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Bias and precision of crowdsourced recreational activity data from Strava 
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H I G H L I G H T S  

• Strava captures spatial and temporal variation in recreational activity accurately. 
• Under-representation of young, elderly, and low socioeconomic status groups. 
• Trend analyses need to account for growth in Strava usership and time of year. 
• Adoption of Strava in urban planning depends on precision/bias requirements.  
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A B S T R A C T   

Recreational activity is the single most valuable ecosystem service in many developed countries with a range of 
benefits for public health. Crowdsourced recreational activity data is increasingly being adopted in management 
and monitoring of urban landscapes, however inherent biases in the data make it difficult to generalize patterns 
to the total population. We used in-situ observations and questionnaires to quantify accuracy in Strava data - a 
widely used outdoor activity monitoring app – in Oslo, Norway. The precision with which Strava data captured 
the spatial (R2 = 0.9) and temporal variation (R2 = 0.51) in observed recreational activity (cyclist and pedes-
trian) was relatively high for monthly time series during summer, although precision degraded at weekly and 
daily resolutions and during winter. Despite the precision, Strava exhibits significant biases relative to the total 
recreationist population. Strava activities represented 2.5 % of total recreationist activity in 2016, a proportion 
that increased steadily to 5.7 % in 2020 due to a growing usership. Strava users are biased toward cyclists (8 % 
higher than observed), males (15.7 % higher) and middle-aged people (20.4 % higher for ages 35–54). Strava 
pedestrians that were able to complete a questionnaire survey (>19 years) were biased to higher income brackets 
and education levels. Future studies using Strava data need to consider these biases – particularly the under- 
representation of vulnerable age (children/elderly) and socio-economic (poor/uneducated) groups. The imple-
mentation of Strava data in urban planning processes will depend on accuracy requirements of the application 
purpose and the extent to which biases can be corrected for.   

1. Introduction 

Recreation is arguably the most economically valuable ecosystem 
service in many developed countries due to the benefits it has for mental, 
physical and emotional wellbeing which mitigate the public health 
burden (Davies & Dutton, 2021; Hermes et al., 2018). The value of 
recreational spaces in urban settings has been exemplified by the drastic 
increase in outdoor recreation witnessed during the COVID-19 
pandemic (Day, 2020; Samuelsson et al., 2020; Venter et al., 2021). 
The ability to measure and monitor recreational activity is important for 
designing, planning and managing resilient and sustainable cities for the 

following reasons: 1) data on outdoor recreation informs socio- 
ecological science and natural resources impact analyses on the rela-
tionship between people and their recreational activities in a given 
landscape setting (Hansen, 2021); 2) research outputs on recreational 
activity can inform data-driven decision making and management 
strategies in a range of application domains including urban planning (e. 
g. targeting green infrastructure planting), landscape architecture (e.g. 
enhancing aesthetic value of a park), transport infrastructure design (e. 
g. walkability of roads); 3) operational recreation monitoring enables 
testing new management interventions in near real-time and facilitates 
ongoing accounting for ecosystem services, and 4) valuing recreation 
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services in urban ecosystem accounting. The use of crowdsourced data 
for health impact assessment of changes in physical recreation activity is 
limited by the individual anonymization of the data. 

Traditional methods to measure and monitor volume, spatiotem-
poral extent, type of activity and user characteristics of recreational 
activity and travel can be divided into manual and automated methods 
(Alattar et al., 2021). Manual methods include on-site observation 
studies, questionnaire surveys, GPS surveys, video recording, and 
handheld counters. Automated methods include infrared sensors, mag-
netometers, and pressure pads which count passers-by. Traditional data 
collection methods are advantageous because they can be conducted 
according to statistical sampling procedures that allow for design-based 
inference to the target population. However, they are also time 
consuming, costly to deploy at large scale, and survey techniques are 
increasingly vulnerable to steadily decreasing response rates, respon-
dent recall errors and reporting biases (Fredman et al., 2009). The recent 
proliferation of social media, mobile phone apps and wearable devices 
that sync personal location data to the web has afforded crowdsourcing 
of recreational activity patterns (Bubalo et al., 2019; Byczek et al., 2018; 
Havinga et al., 2020). Crowdsourced data on recreation is generally 
inexpensive, scalable to large areas, and can yield novel insights in near 
real-time. However, there are challenges such as the requirement for 
advanced data science skills to process the data, varying levels of 
accessibility and data sovereignty depending on how crowdsourced 
tools are funded, representativeness of data and the potential impact of 
biased data on equity in decision making (Nelson et al., 2021; Niu & 
Silva, 2020). 

