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Summary

� We studied the evolutionary history of the Parmeliaceae (Lecanoromycetes, Ascomycota),

one of the largest families of lichen-forming fungi with complex and variable morphologies,

also including several lichenicolous fungi.
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� We assembled a six-locus data set including nuclear, mitochondrial and low-copy protein-

coding genes from 293 operational taxonomic units (OTUs).
� The lichenicolous lifestyle originated independently three times in lichenized ancestors

within Parmeliaceae, and a new generic name is introduced for one of these fungi. In all cases,

the independent origins occurred c. 24 million yr ago. Further, we show that the Paleocene,

Eocene and Oligocene were key periods when diversification of major lineages within Parmeli-

aceae occurred, with subsequent radiations occurring primarily during the Oligocene and

Miocene.
� Our phylogenetic hypothesis supports the independent origin of lichenicolous fungi associ-

ated with climatic shifts at the Oligocene–Miocene boundary. Moreover, diversification bursts

at different times may be crucial factors driving the diversification of Parmeliaceae. Addition-

ally, our study provides novel insight into evolutionary relationships in this large and diverse

family of lichen-forming ascomycetes.

Introduction

Mutualistic systems include two or more partners that provide
services to each other in order to maximize the net fitness of all
partners (Bronstein, 1994). Lichens represent an iconic example
of mutualistic interactions. However, relatively little is known of
the factors driving partner selection in these systems. In many
cases, lichenized fungi can form symbiotic associations with a
range of photobiont species. For example, under extreme condi-
tions, lichen-forming fungi have been shown to establish sym-
bioses with a broad range of locally available photobionts (Wirtz
et al., 2003; Jones et al., 2013). In some cases, multiple distinct
algal species may even be found within a single thallus (Del
Campo et al., 2013; Muggia et al., 2013; Dal Grande et al., 2014;
Sadowska-Des et al., 2014). Furthermore, some fungal genera
include both lichen-forming species and species with different
biologies (Hawksworth, 2005), and there are single species that
can live either in a symbiotic association with algae or alterna-
tively as saprobes on bark (Wedin et al., 2004; Muggia et al.,
2011).

A number of studies suggest that the evolution of lichen sym-
bioses occurred independently several times in Ascomycota
(Gargas et al., 1995; Gueidan et al., 2008; Schoch et al., 2009).
Within some lichen-forming fungal lineages, especially
ascomycetes, a few authors have suggested that nonlichenized
fungi have evolved from lichenized ancestors (Eriksson, 1981,
2005; Hawksworth, 1982a; Lutzoni et al., 2001), implicitly sug-
gesting that the lichen symbiosis is labile at an evolutionary
scale. Kranner & Lutzoni (1999) argued that transitions from a
lichenized to a nonlichenized lifestyle would be more likely,
with more losses of lichenization than gains, than vice versa,
because lichenization would involve complicated physiological
adaptations of both partners. However, experimental evidence
indicates that shifts to mutualism can happen within a short
time frame given suitable ecological conditions (Hom &
Murray, 2014). Such shifts have been considered to occur in
other fungal nutritional systems, such as endophytes and plant
pathogens (Arnold et al., 2009). The presence of both lichenized
and nonlichenized forms in several ascomycete clades clearly
indicates that transitions from mutualistic to nonmutualistic

lifestyles and/or vice versa must have happened during fungal
evolution. However, the pathways of such transitions remain
largely unsettled.

Lutzoni and coworkers (Lutzoni et al., 2001; Arnold et al.,
2009) have proposed that lichenicolous fungi play an important
role in the transition from lichenized to other nonlichenized
nutritional modes. It has also long been recognized that a single
fungal genus can include species with different nutritional strate-
gies (Santesson, 1967; Wedin et al., 2004; Hawksworth, 2005).
Lichenicolous fungi represent an ecological group of over 1800
species that form obligate associations with lichens, as parasites,
saprotrophs, or commensals (Hawksworth, 1982b, 2003;
Richardson, 1999; Lawrey & Diederich, 2003). Some species are
clearly pathogenic, such as Clypeococcum hypocenomycis, which
causes necrosis and degeneration of the host thallus
(Hawksworth, 1980), whereas others can form galls or hardly
perturb the thallus with no obvious harmful effects, such as some
Nesolechia or Phacopsis species (Triebel et al., 1995; Per�soh &
Rambold, 2002). In the latter case, it has been hypothesized that
these lichenicolous fungi have a mutualistic relationship with the
photobiont of the lichen, whereas there is a competitive relation-
ship with the primary fungal partner (Poelt & V�ezda, 1984;
Friedl, 1987; Rambold & Triebel, 1992; Per�soh & Rambold,
2002).

