Each cap-
tured female was transported in a cloth bag to the
shore of a fishpond where the female was weighed
using a spring balance while settled in a cotton
bag. Immediately after removal from the bag, the
tarsus length of each female was taken using a
steel rule and digital callipers (see Table 1). Ducks
were released immediately after weighing, measur-
ing and marking with individually coded nasal sad-
dles and combinations of colour rings on legs.

Biotic and abiotic variables

We selected biotic and abiotic variables that could
directly influence female body condition and/or
drivers that could cause carry-over effects on body
condition of an individual through habitat quality
at the wintering and breeding areas (Sedinger &
Alisauskas 2014, Folliot et al. 2017). First, as an
indicator of preceding winter conditions and food
availability at the arrival site we used winter tem-
perature and water transparency, respectively. Win-
ter temperature was obtained as monthly averages
(December, January, February) for the tempera-
tures of the most important wintering areas of the
studied species covered by the 50% kernel density

© 2023 The Authors. Ibis published by John Wiley & Sons Ltd on behalf of British Ornithologists' Union.
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of the females’ (marked with nasal saddle and
recorded as living) recoveries (ESRI 2016, Suss-
man et al. 2019). Water transparency is the trans-
parency of water measured with a Secchi disk
(Broyer et al. 2016), calculated as an arithmetic
mean of two values measured in May and June for
a breeding fishpond in each breeding season.
Water transparency is an important factor affecting
food availability (Robin et al. 2014, Arzel
et al. 2020) and therefore affects diving ducks in
fishponds (Elmberg et al. 1993, Musil 2006). We
used reproductive investment computed as the num-
ber of eggs × mean egg mass as a measure of ener-
getic expenditure into reproduction. This variable
expresses the nutritional investment in clutch for-
mation and egg incubation of a given female
(Owen & Black 1990, Kear 2005).

Breeding parameters

We used several parameters of bird reproduction
that are expected to be influenced by female body
condition. First, for each nest (female), the first
egg-laying date was backdated and calculated as
(see also Westerskov 1950, Weller 1956,
Lack 1967): laying date= actual date− day since
start of incubation − number of parasitic eggs.

Two variables for clutch size (i.e. number of
eggs) of a given female had to be differentiated
due to a high rate of nest parasitism (Petrželková
et al. 2013). Thus, total clutch size is an explicit
maximum of eggs recorded in the nest of a given
female prior to hatching, and non-parasitized clutch
size is the resulting number of eggs in the clutch
after subtracting the number of eggs believed to
be parasitic based on different size, coloration and
development stage (Lyon 1998). We considered
conspecific parasitism when the egg accretion rates
were greater than one per day, and staggered incu-
bation stages among eggs within a clutch that were

unambiguous (Dugger & Blums 2001). For each
female–year measurement, mean egg mass (MEM)
(1) was calculated as the arithmetic mean of the
egg mass for non-parasitic eggs, as described in
Rohwer (1988):

MEM ¼ 1
n
∑n

i¼1 Li �W2
i � 0:555

� �
(1)

where MEM is the mean egg mass (mm3) of the
(non-parasitized) clutch, n is the number of non-
parasitic eggs, Li is the length (mm) of egg i, and
Wi is the width (mm) of egg i. Finally, hatchability
indicated the proportion of the total number of
eggs recorded as successfully hatched in each nest.

Statistical analyses

Our analysis proceeded in three stages. First, we
calculated a tarsus-based body condition index
(BCI) of late-incubating females as these are the
females that successfully produced offspring, and
secondly we assessed the effect of biotic and abi-
otic variables on body condition. Finally, we stud-
ied the effect of body condition on the female’s
breeding parameters.

Previous descriptive studies in ducks have used
the residuals from the regression of (log-
transformed) body mass on a (log-transformed)
measurement of body size as a proxy of body con-
dition (see also Hughes et al. 2019, Grimaudo
et al. 2020). A proxy based on this simple bivari-
ate relationship is, however, severely compromised
by ignoring the steady decline in body mass during
egg-laying and clutch incubation (Gloutney 1989,
Owen & Black 1990). Peig and Green (2009)
developed another method for calculating body
condition, a scaled mass index, that is widely used
in other studies (English et al. 2018, Klimas
et al. 2020, Parejo et al. 2021). However, the

Table 1. Body mass, tarsus length and body condition index (the residuals from the regression of the log of mass (g) on (1) the log
of tarsus length (cm) and (2) the incubation stage) of Common Pochard and Tufted Duck females (all records).