Perhaps one of the most promising forms of crowdsourcing with 
respect to recreational activity is outdoor activity sharing platforms 
including Condoon, Geocaching, GPSies, MapMyFitness, Wikiloc and 
Strava (Havinga et al., 2020). Here recreationists use wearable devices 
or mobile phone apps to track their outdoor activity and the data is 
uploaded to a central platform. Strava stands out from the other plat-
forms in that it has the largest usership with over 95 million people 
worldwide and a growth rate of 2 million per month (Strava, 2022). 
Strava uses anonymized and aggregated GPS location information from 
its users to quantify activity over space and time at fine spatial resolution 
(i.e. individual trail segments) and at the global scale (https://www. 
strava.com/heatmap). Users define their age and gender and input the 
travel mode (cycling or pedestrian) they are engaging in for each activity 
they record using the phone’s inbuilt GPS device. Due to Strava’s data 
sharing with selected partners and public agencies, it has been adopted 
in scientific studies more than other outdoor activity sharing platforms. 
In the scientific literature Strava has been used to explore recreational 
use of nature areas (Thorsen et al., 2022; Venter et al., 2020); however, 
the bulk of studies using Strava data have focused on cycling activity 
including both commuting and leisure travel because of its relevance to 
transportation research questions (Lee & Sener, 2020). In the context of 
bicycle monitoring Strava has been used for travel demand estimation, 
route choice analysis, infrastructure evaluation, crash exposure control 
and air pollution exposure assessment. There remains scope for similar 
applications of Strava data with pedestrian (walking, running, hiking) 
activity and in relation to recreation landscape design, management and 
monitoring. 

As with other forms of crowdsourced data, Strava is a small sub-
sample of the total population and therefore needs to be calibrated with 
fixed-point counter stations so that one can make population-level es-
timates of total activity volume (Lee & Sener, 2020; Nelson et al., 2021). 
Furthermore, Strava is not a representative sample of the broader pop-
ulation and therefore using it in urban planning or policy settings may 
lead to inequitable outcomes. Strava data suffers from selection bias due 
to the type of people who select to use the platform which is currently 
geared to incentivise competition and, therefore, fitness-focused users 
are likely over-represented (Hochmair et al., 2019). Studies in North 
America and Australia have found that users of smartphone apps, 
including Strava, that track cycling activity tended to undersample 

females, older adults, and lower-income populations (Blanc et al., 2016; 
Heesch et al., 2016). Studies focusing on Strava cycling activity have 
found that there is an overrepresentation of middle-age and male de-
mographics amongst Strava users (Lee & Sener, 2020). However, to date 
there has been no evaluation of precision and bias in Strava data that 
encompasses both cycling and pedestrian recreational activity. This is 
particularly pertinent given the growth in Strava usership and the fact 
that their data is now being made available to public agencies and 
research institutes through a dedicated data sharing platform called 
Strava Metro. 

Due to the unknown uncertainty inherent in crowdsourced recrea-
tional data like Strava, and the need to quantify the uncertainty for 
robust data-driven decision making in urban planning, here we aim to 
quantify the precision and bias of Strava recreation activity data for 
those who visit nature areas in Oslo, Norway. Given that previous work 
on Strava data biases has focused on cycling activity for travel purposes 
(both leisure and commuting), our unique contribution is to quantify 
biases for both pedestrian and cycling activity while focusing on non- 
commute, recreational trips. In the context of outdoor recreational ac-
tivity, the inclusion of pedestrian activities is important given that it 
captures a wide range of non-cycling activity (e.g. hiking, dog walking) 
which are important to account for in urban recreation area planning 
and management. For the purposes of this analysis, we define precision 
as a measure of how similar the spatial and temporal variation in activity 
estimates (i.e. Strava) are to those of the true activities. We define bias as 
a measure of how different any one estimated activity count is from the 
true activity count (also called systematic error). Both bias and precision 
are components of accuracy. We use fixed-point counter stations (active 
between 2016 and 2020), and observation and questionnaire surveys 
(collected during 2021) as reference data to compare Strava against. 
Specifically, we aim to quantify (1) how precisely Strava captures 
temporal and spatial patterns in recreational activity; (2) how biased the 
absolute number of Strava activities is and how this changes year-on- 
year; (3) how biased the Strava data is across activity types, gender, 
age, wealth and education status. 

