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Reindeer and caribou are keystone species in the circumpolar region, and rely on lichens as their main winter
forage to survive in some of the most extreme environments on Earth. Lichen mats, however, can be heavily
overgrazed at high deer densities, triggering area abandonment or population declines. Although the species'
management and conservation require precise information on the quality of winter grazing areas, no reliable
and cost-efficient methods are available to date to measure lichen volume across wide and remote areas. We
developed a new Lichen Volume Estimator, LVE, using remote sensing and field measurements. We used a
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Habitat mapping we predicted lichen volume from a two dimensional Gaussian regression model using two indexes: the
Reindeer Normalized Difference Lichen Index, NDLI (Band 5 — Band 4 /Band 5 + Band 4), and the Normalized Difference

Lichen volume and biomass
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Moisture Index, NDMI (Band 4 — Band 5 /Band 4 + Band 5). The model was parameterized using 202 ground
measurements equally distributed across a gradient ranging from 0 to 80 lichen dm?/m? (R? = 0.74 between
predicted and observed ground measurements), and was validated with a ten-fold cross validation procedure
(R? = 0.67), which also showed a high parameter stability. The LVE can be a valuable tool to predict the quality
of winter pastures for reindeer and caribou and, thus, help to improve the species' management and
conservation.

© 2013 The Authors. Published by Elsevier Inc. Open access under CC BY-NC-SA license.

1. Introduction

Reindeer and caribou (Rangifer tarandus, L 1758) are keystone
species in the circumpolar region for their ecological role in the sub-
and high arctic trophic chains (Dale, Adams, & Bowyer, 1994; Mowat
& Heard, 2006; Musiani et al., 2007; Soppela, Ruth, Ahman, & Riseth,
2002) and their important social, cultural and economic value to a
large number of local communities and indigenous cultures (Hummel
& Ray, 2008). The understanding of reindeer and caribou population
dynamics and spatial behavior, and consequently the development of
adequate management and conservation plans, depends to a large
degree on a correct spatial and temporal quantification of their food
resources (Crittenden, 2000). In winter caribou and reindeer feed
mainly on lichens, which are slow-growing symbiotic organisms
occurring in some of the most extreme environments on Earth
(Boertje, 1990; Gaare & Skogland, 1975; Mathisen, Haga, Kaino, &
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Tyler, 2000). Ground lichens constitute a vital part of reindeer and
caribou winter diet, and non-destructive estimation of lichen biomass
or volume is crucial to support a sustainable management of winter
grazing areas (Moen, Danell, & Holt, 2007). Lichen mats, however, can
be heavily affected by overgrazing and trampling which, in high density
populations, can cause substantial winter forage depletion and trigger
large scale habitat shifts or population declines (Crittenden, 2000; Den
Herdner, Kytoviita, & Niemela, 2003; Klein, 1987; Mansenau, Hout, &
Créte, 1996).

As reindeer and caribou roam large, remote, and often inaccessible
habitats, several attempts have been made to measure lichen biomass
or volume using remote sensors (e.g. Colpaert, Kumpula, & Nieminen,
2003; Nordberg, 1998; Théau, Peddle, & Duguay, 2005). Lichens of the
dominant genus in low tundra areas, Cladonia, are known to display
strong absorption of ultraviolet energy and short-wavelength blue
light, making it possible to separate the dominating lichen species from
vascular plants (Petzold & Goward, 1988). Nordberg (1998) developed
a Normalized Difference Lichen Index, NDLI, derived from Landsat TM
spectral bands 4 and 5 ([Band 5 — Band 4] / [Band5 + Band 4]). Later
Nordberg and Allard (2002) showed the Normalized Difference
Vegetation Index, NDVI, to be a better predictor of lichen cover than
NDLI. Dahlberg (2001), however, argued that NDVI might be more
representative of land cover classes than lichen biomass and recom-
mended topography or other ancillary data to be used together with
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NDLI or NDVI to achieve better estimates of lichen biomass. In addition to
the NDLI also the NDMI (Normalized Difference Moisture Index) first
introduced by Wilson and Sader (2002) contrasts the near- to mid-
infrared band (band 4 to 5) and holds a potential for lichen biomass
detection since lichens in the species groups Cladonia, Stereocaulon and
Flavocetraria are well detected and separated in the mid-infrared bands
of Landsat TM/ETM + (Rees, Tutubalina, & Golubeva, 2004) and in
Landsat 8.

Previous attempts to measure ground cover of lichens from satellite
images relied on a variety of supervised and hybrid-supervised classifica-
tion methods to distinguish among a few and rough classes of abundance
(i.e. worn versus pristine pastures). Although such methods can yield a
classification accuracy of more than 85% for the most lichen-dominated
vegetation classes (Colpaert et al., 2003; Gilichinsky, Sandstrom, Reese,
Kivinen, & Nilsson, 2011; Nordberg & Allard, 2002; Temmervik, Hagda,
& Solheim, 2003), they do not allow quantifying lichen volume or biomass
directly from remote sensed data. To our knowledge no studies to date
have established a direct relationship between satellite-derived vegeta-
tion indices and lichen volume or biomass.

The objective of this study was to develop a method allowing for a
continuous estimation of lichen volume within lichen-dominated alpine
heath communities and thereby to provide a valuable tool for Rangifer
research, management and conservation.