While the lichenicolous lifestyle has been suggested to facili-
tate the transition to different nutritional modes in fungi (see
above), there have been multiple origins of the lichenicolous
lifestyle, with lineages including mainly or exclusively licheni-
colous fungi, and being unrelated to lichen-forming lineages, in
both Basidiomycota (Lawrey et al., 2007; Millanes et al., 2011)
and Ascomycota (Diederich et al., 2012; Suija et al., 2015).
Some transitions from lichenized to lichenicolous lifestyles have,
however, been suggested (Diederich et al., 2012; Frisch et al.,
2014).

The aim of this paper was to elucidate phylogenetic relation-
ships within Parmeliaceae and to test whether a transition from
lichenized to lichenicolous lifestyles happened within a morpho-
logically and chemically diverse clade of lichenized fungi.
Parmeliaceae is one of the largest families of lichen-forming
ascomycetes with c. 2800 species, representing c. 15% of the
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total species diversity in lichenized fungi. The family has a
world-wide distribution, with the highest diversity in the trop-
ics, but members occur across a broad range of habitats, from
hyperarid deserts to polar or alpine regions. The family is char-
acterized morphologically by a specific type of ascoma ontogeny
and the presence of an ascomatal feature termed the cupulate
exciple (Henssen et al., 1981). Most genera in this family form
lichens with large and often complex thalli, having either foliose
or fruticose growth forms. Thus it was surprising when internal
transcribed spacer (ITS) and nuclear ribosomal small subunit
(SSU) rDNA data revealed a phylogenetic affiliation of the
lichenicolous genera Phacopsis and Nesolechia with this morpho-
logically complex family (Per�soh & Rambold, 2002). While this
placement was initially questioned (Grube & Hawksworth,
2007), it was subsequently confirmed using additional molecu-
lar loci (Crespo et al., 2007, 2010). Here, we assess the phyloge-
netic placement and the age of origin of the lichenicolous habit
within Parmeliaceae, in addition to elucidating the broader evo-
lutionary history of other genera in the family. To this end, we
have assembled an extended multilocus data set from 293 oper-
ational taxonomic units (OTUs) representing 72 of the 80 gen-
era in Parmeliaceae and included five samples from two
lichenicolous species. One additional lichenicolous species was
included in a more comprehensive single locus (ITS) data set.
Based on the results of this study, we discuss the hypothesis that
the lichen symbiosis is labile and that lichenicolous fungi can
evolve from lichenized ancestors. We also provide an updated
hypothesis of phylogenetic relationships and divergence time
estimates for Parmeliaceae.

Materials and Methods

Data assembly

Molecular analyses were based on a six-locus data set (two nuclear
ribosomal markers: ITS and the nuclear ribosomal large subunit
(nuLSU); the mitochondrial SSU (mtSSU) marker; and three pro-
tein-coding loci: the largest subunit of RNA polymerase II (RPB1),
the DNA replication licensing factor mini-chromosome
maintenance complex component 7 (Mcm7) and the pre-rRNA
processing Trypanosoma serine–arginine 1 protein (Tsr1)) gener-
ated from 293 OTUs with representatives from the families
Parmeliaceae, Gypsoplacaceae, Lecanoraceae and Cladoniaceae
(Supporting Information Table S1). Species from the family
Cladoniaceae were used to root the tree following Crespo et al.
(2007). The sampling focused on the family Parmeliaceae and
included 274 species representing 72 of the 80 accepted genera in
this family (Thell et al., 2012). DNA sequences of six loci
(Table S1) represented a compilation of sequences from previous
studies and others generated specifically for this study. The ITS
data set included 297 OTUs. Primer sequences and annealing con-
ditions are reported in Table S2. Detailed materials and methods
sections, including gene amplification and DNA sequencing,
sequence alignments, phylogenetic analyses, hypothesis testing,
ancestral state reconstruction, divergence time estimates, and phy-
logenetic informativeness (PI) are provided in Methods S1.