2. Methods 

2.1. Study area 

The study was conducted in Oslo and its surroundings (Fig. 1). Oslo is 
Norway’s capital city (59′55 N, 10′45 E) with a population of 699 827 
which accounts for approximately 13 % of the country’s population 
(Statistikkbanken, 2022). The built-up zone of the city is punctuated 
with green spaces and riverine corridors which extend outward to an 
intact forest zone surrounding the city called “Marka” (altogether 1700 
km2) which is protected from urban development by law. The regular 
Marka recreation survey of Oslo households records 26 recreation ac-
tivities (Kantar, 2021) – in 2020 85 % of households reported walking in 
Marka peri-urban forest during the year, 54 % cross-country skiing, 42 % 
jogging/running, and 25 % reported biking. The Oslo region provides a 
range of recreation opportunities that exist along a steep gradient from 
urban to wilderness areas. Due to the unique access to surrounding semi- 
natural forest and nature reserves, Oslo is not representative of many 
European cities, but is conceptually representative of a recreational 
gradient and diversity of recreation area types that is accessible to a 
diversified urban population. 

2.2. Strava mobility data 

Strava make their data available through their Strava Metro Service 
to selected partners. The data service is a web-based interactive platform 
to explore, query and download activity data. In order to get access to 
the Strava Metro platform, partners are required to enter into a license 
agreement which generally restricts the use of the data to use-cases 
which inform the planning or maintenance of transportation 
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infrastructure and processes for bicyclists and pedestrians. Selected 
partners include public agencies such as Departments of Transportation, 
Metropolitan Planning Organizations, and in some cases research in-
stitutions. To maintain user anonymity and privacy, the data is aggre-
gated and de-identified, consistent with the European Union’s GDPR and 
the California Consumer Privacy Act (CCPA). 

The mechanism behind the Strava data is the use of a mobile phone’s 
in-build GPS device to record the location of the phone over time and 
space. The raw GPS tracks from individual mobile phones are snapped to 
the closest recreational or transport line geometry defined by an 
OpenStreetMap (https://www.openstreetmap.org) base layer. Activities 
per line geometry are aggregated to hourly, daily, monthly and yearly 
time intervals if there were at least three unique users (a data privacy 
measure) during the given time window. Activity counts are stratified by 
the gender, the age (in brackets of 13–19, 20–34, 35–54, 55–64, and 
greater than 65), the type of activity (pedestrian or cycling) and the 
purpose of the activity (commuting for work or leisure). These stratifi-
cations are based on user-defined metadata collected through the Strava 
app. We restricted our analysis to leisure trips because the focus of our 
study was recreational use. All daily Strava activity counts between 
2016 and 2020 for the trail segments intersecting counter station loca-
tions (Fig. 1) were downloaded from the Strava Metro Service. In 
addition we downloaded activity counts, stratified by user type and 
demographic, for the days in June 2021 and trail segments which 
coincided with our observational surveys (see section 2.4). 

2.3. Counter stations 

To quantify the temporal and spatial accuracy of Strava data we 
collected reference data on recreational activity numbers along selected 
trail segments where fixed-point counter stations had been installed 
(Fig. 1).The counter stations (EcoCounter with two-way pyroelectric 
sensor) are installed and managed for high counter accuracy following 
standard procedures for installation and management (Andersen et al., 
2014) and record the number of people passing by per hour. Counter 
error rates under normal conditions have been tested to be accurate 
within 5 %; however, error rates increase with increasing recreational 
traffic. 

Data from two counter stations managed by Oslo municipality at two 
of the most popular trail heads in Oslo, namely Sognsvann and Rus-
tadsaga were collocated with our observation and questionnaire surveys 
(Fig. 1). To quantify the accuracy of the spatial variation in Strava ac-
tivity counties, we required additional reference data spread over space. 
Therefore, we included data from five additional counter stations 
maintained by Statens naturoppsyn (SNO) which is a governmental 
authority responsible for monitoring of nature protection areas. These 
stations are spread over the broader Oslo region and represent a gradient 
of use-intensity ranging from 5 to 3368 activities per day (Fig. S1). All 
counter stations collected daily activity counts 365 days a year and were 
permanently located at the positions outlined in Fig. 1. We extracted the 
daily counts for the time period between 2016 and 2020 which coin-
cided with the availability of the Strava data. 

