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COVID-19 lockdowns in early 2020 reduced human mobility, providing an opportunity to 319 

disentangle its effects on animals from those of landscape modifications. Using GPS data, we 320 

compared movements and road avoidance of 2300 terrestrial mammals (43 species) during the 321 

lockdowns to the same period in 2019. Individual responses were variable, with no change in 322 

average movements or road avoidance behavior, likely due to variable lockdown conditions. 323 

However, under strict lockdowns, 10-day 95th percentile displacements increased by 73%, 324 

suggesting increased landscape permeability. Animals' 1-hour 95th percentile displacements 325 

declined by 12%, and animals were 36% closer to roads in areas of high human footprint, 326 

indicating reduced avoidance during lockdowns. Overall, lockdowns rapidly altered some 327 

spatial behaviors, highlighting variable but substantial impacts of human mobility on wildlife 328 

worldwide. 329 

In 2020, governments around the world introduced lockdown measures in an attempt to curb the 330 

spread of the novel SARS-CoV-2 virus (COVID-19). This resulted in a drastic reduction in human 331 

mobility including human confinement to living quarters, closure of recreation and protected areas, 332 

and reductions in the movement of vehicles and their associated by-products (e.g., noise and 333 

pollutants) (1). This ‘anthropause’ provides a unique opportunity to quantify the effects of human 334 

mobility on wildlife by decoupling these from landscape modification effects (e.g., roads) (2, 3). It is 335 

established that anthropogenic landscape modifications impact how animals use habitats (4) and 336 

interact with each other (5). For example, human infrastructure may induce various behavioral 337 

responses in animals, including avoidance (6), shifts in movement speed or habitat selection near 338 

roads (7), and altered diurnal patterns of habitat use (8). In addition to these landscape modification 339 

effects, animals can react directly to the presence and activity of humans (9). These often are 340 

perceived as a risk (10), which can lead to changes in habitat use due to the avoidance of areas heavily 341 

used by humans, increased energetic costs and physiological stress (11), and altered demography 342 

(e.g., reduced fecundity) (12). As large-scale, high-resolution human mobility data are rare, our ability 343 

to decouple the effects of landscape modification and human mobility has been limited. In particular, 344 

little is known about the overall impact of human mobility on terrestrial mammalian behavior across 345 

species and continents. Here, we make use of the quasi-experimental alteration of human mobility 346 

during COVID-19 lockdowns in early 2020 to study the effect of human mobility on animal behavior, 347 

specifically on movement and road avoidance in terrestrial mammals. 348 

 349 

Using animal tracking data to study behavioral changes during lockdowns 350 

We used Global Positioning System (GPS) tracking data to evaluate how 2,300 individual terrestrial 351 

mammals, representing 43 species across 76 studies (Fig. 1 and Table S1), changed their spatial 352 

behavior during the initial 2020 COVID-19 lockdowns compared to the same time period a year 353 

earlier. For the initial 2020 lockdown period we included the date of the first government mandated 354 
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lockdown in each study area (between 1 February and 28 April, 2020) until 15 May, 2020. We used 355 

matching time periods from 2019 as a baseline for comparison. Individuals were tracked for an 356 

average of 59 days per observation period (range: 10 – 72 days). We focused on two behaviors: 357 

displacement distance (straight-line distance between two consecutive GPS locations) and distance to 358 

the nearest road. As changes in displacement might be scale-dependent, we considered displacements 359 

at 1-hour and 10-day intervals based on Tucker et al. (13). Changes in 1-hour displacements reflect 360 

immediate responses to altered human mobility (14). We expected that reduced human mobility 361 

during strict lockdowns would lead to an overall reduction in 1-hour displacements due to fewer 362 

avoidance and escape responses, or easier access to foraging areas due to reduced disturbance as has 363 

been previously shown for red deer (14). For the 10-day displacements, we expected a different 364 

response because previous analyses of the effects of land-modifications on mammal movements (13) 365 

have shown longer displacement distances in areas with low human footprint. Accordingly, 366 

displacement distances at the 10-day scale might be longer under lockdown conditions as animals 367 

might be able to cross barriers linked to human mobility during lockdowns (e.g., roads with lower 368 

traffic volumes during lockdowns). For each time scale, we evaluated the 50th (median) and 95th 369 

percentiles of the displacements. Median displacements represent a suite of behaviors including 370 

resting and sleeping (1-hour scale) or residency in the same area (10-day scale). The 95th percentile 371 

eliminates stationary behaviors and represents longer and more directed movements such as 372 

avoidance behaviors on the 1-hour time scale and long-distance displacements at the 10-day time 373 

scale (13). Because longer displacements generally have a greater probability of encountering humans 374 

or infrastructure, we expected stronger responses for the 95th-percentile displacements. 375 