Results

Phylogenetic analysis

The number of unambiguous nucleotide positions in each data
set, variable and parsimony informative sites, and the best-
fitting models of evolution selected in JMODELTEST (Darriba
et al., 2012) are summarized in Table S3. Newly generated
sequences (582) of ribosomal DNA (ITS, nuLSU, and mtSSU)
and low-copy protein-coding genes (RPB1, Mcm7, and Tsr1)
for this study are deposited in GenBank under accession num-
bers KP888160–KP888313 and KR995270–KR995697
(Table S1). Testing for topological incongruence showed no
strongly supported conflicts (results not shown) and hence the
concatenated six-locus data matrix was used for all subsequent
analyses. Effective sample sizes (ESSs) of all estimated parame-
ters were well above 200 in the Bayesian analyses, and the ‘com-
pare plot’ produced by ‘Are We There Yet?’ (AWTY) indicated
that parallel Markov chain Monte Carlo (MCMC) runs
achieved topological convergence (results not shown). A simpli-
fied tree depicting phylogenetic relationships at the generic level
is shown in Fig. 1, and the full tree containing all terminal taxa
is provided in Fig. S1. While our best topology is largely in
agreement with the existing phylogenetic reconstructions for the
family Parmeliaceae that were based on fewer loci (Crespo et al.,
2007, 2010), our results provide improved resolution and
increased nodal support for a number of key groups.

Parmeliaceae s. lat. (node 2) was strongly supported as
monophyletic, and the sister-group relationship of Protoparmelia
s. str. with all other Parmeliaceae (node 3) was also strongly
supported. The largest clade within Parmeliaceae, the Parmelioid
clade (node 4), was strongly supported. Within the Parmelioid
group, a previously unsupported relationship of the Cetrelia,
Parmotrema, and Xanthoparmelia clades (node 8) received strong
support. Also, a clade consisting of the Cetrelia, Melanohalea,
Parmotrema, and Xanthoparmelia clades (node 5) received strong
support. The genus Usnea formed a strongly supported sister
group to the monotypic genus Cornicularia (node 7). Menegazzia
spp. formed a monophyletic group with Coelopogon, which was
strongly supported (node 13). Also, the genera Oropogon and
Sulcaria formed a strongly supported monophyletic group (node
12). The Alectorioid (node 11), Cetrarioid (node 15), Hypogym-
nioid (node 16), and Psiloparmelioid (node 14) groups were all
recovered with strong support. A new clade, the Anzioid group,
encompassing species from the genera Anzia, Pannoparmelia,
Phacopsis and Protousnea, was also recovered with strong support
(node 10).

Phylogenetic placement of lichenicolous species

In the six-locus data set, specimens from the lichenicolous genera
Nesolechia and Phacopsis were represented by a single species of
each genus. Additionally, another species of Phacopsis was
included in the ITS data set. Our results confirmed that both
genera belong to Parmeliaceae. However, the two lichenicolous
genera were recovered in distantly related lineages: Nesolechia
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Fig. 1 Cartoon tree showing phylogenetic relationships among major lineages of Parmeliaceae. The tree is derived from a six-locus phylogeny (see
Supporting Information Fig. S1). Supported nodes are collapsed to generic level where applicable. The number of species currently accepted in each genus
is shown in parentheses. Branches that received strong support in RAxML (bootstrap values ≥ 70%) and/or Bayesian inference (posterior probabilities
≥ 0.95) are in bold. Strongly supported principal nodes are indicated as 1–18. All triangle colors correspond to single figures in Fig. S1. Lichenized (green
circles) and lichenicolous (blue circles) ancestral character states are plotted on the node of interest over the tree. *Phacopsis huuskonenii (placed in the
new genus Raesaenenia in this paper).
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oxyspora (two samples) formed a well-supported sister group with
the foliose genus Punctelia in the Parmelioid group (node 18),
whereas ‘Phacopsis’ huuskonenii (three samples) was a sister to the
genus Protousnea (node 17) in the Anzioid group (Fig. 1) and
clearly represents a genus distinct from Phacopsis vulpina. That
was not surprising as the ascospores in the two species are quite
different (Hawksworth, 1978). The new generic name
Raesaenenia is therefore introduced for P. huuskonenii here
(Box 1). Phacopsis vulpina, represented by a single ITS sequence,
formed a sister relationship with the Relicina + Pseudoparmelia
clade in the Parmelioid group in the single-locus ITS analysis
(data not shown). Alternative hypothesis testing strongly rejected
monophyly of these lichenicolous species (P < 0.001 in Shi-
modaira–Hasegawa (SH) and expected likelihood weight (ELW)
tests). Ancestral character reconstruction analyses under maxi-
mum parsimony and maximum likelihood optimization criteria
estimated the common ancestors of nodes 17 and 18 as being
lichenized, therefore suggesting that a transition from lichenized
to lichenicolous lifestyle occurred independently in each of the
three clades.