Fig. 1. Study area in Norway including the distribution of fixed-point counter stations and observation surveys. Population density data from Statistics Norway 
(Statistikkbanken, 2022) is mapped for reference and a satellite image base layer is used to differentiate water, forest and open vegetation. 
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2.4. Observation surveys 

To explore the activity type, gender and age biases in the Strava data, 
we performed in-situ systematic moment observations of recreationists 
at high recreational traffic locations in Oslo including Sognsvann and 
Rustadsaga (Fig. 1; Fig. S1). At each location we randomly selected three 
trail segments that contained enough Strava activity to ensure data 
availability. We defined these as any trail with average Strava activity 
greater than the 75th percentile for the trails within a 3 km radius of that 
location. We chose high activity trails to ensure that we could collect 
enough observational data given the time limitations for fieldwork in the 
budget for our research project. Without sampling high activity trails 
(>75th percentile), we would not have enough data points to quantify 
age and gender biases in the Strava data. Observational surveys took 
place during daylight hours over the course of three weeks during June 
2021. Survey events were randomly distributed over locations, days of 
the week, and hours of day in order to reduce potential bias introduced 
by anomalous weather. We counted all humans passing by and recorded 
their gender, age, and whether they were on a bicycle or not. We 
included a category of “other” for recreationists that were visually 
obscured or where it was difficult to distinguish age or gender charac-
teristics. To calibrate our visual estimation of age and gender, we per-
formed an initial sampling as a group of researchers with experience in 
social science observational surveys until we reached consensus on what 
constitutes a given age or gender group. 

2.5. Questionnaire surveys 

To aid in the capture of socio-demographic information that cannot 
be observed passively through observation surveys, we deployed 
anonymous on-site questionnaire surveys at the six observation surveys 
locations. Posters with a QR code linking to an online questionnaire 
survey were posted on visible notification boards and remained in place 
from June to December 2021. When recreationists decided to complete 
the survey by scanning the QR code with their mobile phones, they were 
presented with questions about: (1) what type of GPS activity moni-
toring apps they use to track their recreational activity; (2) how often 
they specifically use Strava; (3) whether they were on foot or bicycle; (4) 
their annual income bracket; and (5) their highest education level. 

2.6. Statistical analysis 

To quantify the temporal and spatial precision of the Strava data we 
regressed observed (i.e. counter station) on Strava activity counts and 
calculated the linear regression R2 values. We did this for temporally and 
spatially aggregated activity counts, during summer (April to 
September) and winter (remaining months). We also created separate 
regressions for different levels of temporal aggregation including daily, 
weekly and monthly time series. We calculated Strava activity count bias 
for any given spatial or temporal unit of aggregation as the percentage of 
observed recreational activities (A0) constituted of Strava activities (AS). 

Countbias =
AS

Ao
× 100 

We calculated the annual trend in Strava activity count bias as the 
slope of a linear trend fitted to the monthly bias estimated across all 
counter station locations. Given we were not testing any specific hy-
potheses we did not specify any statistical models to determine signifi-
cant effects or differences. 

3. Results 

3.1. Precision in temporal and spatial variation 

Between 2016 and 2020 the seven available counter stations (Fig. 1) 
recorded 6.5 million activities, while the corresponding Strava trail 

segments recorded 0.17 million activities. The Strava data captured the 
temporal variation in the activity counts (R2 = 0.51; Fig. 2A) with less 
precision than it captured the spatial variation (R2 = 0.9; Fig. 2B). The 
temporal variation in activity during winter months was less correlated 
to Strava than during summer months (Fig. 2A), however this was not 
the case for the spatial variation (Fig. 2B). The precision of Strava data 
decreases as one increases the granularity of temporal aggregation from 
months to weeks to days (Fig. 3). In general, Strava appears to over-
estimate activities at the high end of the observed activity spectrum, and 
underestimate at the low-end (Figs. 2 and 3). 

3.2. Bias in activity count and trend 

Strava activities represented 2.5 % of total recreationist activity in 
2016 and 5.7 % in 2020 reflecting an increase in representativity of 1.24 
% (±0.7 % standard error) per year (Fig. 4A and B). This increasing 
trend differs from the relatively stable trend observed in counter station 
data (Fig. 4A) because it reflects the increase in Strava usership over 
time. As more people adopt Strava, the proportion of total recreationists 
that Strava represents increases over time. However, averaged over the 
study period, Strava activities represented 3.9 % (±1.1 %) of the rec-
reation activities observed by counter stations. There was spatial vari-
ation in the temporal bias; specifically remote locations with lower 
recreational use intensity (e.g. Sleppa; Fig. 1) generally have greater 
proportions of Strava users and show larger increases in Strava repre-
sentativity over time (Table S1). There was intra-annual variation in the 
Strava activity count bias with summer months showing higher repre-
sentativity than winter months (Fig. 4C). Similarly, there is variation in 
Strava bias over the days of the week where Strava is less representative 
on weekends compared to weekdays. 