Common Pochard (n= 194) Tufted Duck (n= 322)

Mean� sd Range Mean� sd Range

Body mass (g) 773.4� 37.4 660–865 614.0� 46.1 490–880
Tarsus length (mm) 39.34� 1.95 33.5–48.4 34.9� 2.25 24.5–43.4
Body condition index 0.185� 4.73 −9.504 to 9.834 0.047� 4.78 −9.958 to 9.994

© 2023 The Authors. Ibis published by John Wiley & Sons Ltd on behalf of British Ornithologists' Union.
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scaled mass index does not allow inclusion of the
incubation stage in its calculation. Therefore, we
define our body condition index including the
incubation stage (number of days before hatching)
as an additional predictor of body mass in the
regression.

The body condition of migrating birds is often
attributed to variation in lipids (Pehrsson 1987,
Labocha & Hayes 2012). The residuals of the
regression of body mass on tarsus length most pre-
cisely predicted fat in another Aythya species, the
Lesser Scaup Aythya affinis (Schamber et al. 2009).
Moreover, the measurement of tarsus is less sus-
ceptible to measurement errors, as it is based on
the featherless bone (Snow & Perrins 1998,
Kear 2005). Hence, we here developed our body
condition index (BCI) based on tarsus length while
accounting for the decline in body mass during
incubation. Values of BCI were obtained as the
residuals from the regression of the log of mass (g)
on the log of tarsus length (cm) and on the incuba-
tion stage (number of days before hatching). For-
mally, the estimated regression model was a linear
mixed model (LMM), specified as follows:

log massf ,t
� � ¼ β0 þ β1 log tarsus lengthf ,t

� �

þβ2 incubation stagef ,t
� �

þ μf þ ϵf ,t, (2)

where subscripts f and t distinguish females and
years, respectively, μf is a female-specific random
error (constant across years) and ϵf,t is the idiosyn-
cratic random error. Female-specific random errors
were included in the model to account for
repeated observations of the same individuals.
Model (2) was estimated via maximum likelihood,
with both random errors assumed to be homosce-
dastic and normally distributed. A separate model
was run for each species.

The value of the BCI depicts the deviation in a
female’s body mass from the expected value for a
typical female with the same tarsus length and at
the same incubation stage. Negative BCI values
indicate females with a lower-than-average body
condition, and positive values indicate the oppo-
site. For instance, a BCI of −0.05 indicates that
the female is c. 5% lighter than a typical female
with the same tarsus length and at the same incu-
bation stage. In more precise terms, the BCI mea-
sures the difference between the actual versus the
expected log(body mass). The interpretation in
terms of a percentage is based on the approximate

relationship 100(Δlog(body mass)) ≈%Δ body
mass, which works well for small magnitudes of
the BCI. The exact percentage deviation can be
obtained by exponentiating the BCI; in our exam-
ple with BCI= −0.05, this yields 100(exp
(−0.05) − 1)=−4.88%.

In the second stage of the statistical analyses,
we assessed the effect of biotic and abiotic vari-
ables on body condition in a regression setting. We
considered the following predictors for our models:
winter temperature, water transparency and repro-
ductive investment; these predictors were standard-
ized before the regressions (zero mean and unit
variance), facilitating the comparison of effect
sizes. To account for long-term trends, we also
included the year covariate. Again, we employed
LMMs with Gaussian random effects for individual
females to account for the dependency between
repeated measurements.

For each species, we ran regressions with all
possible combinations of the covariates (25= 32
different model specifications), ranked all models
based on the Akaike Information Criterion cor-
rected for small sample size (AICc) and calculated
the model-averaged estimate coefficients based on
the AICc weights. Additionally, we calculated the
relative variable importance (RVI) of each covari-
ate by summing the Akaike weights across all
models that included the given variable (see
Arnold 2010 for more details on this procedure).
RVI is bounded between 0 and 1. We used 0.5 as
a conservative threshold to select important
explanatory (informative) covariates (Barbieri &
Berger 2004).