 376 

While roads may benefit some species by providing foraging opportunities or movement corridors 377 

(15), their effects are more often negative as they not only create barriers but also increase mortality 378 

and facilitate human access to remote areas (16). We expected that declines in vehicular traffic during 379 

the early 2020 lockdowns (17) would reduce the perceived risk level and mammals would therefore 380 

be closer to roads.  381 

 382 

To evaluate possible changes in displacements or distance to the nearest roads between the lockdown 383 

and baseline periods, we calculated log response ratios for each measure (medians and 95th 384 

percentiles of the 1-hour and 10-day displacements, and distance to roads) and each individual. Our 385 

analyses of the response ratios involved a two-step process following previous work (18). First, we 386 

used Bayesian mixed-effects models to examine the overall effect of lockdowns on movement 387 

distance and distance to the nearest road (i.e., intercept-only model) (19). Second, we used Bayesian 388 

mixed-effects models to examine possible relationships between the response ratios and various 389 

covariates indicative of environmental context (i.e., lockdown strictness, human footprint and 390 

productivity) and species traits (i.e., body mass, diet, activity and relative brain size) (19). For both 391 
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steps of the analyses, we included random effects for species-study combined to account for non-392 

independence between effect sizes from the same study and/or species. For the second step of the 393 

analysis, we included the Oxford COVID-19 Government Response Tracker Stringency Index (SI, 394 

(20)) in our models to examine country-level variation in lockdown strictness, ranging from 0 (no 395 

lockdown) to 100 (very strict lockdown; e.g., confined to home). We used the Human Footprint Index 396 

(HFI, 1-km resolution, (21)) as a proxy of direct and indirect human activities including roads, 397 

agriculture and human population density. The HFI values range from 0 to 50, where low values 398 

represent areas relatively undisturbed by humans and high values represent areas with high human 399 

development levels. We expected stronger behavioral responses to lockdowns in areas with a higher 400 

human footprint and in countries with stricter lockdowns for both displacement distances and distance 401 

to roads. To account for movement capacity, differences in movements related to diet, activity cycle 402 

and behavioral flexibility, we included body mass (range: 10 – 4000 kg), diet (carnivore, omnivore, 403 

herbivore), activity (diurnal or nocturnal) and relative brain size as additional explanatory variables. 404 

Finally, we also included the between-year difference in Normalized Difference Vegetation Index 405 

(NDVI) between 2019 and 2020 to account for potential differences in seasonality and productivity. 406 

We fit models for the median and 95th percentile of the 1-hour and 10-day displacements, and for 407 

distance to road including all covariates for lockdown strictness, environmental context and species 408 

traits (19). We report our results as the percentage increase or decrease in movement distance or 409 

distance to roads by back-transforming the response ratios (19) and reporting the 95% credible 410 

intervals (CI). 411 

 412 

Changes in movement displacements during lockdowns 413 

We found an average 12% reduction in 1-hour 95th-percentile displacements when evaluating the 414 

impact of only the lockdown itself (intercept only model, 95% CI: 1 – 22%, Fig. 2, Table S2). This 415 

may indicate reduced avoidance and escape behavior of humans (e.g., no need to travel longer 416 

distances to avoid humans (22, 23)) as a result of altered human mobility levels during lockdowns. 417 

When exploring potential correlates of this response, no covariates had an effect that differed from 418 

zero (Table S3). For the 1-hour median displacements, we found no overall effect (Table S2) and 419 

again, no effect of the covariates (Table S4). Taken together, these results suggest that responses at 420 

the 1-hour scale were highly variable and not dependent on the selected species traits (body mass, 421 

diet, activity or relative brain size) or on the variables describing the local context (lockdown 422 

stringency or HFI). 423 

 424 

The overall lockdown response was not different from zero for the 10-day 95th-percentile or long-425 

distance displacements (15%, 95% CI; -30–5%, Fig. 2B, Table S2). However, when exploring the 426 

covariates that might explain variation in response ratios, the 95% credible intervals of the Stringency 427 