3.3. Bias in activity type, sex, age, income and education 

The observation surveys included 54 sampling hours spread 
randomly across the selected trail segments and captured 4184 recrea-
tional users. In comparison to observed recreationists, Strava recrea-
tionists were biased toward cyclists (Fig. 5A), males (Fig. 5B) and middle 
age groups (Fig. 5C). The bias in age demographics was most substantial 
for children/teenagers with Strava data including 23.3 % less activities 
than observed in this age bracket. The direction of the age and sex biases 
was the same for both pedestrian and cycling activities (Fig. 6), although 
Strava cyclists showed a larger bias toward the middle as opposed to 
younger age brackets compared to Strava pedestrians. 

We received 1475 responses to the questionnaire survey, however 
the sample was heavily biased towards pedestrians (93 % survey re-
spondents were pedestrians) and older age groups (97 % were older than 
19). Therefore, we restricted the analysis of wealth and income biases in 
Strava data to pedestrian activities (i.e. excluding cyclists) from users 
above 19 years old. Of these respondents, 13 % reported having used 
Strava before, however a number of other GPS tracking apps/devices 
were also adopted by respondents (Fig. S2). We found that Strava users 
were biased toward high-income brackets and education levels (Fig. 7). 

4. Discussion 

4.1. Strava precision and bias in the broader context 

The Strava users in Oslo represented 5.7 % of the total recreationist 
population in 2020 and this value has been steadily increasing year-on- 
year since 2016 probably due to the increasing Strava usership. Without 
any other studies quantifying this inter-annual trend we cannot compare 
our findings to other countries. Although Strava reports a growth rate of 
two million users per month (Strava, 2022), this is not broken down by 
country and it is therefore difficult to assess whether the growth trends 
in our data are representative of other countries. 

We found that Strava activity patterns are relatively precise because 
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activity counts were well-correlated with counter station data over space 
(R2 = 0.9) and time (R2 = 0.51; Fig. 2). This aligns well with the R2 

values (generally greater than 0.75) reported by a number of Strava 
studies reviewed in (Lee & Sener, 2020). However, none of these studies 
have differentiated temporal and spatial correlations, nor have they 
included pedestrian activity in addition to cycling activity in their 
analysis. We also found that temporal precision of Strava data is greater 
in summer than in winter and that Strava users represent a greater 
proportion of total recreationists during the week compared to the 
weekend. A potential explanation for the former pattern is that Strava 
users are more representative of the total recreationist population dur-
ing summer compared to winter (Fig. 4C). This is possibly because 
during winter there are popular winter recreation activities, in partic-
ular cross-country skiing, which are not carried out by the same users as 
the summer pedestrian segment ofthe Strava dataset and therefore re-
duces correlations. The lower representativity of Strava users during the 
weekends may be because of the focus the Strava usership has on 
physically active, fitness activities which may be typically integrated 
with weekday routines, whereas on the weekends there are a greater 
variety of recreationists (e.g. foragers, campers) that are not picked up in 
the Strava data. A similar explanation is possible for our finding that 
remote locations showed less bias (greater proportion of Strava users) 
compared to busier, urban locations (Fig. 1). Strava users are possibly 
fitter than the average recreationist and are therefore able to venture 

further into more remote recreational areas. 
We also found a reduction in Strava precision with increasing reso-

lution of temporal aggregation (Fig. 3). This is possibly because at higher 
temporal units of aggregation the Strava pre-processing algorithm drops 
many more data points because of the privacy setting which requires at 
least three activities per unit time to be stored in their database. 
Therefore, monthly or annual aggregation would allow for a greater 
number of trail segments to pass the privacy threshold for data 
exclusion. 