Lastly, we studied the effect of the BCI on
breeding parameters. We modelled the relation-
ship between BCI and each of the breeding param-
eters of interest separately; that is, we conducted
five different regression analyses, differing in the
dependent variables. The only covariates included
in this stage were the BCI and year. For the breed-
ing parameters that can be treated as continuous
variables (laying date, mean egg mass, hatchabil-
ity), we fitted LMMs with Gaussian error distribu-
tion and individual female random effects (Zuur
et al. 2009). For clutch size data (total clutch size
and non-parasitized clutch size), we instead fitted
generalized linear mixed models with Poisson dis-
tribution, reflecting the count-type nature of the
dependent variables; the rest of the model struc-
ture (most notably, the random-error structure)
was identical as in the LMMs.

© 2023 The Authors. Ibis published by John Wiley & Sons Ltd on behalf of British Ornithologists' Union.
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As in the analysis of factors affecting body con-
dition, we applied an information-theoretic
approach to perform model selection based on
AICc for each dependent variable – altogether, this
procedure involved 20 different regression models
for each species (5 dependent variables, each with
22= 4 model specifications). We then calculated
the model-averaged coefficients and RVIs.

Multicollinearity among the covariates was
assessed using variance inflation factors (VIFs); in
all regressions, all VIFs were below 2.5, indicating
little collinearity (Allison 1999). All regression
analyses were carried out in Stata 17 (Stata-
Corp 2021); the user-contributed command miinc
(Luchman 2014) was used for the AICc-based
model-averaging and RVI calculations.

RESULTS

Effect of biotic and abiotic variables on
female body condition

Between 2004 and 2020, 139 breeding females of
Common Pochard and 251 females of Tufted
Duck caught on the nest during the incubation
period were included in the analyses; some females
were captured in several years, for a total of 194
and 322 female–year measurements, respectively.

Year was the only covariate that scored an RVI
> 0.5 (Table 2) and was deemed important when
explaining the variation in BCI both in Common
Pochard and Tufted Duck (Fig 1). After account-
ing for the biases that body size (tarsus length)
and incubation stage can introduce in assessments
of body condition, the model-averaged regression
coefficient estimate (Table 3) shows a change in
body mass of c. 1.5% and 0.9% for Common
Pochard and Tufted Duck, respectively, over the
17-year study period. For the Tufted Duck, how-
ever, the evidence for this effect is only moderate,
as the ΔAICc from the baseline (constant-only)
model was 0.36 (Table 5) and the RVI value was
marginally larger than the threshold (RVIyear=
0.58; Table 2).

Effect of body condition on breeding
parameters

In both species, the BCI of incubating females
affected mean egg mass and hatchability; both vari-
ables were included in the best models according
to the AICc (Tables 4 and 5) and their RVIs

ranged from 0.532 to 0.994 (Table 2). Females
with higher values of BCI laid larger eggs (Com-
mon Pochard: βbody condition = 9.60; Tufted Duck:
βbody condition= 14.24; Fig 2) and a higher propor-
tion of them successfully hatched (hatchability:
Common Pochard: βbody condition= 2.425; Tufted
Duck: βbody condition = 0.428). Both species also
exhibited a long-term decrease in hatchability
(with body condition accounted for) over the
study period; this was larger in Tufted Duck (in
terms of both RVI and effect size, see Tables 2
and 3).

In Common Pochard, over the 17-year study
period, we found a substantial long-term delay in
laying date (RVItime trend= 0.76); i.e. the laying date
is delayed by 4.25 days over the study period. In
Tufted Duck, on the other hand, we found a long-
term increase in total clutch size (RVItime trend=
0.80).