Divergence time estimates

Overall, the estimated ages for major clades in Parmeliaceae are
similar to the estimations from a previous study based on a
more limited sampling (Amo de Paz et al., 2011), and thus the
results are not repeated here. Rather, we focus on clades that
were not supported in the previous phylogenetic analysis, as well
as on dating the origin of lichenicolous lifestyle within the fam-
ily.

The estimated ages for selected nodes are listed in Table S4
and shown in Fig. 2. Within the Cretaceous, the split of Parmeli-
aceae from its sister group Gypsoplacaceae was estimated at 126
million yr ago (Ma; 95% highest posterior density
(HPD) = 101.21–151.77 Ma; node 1), the split of core Parmeli-
aceae from Protoparmelia at 112Ma (95% HPD = 92.97–135.47
Ma; node 2), and the split of the Parmotrema +
Xanthoparmelia + Cetrelia clades from the Melanohalea clade at
68Ma (95% HPD = 56.87–81.74; node 5). During the Pale-
ocene, the split of Emodomelanelia from Melanelixia +
Melanohalea was estimated at 62Ma (95% HPD = 50.77–74.63
Ma; node 6) and the split of the Austroparmelina +
Flavoparmelia + Parmotrema clade from the Nesolechia +
Flavopunctelia + Punctelia clade at 55Ma (95% HPD = 44.85–
65.69 Ma; node 9). The crown ages of both the Anzioid and
Alectorioid clades were estimated at c. 54Ma (95%
HPD = 46.98–61.98 and 46.07–64.26 Ma; nodes 10 and 11).
The crown ages of three major groups in Parmeliaceae were
estimated at 38 Ma for the Cetrarioid (95% HPD = 30.02–46.16
Ma), 38 Ma for the Hypogymnioid (95% HPD = 27.44–48.90
Ma), and 46 Ma for the Psiloparmelioid (95% HPD = 39.68–
62.45 Ma), which dates them to the Eocene. The splits of the
lichenicolous species of Nesolechia and Phacopsis studied from
their sister taxa (Punctelia and Protousnea, respectively) were esti-
mated to have occurred c. 25Ma (95% HPD = 18.34–31.75 and
13.51–41.25 Ma; nodes 18 and 17).

Phylogenetic informativeness

Based on a per-site comparison, the Tsr1 gene fragment produced
higher PI across relative time units compared with Mcm7, RPB1,
ITS, mtSSU and nuLSU (Fig. S2). Mcm7 had higher PI values
than RPB1, ITS, mtSSU, and nuLSU. RPB1 had a higher PI for
older time units (beyond 40Ma) and ITS had a higher PI for
younger time units (before 30Ma). The two ribosomal markers
(nuLSU and mtSSU) showed lower PI values.

Discussion

This study is the first to give conclusive support to the hypothesis
that lichenicolous fungi evolved several times within the predom-
inantly lichen-forming fungal family Parmeliaceae, as first sug-
gested by Per�soh & Rambold (2002). The evolution of
lichenicolous fungi in a large family that otherwise includes large
and morphologically derived lichen-forming fungi is consistent
with the hypothesis that there are cases where the lichen symbio-
sis is labile and fungi with different lifestyles can evolve from lich-
enized ancestors. These fungi appear to have a mutualistic
relationship with the photobionts of the lichens but an antagonis-
tic relationship to the primary fungal partner through competi-
tion for resources provided by the photobiont (Poelt & V�ezda,
1984; Friedl, 1987; Per�soh & Rambold, 2002). However, the
ultrastructural relationship between the partners has not been
investigated in these cases, as it has in some other lichenicolous
species (de los R�ıos & Grube, 2000). The possibility that these
fungi are actually lichenized and share the algal partner with the

Box 1 Raesaenenia: a new generic name for Phacopsis
huuskonenii.