Our assessment of demographic and socioeconomic biases in the 
Strava data generally aligned with previous studies even though previ-
ous studies focused exclusively on cycling activity. We found that the 
direction of age and gender biases is consistent across both cycling and 
pedestrian activity types (Fig. 6), although Strava cyclists are more 
skewed to the middle-age range (between 35 and 55) compared to pe-
destrians which are more skewed to younger-age range (20 to 35). Lee & 
Sener, (2020) reviewed Strava cycling studies and reported that in 
almost every case Strava users are skewed towards the young-middle 
aged (between 25 and 44) male demographic. The authors attribute 
this skew to the selection bias toward economically active, tech savvy 
people which is a well-known bias in many other forms of crowdsourced 
data collected from mobile phones (Milne & Watling, 2019; Wang et al., 
2018). In addition, Strava policy restricts app users to people over 13 
years of age and therefore excludes the entire child demographic. The 

Fig. 2. Temporal and spatial correlation between Strava and counter station monthly activity counts between 2016 and 2020. Temporal variation (A) is based on 
counts aggregated to monthly values (n = 48), while spatial variation (B) is based on counts aggregated to unique counter locations (n = 7). C shows counts 
aggregated at annual interval for each unique counter location (n = 28). Values are relativized by calculating the percentage of total activity counts per grouping 
variable. Linear regression lines are plotted in color and a black dashed 1:1 line is added for reference. The adjusted R2 values of linear regressions are displayed for 
the entire time series (in black) and separately for summer and winter. 

Fig. 3. Temporal correlation between Strava and counter station activity counts between 2016 and 2020 for three levels of temporal aggregation including monthly 
(A; n = 48), weekly (B; n = 217) and daily (C; n = 1519) sums. Values are relativized by calculating the percentage of total activity counts per grouping variable. 
Linear regression lines are plotted in bold along with the adjusted R2 values. A dashed 1:1 line is added for reference. 
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same selection biases may explain why Blanc et al., (2016) found that 
smartphone users who tracked their cycling activity were biased toward 
high-income groups. In our study we found that pedestrians older than 
19 years that use Strava were more likely to have higher incomes and are 
more educated (Fig. 7). 

Apart from the inclusion of both pedestrian and cycling behavior in 
our bias analysis and the focus on recreational activities, our study 
contributes two novel aspects that have been overlooked in previous 

studies. Firstly, we find that Strava has a slight over-representation (8 %) 
of cyclists relative to pedestrians when comparing to the total recrea-
tionist population. Secondly, we find that, although the elderly are 
indeed underrepresented in Strava data, the largest bias is amongst 
teenagers and children (<19 years). The proportion of Strava users for 
this demographic are 4 % whereas in reality 27 % of recreationists are 
under 19 years of age. This is a bias also common to in-situ surveys and 
population surveys interviewing adults (Fredman et al., 2009). 

Fig. 4. Time series of relativised monthly activity counts for Strava and counter stations (A) between 2016 and 2020. A 3-month moving average line is plotted along 
with a linear trend line. The bias in monthly activity counts is plotted in B with a linear trend line. The activity count bias is plotted in C and D with box and whisker 
plots for each month and weekday, respectively. Median values are overlaid. 

Fig. 5. Percentage composition of Strava and observed recreational users across activity type, sex and age categories. Average values are presented as bars and points 
with standard error bars (n = 6). The difference between Strava and observed percentages are shown above each set of bars. 
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4.2. Recommendations for use of Strava data 

Any generalization about the utility of Strava data given its precision 
and bias is made difficult by the vast range of potential use-cases. 
Therefore, we suggest that reflections on how good the Strava data are 

be made relative to purpose requirements. For instance, using Strava 
within an ecosystem accounting framework to account for relative dif-
ferences in recreation use intensity of green spaces may be warranted 
given the high spatial precision of Strava data. In this case the de-
mographic biases are not important given inference is being made at the 

Fig. 6. Percentage composition of Strava and observed recreational users across sex (A, C) and age (B, D) categories stratified by activity type. Average values are 
presented as bars and points with standard error bars (n = 6). The difference between Strava and observed percentages are shown above each set of bars. 

Fig. 7. Percentage composition of questionnaire respondents (pedestrians only) based on income (A; n = 889) and education (B; n = 1000) level. Compositions are 
calculated for respondents who use Strava and the total recreationist population (i.e. all respondents). The percentage difference between Strava and total recre-
ationist population are shown above each set of bars. 
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level of the whole population. Similarly, assessing the relative temporal 
changes in recreation use of different greenspaces in response to external 
drivers such as the pandemic lock-down measures has provided useful 
findings regarding social distancing and greenspace preferences in the 
physically active population in Oslo (Venter et al., 2020, 2021). How-
ever, if a sociologist wanted to understand route choice between 
different age groups using Strava data, they might find the socioeco-
nomic and demographic biases a significant stumbling block. Never-
theless, there are a few generalizable recommendations we draw from 
our findings which are outlined below. 