Index did not overlap zero (Table S5), with displacements increasing 73% on average in areas of 428 
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stricter lockdown (i.e., areas with an SI of 90; Fig. 3A). This may indicate that tighter restrictions on 429 

human movements, including confinement to living spaces and reduced human mobility in green 430 

spaces (e.g., Italy and France; Fig. 1) led to increased landscape permeability for mammals. This 431 

effect of human mobility is similar in magnitude to previous work that used the same displacement 432 

metric but examined the effect of permanent landscape alterations (land conversion and infrastructure) 433 

on terrestrial mammal movements (13). While this work used a spatial comparison rather than 434 

comparing changes over time within the same individuals, they found a decline of 67% of the 10-day 435 

95th-percentile displacements in areas where the human footprint is high (13). We found no effect of 436 

the remaining covariates (HFI, body mass, diet, activity or relative brain size) (Tables S5). 437 

   438 

We found that the 10-day 95th-percentile displacements in areas with lower lockdown stringency (SI 439 

values 50 to 70) were actually shorter (on average 22–72%) than during the lockdown than in 2019 440 

(Fig. 3A). The movement reductions may reflect increased human mobility in semi-natural areas such 441 

as parks and other green spaces (24, 25). In fact, green space use by people in some areas of 442 

intermediate lockdown increased up to 350% (25). In addition to the lockdown effects, seasonality 443 

played a role in determining 10-day movement distances. The 10-day median (Fig. S1) and 95th 444 

percentile (Fig. 3B) displacements were longer during 2020, when we observed higher NDVI values 445 

compared to 2019, which may have led some individuals to begin their spring migration or 446 

reproduction earlier in 2020. For the 10-day median displacements, we found no overall lockdown 447 

effect (Table S2), no effect of lockdown stringency, and no effects of the other covariates (HFI, body 448 

mass, diet, activity or relative brain size) (Tables S6). This difference in responses between 95% and 449 

median movements suggests that lockdown stringency may have impacted mainly wide-ranging 450 

behavior, such as migratory movements, long-distance dispersal, exploratory excursions or long 451 

displacements within individuals’ home ranges. 452 

 453 

Mammals were closer to roads during lockdowns 454 

We found no overall lockdown response in the distance of individuals to roads (-1%, 95% CI; -5 – 455 

3%, Table S2) nor a relationship with the Stringency Index, NDVI difference or species traits (Table 456 

S7). However, the response ratios were negatively related to HFI, showing that animals in areas with a 457 

high human footprint were on average 36% closer to roads during lockdown (HFI = 36, Fig. 4). In 458 

many parts of the world, traffic volume was significantly reduced during lockdowns (26, 27), which 459 

in turn lessened the impact of roads on animals, including reduced barrier effects (15, 28) and road-460 

kill numbers (17, 29). Our findings add context to these previous results by demonstrating that not 461 

only were road-kill numbers lower during lockdown (17, 29), but also animals were closer on average 462 

to roads in human-modified areas, indicating reduced avoidance. 463 

 464 

 465 
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Overall, we detected three main signals of a lockdown effect on terrestrial mammal behavior, 466 

although they were heterogeneously distributed across species and populations. These were (i) 467 

reductions in 1-hour 95th-percentile displacements suggesting relaxed avoidance behavior, reduced 468 

disturbance, and/or fewer escape responses, (ii) increased 10-day 95th-percentile displacements under 469 

strict lockdown conditions, suggesting increased landscape permeability, and (iii) closer proximity to 470 

roads in areas heavily used by humans, suggesting a reduction in traffic disturbance. A number of 471 

species-specific case studies are consistent with these findings. For example, evidence suggests that 472 

during the lockdowns, mountain lions’ (Puma concolor) usual aversion to urban edges ceased (9), 473 

crested porcupine (Hystrix cristata) abundance increased in urban areas (30), diurnal activity of 474 

invasive Eastern cottontails (Sylvilagus floridanus) increased (30), and brown bears (Ursus arctos) 475 

exploited novel connectivity corridors (12).  476 

 477 

Despite these three general responses to the lockdowns, considerable variation in responses existed 478 

across species and study regions (Fig. 2). This variability highlights that lockdown impacts are highly 479 

context dependent. For example, mountain lions explored more urban areas during the lockdown, 480 

while other species including American black bears (Ursus americanus), bobcats (Lynx rufus) and 481 

coyotes (Canis latrans) in the same areas did not (31). In addition, in our study, lockdown stringency 482 

was only measured at the country-level and did not account for local variability in restrictions. We 483 

also note that our data were predominantly from Europe and North America, so our results should be 484 

interpreted with caution for other regions. Finally, we note that a given movement metric could 485 

capture different behaviors in different species, especially at the 10-day scale, whereas displacements 486 

could capture behaviors ranging from within home range movements to dispersal.  487 