DISCUSSION

The long-term changes in BCI of females in the
late stage of incubation and the consequent effect
on breeding success are crucial for an assessment
of population dynamics (Johnson et al. 1992,
Newton 2013), especially for globally declining
species such as Common Pochard and Tufted
Duck (Musil & Fuchs 1994, Musil &
Neužilová 2009, Fox et al. 2016, Elmberg
et al. 2020, Folliot et al. 2020, Keller et al. 2020,
IUCN 2022). Based on the analysis of body condi-
tion in late-incubating females, our study shows
evidence of improvement in the body condition
both in Common Pochard and in Tufted Duck
over 17 years. Moreover, we show the importance
of body condition as a key predictor of mean egg
mass and hatchability in these declining species.

Long-term improvement in body
condition of breeding females

The improvement in BCI at late incubation of
Common Pochard and Tufted Duck females over
a period of 17 years was not directly related to
preceding winter conditions (indicated by winter
temperature) affecting birds prior to the breeding
season, or to the relative feeding conditions (indi-
cated by water transparency) affecting birds on
arrival. We found a long-term improvement in
body condition both in Common Pochard and in
Tufted Duck, which can be an important driver of

© 2023 The Authors. Ibis published by John Wiley & Sons Ltd on behalf of British Ornithologists' Union.
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change in the population dynamics of these species
(Blums et al. 2005, Guillemain et al. 2010, New-
ton 2013, English et al. 2018) as females in better
body condition are expected to be more capable
of incubating clutches and raising offspring.

Regardless of the benefits of improved body
conditions for the population dynamics of the spe-
cies, both species have been declining alarmingly
in recent decades (Keller et al. 2020). Contrary to
previous studies showing a clear association

Common Pochard Tufted Duck

2005 2010 2015 2020 2005 2010 2015 2020
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Figure 1. Effect of year on body condition index (the residuals from the regression of the log of mass (g) on (1) the log of tarsus
length (cm) and (2) the incubation stage; 95% confidence interval in Common Pochard and Tufted Duck (body condition index values
of individual females expressed in black circle).

Table 2. Regression results – relative variable importance.

Species
Independent
variable

Body condition
index

Dependent variable

Laying
date

Total clutch
size

Non-parasitized
clutch size

Mean egg
mass Hatchability

Common
Pochard

Year 0.782 0.760 0.379 0.334 0.359 0.562
Body condition
index

0.521 0.273 0.268 0.610 0.945

Winter temperature 0.459
Water transparency 0.272
Reproductive
investment

0.264

Tufted Duck Year 0.582 0.324 0.797 0.496 0.421 1.000
Body condition
index

0.353 0.278 0.290 0.994 0.532

Winter temperature 0.442
Water
transparency

0.273

Reproductive
investment

0.341

© 2023 The Authors. Ibis published by John Wiley & Sons Ltd on behalf of British Ornithologists' Union.
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between female body condition and widespread
declines in a North American Aythya species
(Lesser Scaup Aythya affinis; Anteau &

Afton 2004), our results show that population
declines cannot be directly linked to changes in
body condition, as we found an increasing trend in

Table 3. Regression results – model-averaged coefficient estimates.

Species
Independent
variable

Body condition
index (linear)

Dependent variable

Laying
date
(linear)

Total clutch
size (Poisson)

Non-parasitized
clutch size (Poisson)

Mean egg
mass (linear)

Hatchability
(linear)

Common
Pochard

Year 0.000903 0.245 0.00181 0.00129 −0.0203 −0.00510
Body
condition

−0.0436 −0.0629 −0.0436 9.603 2.425

Winter
temperature

−0.00181

Water
transparency

−0.000252

Reproductive
investment

0.000150

Tufted
Duck

Year 0.000522 −0.0374 0.00690 0.00268 0.0181 −0.0244
Body
condition

−5.825 −0.0473 −0.0657 14.24 0.428

Winter
temperature

−0.00147

Water
transparency

−0.000206

Reproductive
investment

0.000735

Common Pochard Tufted Duck

−0.10 −0.05 0.00 0.05 −0.10 −0.05 0.00 0.05 0.10

45

50

55

60

65

50

55

60

65

70

Body condition index

M
ea

n 
eg

g 
m

as
s

Figure 2. Effect of body condition index (the residuals from the regression of the log of mass (g) on (1) the log of tarsus length (cm)
and (2) the incubation stage; 95% CI) on mean egg mass in Common Pochard and Tufted Duck (body condition index values of indi-
vidual females expressed in black circle).