Raesaenenia D. Hawksw., Boluda & H. Lindgr., gen. nov
MycoBank MB 812847

Etymology: In honor of the astute Finnish lichenologist Veli
Johannes Paavo Bartholomeus R€as€anen (1888–1955) who first
described the type species.

Diagnosis: Ascomata resembling those of Phacopsis in structure,
but differing in the subcylindrical ascospores with thickened caps of
wall tissue at each end.

Type species: Raesaenenia huuskonenii (R€as€anen) D. Hawksw.
et al. (syn. Phacopsis huuskonenii R€as€anen).

Raesaenenia huuskonenii (R€as€anen) D. Hawksw., Boluda & H.
Lindgr., comb. nov.
MycoBank MB 812848

Basionym: Phacopsis huuskonenii R€as€anen, Lichenoth. Exs., fasc.
21 no. 525 (1949).

Type: Finland: Savonia borealis: Pielavesi, S€avia, L€ahdem€aki, on
Bryoria capillaris on Picea excelsa, 6 March 1949, K. Huuskonen
(R€as€anen, Lichenoth. Exs., fasc. 21 no. 525) (K-IMI 209424 –
isotype).

Descriptions and illustrations: Hawksworth (1978), Hafellner
(1987), Triebel & Rambold (1988), and Triebel et al. (1995).
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lichen’s fungal partner cannot be ignored, as several lichenized
lichenicolous fungi are known (Hawksworth, 1988, 2003;
Rambold & Triebel, 1992).

According to our estimates, the two distantly related licheni-
colous genera in Parmeliaceae originated around the same time (c.
25Ma in the late Oligocene). In the late part of the Oligocene, the
Earth experienced a warming period, after a long cooling period in
the early Oligocene that resulted in growth of the Antarctic ice
sheets (Zachos et al., 2008). This warming period, however, was
interrupted by cooling periods, such as the Mi-1 glaciation (Za-
chos et al., 2001; Wilson et al., 2008) at the Oligocene–Miocene
boundary c. 24Ma. It has been shown previously that major splits
within Parmeliaceae are associated with these climatic shifts (Amo
de Paz et al., 2011), and the origin of lichenicolous taxa in
Parmeliaceae appears to be related to a major shift in the Earth’s
climate as well. A phylogenetic analysis of ITS data, including
sequences from the lichenicolous Phacopsis vulpina (the type
species of the genus), suggests the possibility of a third transition
within the family. This species formed an independent lineage, sis-
ter to the Relicina + Pseudoparmelia clade (data not shown).
However, despite several attempts, we were unable to obtain
additional loci from the type species P. vulpina and other species
of Phacopsis because of difficulties in obtaining fresh material,
culturing the material, and obtaining PCR products and
uncontaminated sequences. Therefore we could not verify the pos-
sibility of additional transitions from lichen-forming to licheni-
colous lifestyles within the family with additional loci.

The monophyly of Parmeliaceae and its sister relationship with
the monotypic family Gypsoplacaceae were strongly supported.
Similar relationships have been found in previous studies (Arup
et al., 2007; Crespo et al., 2007, 2010; Singh et al., 2013). By
contrast, in a recent class-wide study of Lecanoromycetes, the sis-
ter relationship between Parmeliaceae and Gypsoplacaceae was
not recovered, and the alternative affiliation of the latter family
with Malmideaceae and other families within Lecanorineae
received high bootstrap (BS) support in selected analyses (Miad-
likowska et al., 2014). Here, we provide evidence of a strongly
supported sister-group relationship of Gypsoplacaceae and
Parmeliaceae within Lecanorineae using a larger sampling of loci
and taxa (BS = 100% and posterior probability (pp) = 1.00;
Fig. 1). However, the sister relationship of Parmeliaceae is
dependent on the selection of the outgroup and the rooting of
the tree. While phylogenetic relationships within the family were
largely similar to those reported previously using a four-locus
data set (Crespo et al., 2010), our new analyses showed an
increased number of resolved nodes and previously unrecognized
relationships, which are discussed here. The Parmelioid,
Hypogymnioid, and Psiloparmelioid clades, and the
Oropogon + Sulcaria and Platismatia + Imshaugia clades formed a
well-supported monophyletic group (pp = 0.97) while the
remaining taxa in Parmeliaceae clustered within an unsupported
group (Figs 1, S1). While our study supports the placement of
the genera Alectoria, Bryoria, Bryocaulon, Nodobryoria, and
Pseudephebe in the Alectorioid clade, the genus Sulcaria, consid-
ered a member of the Alectorioid clade in previous studies, is
shown to be outside the Alectorioid clade and closely related to