 488 

We show that human mobility is a key driver of some terrestrial mammal behaviors, with a magnitude 489 

potentially similar to that of landscape modifications. Therefore, when evaluating human impacts on 490 

animal behavior, or designing mitigation measures, it is important that both physical landscape 491 

alteration and human mobility are considered (see also (32)). Disentangling the effects of human 492 

mobility and landscape modification will allow the implementation of conservation measures 493 

specifically targeted at mitigating the impacts of human mobility, such as enticements to adjust 494 

timing, frequency and volume of traffic in areas important for animal movement. Mammals have been 495 

living with human disturbance for a long time. Yet, we demonstrate that many wildlife populations 496 

retain the capacity to respond to changes in human behavior, providing a positive outlook for future 497 

mitigation strategies designed to maintain animal movement and the ecosystem functions they 498 

provide. 499 

 500 

 501 

 502 
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 808 

Figure Captions 809 

Fig. 1 Distribution of GPS data from 43 terrestrial mammal species. The map represents the mean 810 

Oxford COVID-19 Government Response Tracker Stringency Index (SI, (20)), which measures 811 

lockdown strictness, ranging from 0 (no lockdown) to 100 (very strict lockdown). Values are 812 

presented per country during the 2020 study period (i.e., initial lockdown date to 15 May, 2020), 813 

where higher values (red) represent countries with a stricter lockdown policy. Light grey represents 814 

countries with no SI data. SI values range from 10 to 92. Black points represent the centroids of each 815 

study-species combination (n = 90). Map in Mollweide projection. 816 

 817 

Fig. 2 Changes in 1-hour animal movement during the COVID-19 lockdowns. (A) Overall 818 

reduction in the 1-hour 95th-percentile displacements (intercept-only model). (B) Overall reduction in 819 

the 10-day 95th-percentile displacements (intercept-only model). Colored points represent individuals 820 

(n = 423 and 1,725), with point sizes proportional to the inverse sampling variance of the response 821 

ratio for each individual. The black points and error bars indicate the overall effect with 95% credible 822 

intervals. The 1-hour 95% credible intervals do not overlap 0 (-0.25 to -0.01), but the 10-day credible 823 

intervals did overlap 0 (-0.36 to 0.05). Negative values indicate reduced movement distances during 824 

the early 2020 lockdowns, while positive values indicate increased movement distances during the 825 

lockdowns. 826 

 827 

Fig. 3 Changes in 10-day animal movement during the COVID-19 lockdowns. (A) Increasing 10-828 

day 95th-percentile displacements in response to the Stringency Index, and (B) 10-day 95th-percentile 829 

displacements were longer during 2020 when we observed higher NDVI values compared to 2019. 830 

Colored points represent individuals (n = 1,725), with point size proportional to the inverse sampling 831 

variance of the response ratio for each individual. The black line is the fitted effect size (response 832 

ratio; RR). The shaded area indicates 95% credible intervals, and the dashed grey line at zero illustrate 833 

no change. Negative values indicate reduced movement distances during the early 2020 lockdowns, 834 

while positive values indicate increased movement distances during the lockdowns. 835 

 836 

Fig. 4 Changes in animal distance to roads during the COVID-19 lockdowns. Decreasing distance 837 

to roads in response to the Human Footprint Index. Colored points represent individuals (n = 2,160), 838 

with point size proportional to the inverse sampling variance of the response ratio for each individual. 839 

The black line is the predicted effect size (response ratio; RR). The shaded area indicates 95% 840 

credible intervals, and the dashed grey line at zero illustrates no change. Negative values indicate 841 

closer proximity to roads during the early 2020 lockdowns, while positive values indicate increased 842 

distance from roads during the lockdowns. 843 
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