© 2023 The Authors. Ibis published by John Wiley & Sons Ltd on behalf of British Ornithologists' Union.
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BCI. Folliot et al. (2020) failed to confirm changes
in adult survival as the main explanatory variable
of a decline in Common Pochard populations. A
lower proportion of breeding females within popu-
lations – resulting in higher male bias in the adult
sex ratio (Brides et al. 2017, Frew et al. 2018,
Pöysä et al. 2019) – has been observed in many
duck species. A lower proportion of females is crit-
ical for population change and can lead to rapid
decline of reproductive success when fewer
females reproduce. Moreover, the knowledge of

what proportion of females breed in a given year
is very limited (Poláková et al. 2018, P. Musil
unpubl. data). It is possible that in poor years only
females with high BCI are able to breed success-
fully (e.g. Uttley et al. 1989). As we analysed only
females that successfully incubated clutches up to
the late stage of incubation, this could have
increasingly biased our data towards females in
better condition if environmental conditions
declined over time. Furthermore, studies focusing
on survival in earlier life stages among Aythya

Table 4. Results of the model selection procedure for Common Pochard.

Dependent variable Rank Model AICc Δi wi ER

Body condition index 1 Year+winter temperature 674.86 0 0.217 1
2 Year 674.98 0.127 0.204 1.07
3 – 676.76 1.902 0.084 2.59

Laying date 1 Year −1480.52 0 0.384 1
2 Body condition index −1478.58 1.936 0.146 2.63
3 – −1477.72 2.803 0.095 4.06

Mean egg mass 1 Body condition index −915.07 0 0.378 1
2 – −914.35 0.720 0.264 1.43

Hatchability 1 Year+ body condition index −209.28 0.000 0.539 1
2 Body condition index −208.71 0.567 0.406 1.33
3 – −203.65 5.632 0.032 16.71

Total clutch size 1 – −1012.63 0 0.488 1
Non-parasitized clutch size 1 – −990.93 0 0.454 1

Notes: (1) AICc=Akaike information criterion with small-sample correction. Δi=AICc difference between the top model (model
ranked first) and model i; wi= exp(−Δi /2)=Akaike weight of model i; ER=w1/wi, the evidence ratio for model i. (2) Following
Arnold (2010), we discarded models with uninformative parameters, i.e. models whose AICc can be improved by dropping some of
the covariates.

Table 5. Results of the model selection procedure for Tufted Duck.

Dependent variable Rank Model AICc Δi wi ER

Body condition index 1 Year+winter temperature 1055.78 0 0.161 1
2 – 1056.13 0.358 0.135 1.2

Laying date 1 – −2585.55 0 0.435 1
Mean egg mass 1 Body condition index −1452.58 0 0.577 1

2 Year −1442.04 10.533 0.003 193.74
3 – −1441.96 10.620 0.003 202.35

Hatchability 1 Year+ body condition index −291.65 0 0.532 1
2 Year −291.40 0.254 0.468 1.14
3 – −261.67 29.978 0.000 3233595.87

Total clutch size 1 Year −1728.95 0 0.443 1
2 – −1726.23 2.720 0.114 3.896

Non-parasitized clutch size 1 – −1690.56 0 0.359 1

Notes: (1) AICc=Akaike information criterion with small-sample correction. Δi=AICc difference between the top model (model
ranked first) and model i; wi= exp(−Δi /2)=Akaike weight of model i; ER=w1/wi, the evidence ratio for model i. (2) Following
Arnold (2010), we discarded models with uninformative parameters, i.e. models whose AICc can be improved by dropping some of
the covariates.

© 2023 The Authors. Ibis published by John Wiley & Sons Ltd on behalf of British Ornithologists' Union.
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species, i.e. offspring survival to fledging (Dawson
& Clark 1996, Blums et al. 2002, Broyer 2019)
and post-fledging survival to recruitment to the
breeding population (Messmer et al. 2021), are
lacking in the literature. Both of these demo-
graphic variables alongside a lower proportion of
females breeding could cause a population decline
and are important issues for future studies on pop-
ulation dynamics of these species.