Oropogon. The close relationship between Oropogon and Sulcaria
is not surprising as both genera are characterized morphologically
by having septate to muriform brown ascospores and cyphellae-
like perforations. The beard lichens, classified in the genus Usnea,
formed a sister-group relationship with Cornicularia, whereas
Menegazzia spp., which previously formed a sister-group relation-
ship with Usnea (Crespo et al., 2010), formed a well-supported
sister-group relationship with Coelopogon (Fig. 1). The Cetrarioid
core group was reconstructed here as monophyletic with strong
support, with Melanelia and Esslingeriana as sister to the other
cetrarioid genera. This core group including Melanelia was either
unsupported or weakly supported in previous studies (Thell
et al., 2009; Miadlikowska et al., 2014). Within the Cetrarioid
core group, two well-supported clades were recovered in our anal-
ysis: the Cetraria clade and the Nephromopsis clade, the latter
unsupported in earlier studies (Thell et al., 2009; Crespo et al.,
2010; Nelsen et al., 2011). Within the Parmelioid clade, two
major groups were recovered here for the first time: a strongly
supported group (BS = 86%; pp = 1.00) including the
Parmotrema, Xanthoparmelia, Cetrelia, and Melanohalea clades,
including almost 80% of the total species diversity of Parmelioid
lichens; and a clade that received support in the MRBAYES

(Huelsenbeck & Ronquist, 2001) analysis only (pp = 0.95), com-
prising the rest of the Parmelioid species, including the
Nipponoparmelia, Hypotrachyna, Parmelia, and Parmelina clades
(Figs 1, S1). Furthermore, a novel strongly supported clade
(BS = 100; pp = 1.00) which included species of the genera
Anzia, Pannoparmelia, and Protousnea, and the lichenicolous
species of Phacopsis, was recovered in Parmeliaceae for the first
time and recognized as the Anzioid clade. The genus Anzia was
part of the Parmelina clade in Miadlikowska et al. (2014).

Our results provide evidence for the divergence between the
species-rich Parmeliaceae and the monotypic Gypsoplacaceae to
have occurred in the early Cretaceous (mean age = 126Ma; 95%
HPD = 101–151Ma; Fig. 2; node 1; Table S4). Divergence esti-
mates between these families have not been inferred in previous
molecular dating studies because of a lack of Gypsoplacaceae in
the data set (Amo de Paz et al., 2011). The origin of the family
Parmeliaceae, represented by the divergence of the crustose genus
Protoparmelia s.str. (node 2; Fig. 2) from the remaining part of
the family (node 3), was here estimated to have occurred in the
early Cretaceous (mean age = 112Ma, 95% HPD = 92–135Ma)
which is almost the same as previously estimated (108Ma; Amo
de Paz et al., 2011). Divergence time estimates for the Parmelioid
clade were largely similar to those estimated before (Amo de Paz
et al., 2011) and thus are not discussed further here. The origin
of the Cetrarioid clade was represented by an initial split of
Melanelia + Esslingeriana at c. 37Ma. However, the earliest diver-
gent lineage was not recovered in the Parmelioid crown, and this
may be attributable to the occurrence of lineage extinction events
in this clade. The origin of the Usneoid clade (node 7) was esti-
mated as mid-Paleocene, with Cornicularia representing the earli-
est divergent lineage; the Anzioid clade (node 10) in the early
Eocene, with Pannoparmelia representing the earliest divergent
lineage; the Psiloparmelioid clade (node 14) in the mid-Eocene;
and the Hypogymnioid clade (node 16) originated at the
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Eocene–Oligocene boundary. The age of the Alectorioid clade
was estimated to be slightly older (c. 54Ma; Table S4) than the
previous estimates (c. 47Ma, Amo de Paz et al., 2011; 49 Ma,
Abbas & Guo, 2015), although both estimates fall within the
same stratigraphic intervals. A general trend emerging from these
data is that the Paleocene, Eocene and Oligocene were key peri-
ods when diversification of major lineages within Parmeliaceae
occurred, with subsequent radiation happening primarily during
the Oligocene and Miocene (see Fig. 2). This may also be linked
to the separation of the Southern Hemisphere landmasses (Abbas
& Guo, 2015). Diversification bursts at different times may also
be crucial factors driving the diversification of Parmeliaceae (Ed-
wards & Donoghue, 2013; Christin et al., 2014). Parmeliaceae
shows relatively recent diversification patterns in comparison
with other studied lichenized fungal groups (Prieto & Wedin,
2013; Beimforde et al., 2014). High levels of species diversity are
also found in many recently evolved groups of angiosperms (Ma-
gallon & Sanderson, 2001), with clades such as Apocynaceae,
Arecaceae, Burseraceae, Casuarinaceae and Oleaceae, which were
reported to have pronounced diversification in the Oligocene and
Miocene (Magallon, 2010; De-Nova et al., 2012; Bacon et al.,
2012).