Given that our results on the precision of Strava data concur with 
multiple other studies, we suggest that the most robust use-case for 
Strava is comparing recreation use intensity between different areas and 
over different times. For instance, Strava activity volumes have been 
compared over space to explore route choice preferences and infer 
characteristics of urban form (e.g. park size, shape, amenities) that are 
associated with route selection (Alattar et al., 2021; Sun et al., 2017). 
Further, a study in Queensland, Australia found that Strava can accu-
rately detect changes in cycling behavior over the short-term (3 
months), and is thus useful for evaluating the effects of infrastructure 
change or any other sudden impact (e.g. mobility restriction) on recre-
ationist behavior (Heesch et al., 2016). An important caveat with using 
Strava for trend analysis over longer time frames (i.e. years) is that one 
needs to account for the year-on-year increase in Strava usership (Fig. 4) 
so that trends in actual recreation activity are not confounded. 
Furthermore, users should be aware that seasonal and weekday vs 
weekend differences in Strava representativity should be taken into 
account, depending on the local context and use-case considered. For 
instance, researchers monitoring changes in recreational use in response 
to municipal interventions (e.g. installing new park amenities) should be 
aware that drawing conclusions about winter activity is less precise than 
summer activity. However, these differences may vary with local 
climate and population, and one might find different seasonal variation 
in, for instance, Mediterranean climates where winter sports like skiing 
are not present and may not lead to the results we found in Oslo, Nor-
way. Therefore, it is also important to note here that any application of 
Strava data would do well to calibrate it with local fixed-point counter 
stations instead of relying on published correlations such as those re-
ported in our study. 

The socioeconomic biases in the Strava data are important to 
consider in applications where underrepresented groups are the focus. 
This is true for both cycling and pedestrian activities given the age and 
gender biases are present in both sets of Strava users (Fig. 6). Perhaps the 
most relevant application domain in this regard is epidemiology where 
at-risk population groups including children, elderly and low socioeco-
nomic status groups are underrepresented in the Strava data. For 
example, studies that have used Strava to examine exposure to traffic 
related air pollution (Lee & Sener, 2019; Sun & Mobasheri, 2017) are 
assuming that mobility of at-risk groups matches the spatio-temporal 
pattern present in the Strava data. Due to the bias in the Strava data, 
they may be overlooking areas in the city or times of year when at-risk 
groups are disproportionately exposed to air pollution. Strava-data is 
also anonymized, making it impossible to correlate with individual level 
epidemiological covariates. Although cross-calibration with counter 
stations reveals that Strava is representative of broad-scale spatio-tem-
poral mobility (Fig. 2), this may not be true at very local scales. For 
instance if counter stations were to be placed near retirement villages or 
kindergartens one might find the correlation with Strava activity counts 
breaks down significantly due to the underrepresentation of elderly and 
children. Similarly, due to the selection bias inherent in Strava users, 
any analysis of route choice or recreation area preference should be 
aware that the bulk of users will likely be motivated by fitness and 
competition outcomes instead of, for instance, aesthetic value (Dolan 
et al., 2021). 

Apart from being cognisant of biases in the Strava data when inter-
preting results from analyses, it may be possible to correct for the biases 

by complementing Strava with other datasets. We have already dis-
cussed fixed-point counter stations at length, but socioeconomic biases 
may be compared with statistical population survey data or census block 
data. For example, (Roy et al., 2019) used statistical regression modeling 
with a range of spatially-explicit covariates including census data, 
transport network and urban form characteristics to correct for the 
biases in Strava data in Maricopa County, Arizona, USA. However, this 
effort required a significant number of counter stations (n = 104) spread 
across the city which may not be practical or possible in other settings. 
Short of correcting the bias in Strava data one can cross-reference it with 
statistical survey data, for example in Norway, the Marka-survey which 
is a representative population survey of recreational use of peri-urban 
forest in Oslo (Kantar, 2021). Similarly, other forms of participatory 
GIS can complement Strava data and fill in the gaps introduced by the 
socioeconomic biases. For example one could use data from the Barne-
tråkk (https://www.barnetrakk.no/en/) programme in Norway which 
allows children to map out areas of recreational interest around their 
kindergarten and residence. 