Under ongoing climate warming (Hurrell &
Deser 2010), we expected that the increasing
winter temperatures could positively affect the
body condition of diving ducks. However, we
found no direct effect of winter temperature on
the body condition in these species. The higher
values of body condition of breeding females
may be related to the environmental variability
of winter/early spring weather conditions
throughout their wintering distribution in Europe
(Guillemain et al. 2013), shifts in spring phenol-
ogy on breeding grounds (Podhrázský
et al. 2017) and long-term changes in habitat
use in the wintering grounds (Musilová
et al. 2021). These changes in habitats and
spring phenology could influence female body
condition throughout indirect effects (Sedinger &
Alisauskas 2014). A long-term improvement in
the body condition of breeding females in the
temperate zone may be linked to a higher avail-
ability and suitability of wintering habitats close
to the breeding grounds, reduced energetic costs
and more feeding opportunities during winter
minimizing winter carry-over effects (see Inger
et al. 2010) or an increase in their survival (Har-
amis et al. 1986, Devries et al. 2008, Guillemain
et al. 2008, Newton 2013, Podhrázský
et al. 2017).

Another possible explanation of the improved
body condition indirectly driven by climate change
could be found in the recent shortening of the
migration distance between nesting and wintering
grounds, as was recently evidenced for Greylag
Goose Anser anser (Podhrázský et al. 2017) and
Bewick’s Swan Cygnus columbianus bewickii (Nuij-
ten et al. 2020). The shortening of migration dis-
tance can be further demonstrated in Tufted Duck
and other waterbirds as a shift in their wintering
distribution (Lehikoinen et al. 2013, Pavón-Jordán
et al. 2019). The body condition of breeding
females may arise from a shortening of migration
distance due to the lower energy cost of regulating
body heat to survive the winter and thus only

slight body condition loss during the time spent at
stopovers and on wintering grounds (Piersma 2002,
Newton 2007). From a long-term effect perspec-
tive, all these effects could plausibly influence the
body condition of long-lived migratory capital
breeders such as Common Pochard and Tufted
Duck.

Breeding parameters are driven by
female body condition

Our study provides evidence that females in better
body condition laid larger eggs in both studied spe-
cies, consistent with the results of nest studies on
diving ducks where a high value of body condition
were found to be important during clutch incuba-
tion and linked to a larger clutch size (Blums
et al. 2005, Warren et al. 2013, Folliot
et al. 2017). It is worth noting that good female
body condition is in general important during egg-
laying among birds (Ryder 1970, Owen &
Black 1990, Kear 2005).

Egg mass is considered a good predictor of
future duckling growth and survival (Dawson &
Clark 1996, Pelayo & Clark 2002). Larger eggs
contain a greater amount of essential nutrients
(Ricklefs et al. 1978) and hatched offspring are
then predicted to be heavier, structurally larger
(Grant 1991, Reed 1999, Hořák et al. 2007) and
have higher survival (Lepage et al. 2000, Blums
et al. 2002), which is critical for population pro-
ductivity. By contrast, Alisauskas and
Ankney (1992) suggested that females in better
body condition are expected to produce more
eggs, which opens the debate about the widely
studied trade-off between egg mass and clutch size
(Rohwer 1988, Blackburn 1991, Figuerola &
Green 2006). Consistent with our results, both
Common Pochard and Tufted Duck females with
higher values of body condition use the strategy of
nutrition investment in larger egg mass rather than
in a larger number of eggs in the clutch. Similarly,
Hořák et al. (2008) failed to find any correlation
between egg mass and clutch size in Common
Pochard probably because they did not consider
female body condition as an important factor for
clutch formation (Alisauskas & Ankney 1992,
Kear 2005).