The increased taxon and locus sampling, especially the addi-
tion of low-copy protein-coding markers such as RPB1, Mcm7
and Tsr1, substantially improved the level of phylogenetic resolu-
tion and support within Parmeliaceae. Previous comparative
studies have shown that low-copy protein-coding markers
provide better nodal support than ribosomal markers (Schoch
et al., 2009). The Mcm7 and Tsr1 loci have been shown to out-
perform other genetic markers in resolving phylogenetic relation-
ships in Ascomycota (Aguileta et al., 2008; Schmitt et al., 2009).
Use of these protein-coding genes has become increasingly com-
mon in systematic studies within Ascomycota, including lichen-
forming fungi (James et al., 2006; Hofstetter et al., 2007; Crespo
et al., 2010; Schmitt et al., 2010; Leavitt et al., 2013; Ot�alora
et al., 2013; Miadlikowska et al., 2014). The PI of ribosomal
markers (nuLSU, nuSSU, and mtSSU) and protein-coding genes
(RPB1, RPB2, and Mcm7) was assessed for the higher level rela-
tionships in the Ascomycota tree of life (Schoch et al., 2009; Raja
et al., 2011); however, it was never profiled for any of the major
groups of lichenized fungi. The results of our PI analyses showed
that Tsr1 (625 bp) had the highest PI among the tested markers
at this phylogenetic scale (Fig. S2). Moreover, Tsr1 was the main
contributor in resolving clades at both the higher and lower taxo-
nomic levels. In our PI analysis,Mcm7 (512 bp) performed worse
than Tsr1, but better than RPB1 and ITS (Fig. S2). ITS (345 bp)
performed better than RPB1 (663 bp) at the species level, whereas
RPB1 outperformed ITS at the generic and higher taxonomic
levels. The commonly used ribosomal markers, nuLSU (791 bp)
and mtSSU (724 bp), were outperformed by all other markers
assessed here (Fig. S2). Thus, our results suggest that the phyloge-
netic power of Tsr1 has a great potential to contribute signifi-
cantly toward more stable relationships among lichenized fungi
in Lecanoromycetes.

While our study provides an improved level of phylogenetic
resolution within Parmeliaceae, some deep-level relationships,

at the backbone and among some of the major clades, still
remained unresolved. Whether this is a result of adaptive radi-
ations in the early evolution of Parmeliaceae is unclear. Phy-
logenomic approaches have been shown to help to resolve
deep-level node relationships in different organisms, including
fungi (Soltis et al., 2011; Ebersberger et al., 2012; Timme
et al., 2012; Zhou et al., 2012; Shen et al., 2013; Ampio et al.,
2014), and thus a phylogenomic approach is a logical next step
to elucidate deep-level relationships within the Parmeliaceae in
the future.
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