4.3. Limitations and further research 

Our results need to be interpreted in light of the scope and limitations 
of our study. Firstly, we focused on Strava as a source of crowdsourced 
recreation data due to its growing popularity and the availability of the 
data through the Strava Metro platform. However, as we found in our 
questionnaire survey (Fig. S2), there are many other sources of crowd-
sourced mobility data which may be used and may have their own 
unique biases which need to be researched. These include GPS tracking 
devices or apps including Garmin, Apple Health, Fitbit, Google Health, 
Runkeeper and more, although the availability of data from these apps is 
unknown at present. Additional data resources also include outdoor 
activity-sharing platforms which are often community-led and open- 
access such as Condoon, Geocaching, GPSies, MapMyFitness and Wiki-
loc (Havinga et al., 2020; Norman et al., 2019). 

Secondly, our analysis was focused on the green space recreation at 
the end of the outdoor mobility spectrum and therefore does not cover 
more utilitarian forms of mobility (e.g. commuting to work or shops). 
This is reflected in our exclusion of Strava trips marked as “commute” 
and by the fact that we use counter stations located along trails in peri- 
urban areas demarcated for recreation (Fig. 1). Therefore, our results 
should not be generalized to commute Strava data or to recreational 
activity measured in inner-city environments. One might find, for 
instance, that the bias and imprecision in Strava data might be exag-
gerated in intra-urban parks where the range of recreational activity 
types and users is very different to the fitness-based Strava activity in 
Oslo (Evensen et al., 2021; Nordh & Østby, 2013). In this way, our 
assessment of spatial precision is limited to a sample size of seven and 
may not be robust nor representative of a broader spatial gradient which 
includes inner-city environments. Future work, such as studies in the 
literature on cycling activity (Lee & Sener, 2020), would do well to 
include a greater spatial distribution of reference counter stations so that 
we can explore how Strava biases vary with urban form and land-use. 
Similarly, it would be beneficial to sample Strava trails with both very 
low and high activity counts to explore whether age and gender biases 
vary with trail use intensity. In our study we selected high activity trails 
near recreational trail heads in order to generate enough data points for 
analysis given project time constraints. 

Thirdly, the scope of our analysis excludes water use and off-trail 
recreational use due to the fact that Strava uses OpenStreetMap paths 
to snap to GPS positions and therefore we were restricted to using 
reference counter stations that are situated along established recreation 
paths. Excluding off-trail use and water use means that we were not able 
to quantify the precision and bias for certain user groups like orien-
teering, hunting, fishing and boating which do not necessarily utilize 
established paths. However, we targeted our observation and ques-
tionnaire surveys at trail heads with the aim of capturing such users 
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because most recreationists start from a parking lot and then embark on 
off-trail or water trips. Yet it is likely that many off-trail users were not 
represented in our data. For example, 43 % of Oslo’s households report 
swimming in lakes, 35 % report picking mushrooms and berries, 28 % 
camp in tents or hammocks, and 10 % do cross-country orienteering, in 
large part taking place off OSM trails (Kantar 2021). This is possibly 
reflected in the fact that Strava data was less representative of the 
recreationist population on weekends – when most non-exercise activ-
ities occur – compared to weekdays. However, all these activities often 
require walking or cycling along designated paths and therefore may be 
picked up by Strava activities recorded at trail heads. 

Fourthly, we performed observational surveys of recreationists 
which necessitated visual estimation of recreationist age and gender. We 
attempted to mitigate sampler bias though consensus estimation within 
out group of researchers, and by using age categories that were rela-
tively broad. Nevertheless, future studies would benefit from more 
precise measurement of demographic information through paired 
observation and interview survey approaches. 

Finally, although we were able to differentiate age and gender biases 
for cycling and pedestrian activity separately, we were not able to 
distinguish activity type when quantifying spatial and temporal preci-
sion. This was because the counter stations used could not differentiate 
cyclists from pedestrians. Therefore the results for spatio-temporal 
precision should be interpreted as a combined (pedestrian plus 
cycling) estimate and future studies that are able to differentiate activity 
types might find differences in precision between cycling and pedestrian 
Strava activities. 

5. Conclusion 

Recognising the importance of measuring recreational activity for 
urban planning purposes and the problems inherent to crowdsourced 
data, we aimed to quantify the accuracy of Strava data in Oslo, Norway. 
We found that Strava can be generalizable to the entire population when 
quantifying relative changes over time and space, however the level of 
temporal aggregation (day vs month), length of study, and season of the 
year have important implications on precision. Strava activities under-
represented vulnerable population groups (children, elderly and low 
socioeconomic status groups) and therefore any application of Strava 
data should be cognizant of this to ensure analysis of equity is not biased. 
We suggest that using Strava in combination with other data sources (e. 
g. counter stations, population and in-situ surveys) have great potential 
to expand the scope and robustness of its application in recreational 
landscapes. 
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