Importantly, females in better body condition
showed higher hatchability, which is probably
linked to the higher nutritional reserves posi-
tively affecting incubation behaviour (Arnold

© 2023 The Authors. Ibis published by John Wiley & Sons Ltd on behalf of British Ornithologists' Union.
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et al. 1995). Females in good body conditions
probably minimize their time spent off the nest
during clutch incubation and thus minimize the
probability of clutch predation and increase their
hatchability. It is important to note that the
females included in the hatchability analysis rep-
resent a subset of the local breeding population
that incubated clutches long enough to be cap-
tured in the late stage of the incubation period,
and the nest survived to this stage. We also con-
sider that the methodological approach was con-
sistent during the whole study period and cannot
be considered a source of bias in data analysis.

Our results also revealed a delay in laying date
of Common Pochard over the study period, which
is not related to changes in female body condition
but to some other factor acting over time that we
have not measured. Similarly, the long-term
increase in total clutch size (including parasitic
eggs) in Tufted Ducks was not directly associated
with the long-term improvement in female body
condition. Such an increase in clutch size may be
linked to an increased frequency of nest parasitism
(Neužilová & Musil 2010, Šťastný & Hudec 2016,
Čehovská et al. 2019). Moreover, the rate of nest
parasitism increases later in the breeding season,
which could lead to larger clutches of Tufted
Duck observed at the time of female trapping
(Neužilová & Musil 2010). Moreover, increased
clutch size may cause nest abandonment (Blums
et al. 1997, Kear 2005), leading to a decrease in
hatchability, as shown in this study.

The decline in hatchability, which we found
was not linked to female body condition, the delay
in laying date of Common Pochard and the
increase in clutch size in Tufted Duck (see also
Dugger & Blums 2001) suggest that although
females are currently in better body condition
compared with two decades ago, there are other
factors that are the major drivers of population
declines. Deteriorating conditions in the main
breeding habitat (e.g. Pavón-Jordán et al. 2017,
Santangeli & Lehikoinen 2017), such as lower
water transparency (Blindow et al. 1993, Moss
et al. 2004) and lower food availability, increased
heat stress (Ma et al. 2014), and inter- and intra-
specific competition for space and resources
(Bethke 1991, Elmberg et al. 1997, Pöysä &
Pöysä 2002), probably prevent Common Pochard
and Tufted Duck from improving their overall
breeding success and from helping to revert their
population declines in Europe.

CONCLUSION

Our results did not provide any evidence of a
reduction in body condition of female Common
Pochard and Tufted Duck at the late incubation
stage over last two decades (2004–2020). Even
though we did not reveal any biotic or abiotic vari-
able acting prior to and at the time of nesting that
could explain annual variation in female body con-
dition, the decreasing population size of Common
Pochard, as well as Tufted Duck, could be related
to changes in population structure (proportion of
breeding females and/or in duckling survival)
closely connected to limited food availability in
the later part of their breeding seasons.

Over the 17 years of study, we found that
females breeding in Czechia do not suffer from
reduced body condition, and body condition is pos-
itively related to their breeding output (females in
better body condition produce larger eggs and have
a higher hatchability). Nevertheless, overall hatch-
ability is decreasing, which should be accounted
for in future population studies. Moreover, we note
the necessity of a future focus on post-hatching
periods such as juvenile recruitment and survival,
rather than adult survival, especially in the case of
the declining populations of Common Pochard and
Tufted Duck in Europe (Keller et al. 2020).
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also grateful to Miroslav Šálek for his advice on improve-
ment of an earlier version of the manuscript.

AUTHOR CONTRIBUTIONS
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González-Medina, E., Navedo, J.G., Corbacho, C.,
Sánchez-Guzmán, J.M. & Masero, J.A. 2021. Changes in
body condition in northern pintails wintering in southern
Europe support the ‘wintering strategy hypothesis’. Ardea
109: 33–40. https://doi.org/10.5253/arde.v109i1.a9

Parmesan, C. & Yohe, G. 2003. A globally coherent fingerprint
of climate change impacts across natural systems. Nature
421: 37–42. https://doi.org/10.1038/nature01286

Pavón-Jordán, D., Fox, A.D., Clausen, P., Dagys, M.,
Deceuninck, B., Devos, K., Hearn, R.D., Holt, C.A.,
Hornman, M., Keller, V., Langendoen, T., Ławicki, Ł.,
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