2. Methods
2.1. Study area

Hardangervidda is an 8000 km? mountain plateau above the tree line
in the southern part of the Norwegian mountain range (60°N, 7° 30’ E),
located about 50km from the coast (Fig. 1). The plateau extends between
780 and 1300 ma.s.l.; although there are some peaks above 1800m in the
northern and south-western part of the plateau, most of the topography
is fairly flat, with height differences in the range of 100-400 m. The
substratum consists mainly of gneissic bedrock of the Precambrian Baltic
shield (Sonesson, Wielgolaski, & Kallio, 1974). Gaare, Temmervik, and
Hoem (2005) reported that approximately 30% of the total area has no
or very scarce vegetation. The western and southern parts of the plateau
are subjected to more oceanic influences, with an annual precipitation of
1200-1800 mm, while the central, eastern and northern parts are more
continental, (600-800 mm/year); here lichen-dominated vegetation
prevails (Gaare et al., 2005). The distribution of land cover classes within
Hardangervidda has been described by Hesjedal (1975a,b), Wielgolaski
(1975) and Gaare et al. (2005). Note however that the land cover map
used in the present work has been specifically developed by the authors
(Falldorf et al., manuscript).

Most lichen heaths in Hardangervidda are oligotrophic and occur in
localities where the snow cover usually is less than 50-60 cm (Lye,
1975). Because of the thin snow cover, winter temperatures may drop
below —15 °C in the upper vegetation layers. This, together with the
often extreme dry summer conditions (2-5% soil moisture) and high
soil-surface temperatures (40-50°C; Wielgolaski, 1975), strongly limits
the number of vascular plant species on exposed heaths and ridges,
which is represented by a few grasses such as Festuca ovina, and some
dwarf shrubs such as Empetrum hermaphroditum, Vaccinium vitis-idaea
and Arctostaphylos alpina. Lichen heaths are best developed in the
central and eastern parts of Hardangervidda, which is also considered
the best winter grazing habitats for reindeer (Gaare et al, 2005).
These vegetation types (Loiseleurio-Arctostaphylion alliance) cover
about 10% of the area (Hesjedal, 1975a,b; Gaare et al., 2005) and have
been used by reindeer for 80-100% of the total grazing time during
winter (@stbye et al., 1975; Skogland, 1984). In the central part of the
Hardangervidda plateau lichens are often dominated by Flavocetraria
nivalis, and their biomass has been quantified in the range of 200-
400 g/m? dry weight by Wielgolaski (1975); we do not expect
substantial deviations from such values in present times.

2.2. Field data and lichen measurements

Lichen coverage and height were recorded during late-July/August
2000-2005 (n= 1345 sampling areas), with highest sampling intensity
between 2003 and 2005. The sampling areas were placed following a
design stratified by geographical distribution (east-west/north-south
gradient) and by elevation within the land-cover class “alpine heath”,
which covers app 26% of the total study area (Fig. 1). Sampling areas
were separated by an average distance of 34.8 + 18.6 km.

Each sampling area consisted of a 50 x 50 m square (whenever this
was not possible, the size was reduced to 30 x 30 m), to reduce mixed
pixel problems in the image analysis. Within each sampling area we
randomly selected one sampling point close to its center, and four
additional sampling points at 10 m distance from the central point in
the four cardinal directions. Within a radius of 2 m around the center
of each sampling point we placed a 0.5 x 0.5 m grid, consisting of 25
10 x 10 cm squares, within which we measured the percentage area
covered with lichen as well as the lichen height. Individual grid
locations were geo-referenced using GPS, and 95% of the measurements
fell within an 11 m radius around each center (95% Circular Error
Probable). The high GPS accuracy was made possible by the favorable
topography, as the study area is a mountain plateau. For each sampling
area all five measurements of lichen coverage and height were
averaged, and used to calculate lichen volumes.

Fig. 1. Map of the study area, Hardangervidda, located in the southern part of the Norwegian mountain range (60°N, 7° 30’ E). Black dots represent sample areas for measurements of lichen

volume (n = 1345).
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As preliminary analysis suggested severe over-sampling of areas
with low lichen volumes, we used a binned sub-sampling design with
32 equidistant classes of lichen volume to achieve an even distribution
of sample areas. Using a random draw of 10 sampling areas per bin,
sample size was reduced to n = 202 as some of the bins contained less
than ten sample areas. Within the sub-sample, lichen volume was
equally distributed between 0 and 80 dm?/m?.

2.3. Image selection and preprocessing

Landsat images were obtained from USGS through Metria, Sweden,
and orthorectified on WGS84 UTM 32N by Geodata senteret AS using
ERDAS Imagine 8.7 (LEICA Geosystems, 2003) based on a digital
elevation model (DEM) and ground control points. Ground control
points were derived from a formerly corrected Landsat image (Landsat
5 TM; Path/row: 199/18; 9th Aug. 2003, Fig. 2) geo-referenced using
Vexcel aerial photos, and a water mask obtained from a 1:50.000
topographical map. The image was the only available free of cloud
coverage during the study period. Cubic convolution was preferred
over the nearest neighbor resampling as spatial accuracy for possible
later change detection is most critical and normalized differenced
indices were used rather than reflectance values of single bands. The
estimated root mean square error (RMS) of the orthorectified image
fell between 13 and 14 m. Considered the limited resolution of the
DEM (25 m), and the obtained RMS of ground control points (5-7 m),
the total RMS could still be limited to less than half a pixel size.

Topographic normalization was used to control for relief induced
differences in ground reflectance (Parlow, 1996). C-correction was
preferred over alternatives (e.g. cosine) because, together with
Minnaert-correction (see e.g. Blesius & Weirich, 2005), it performs
best for illumination correction, and coefficients for c-correction are
easier to obtain. C-correction uses a parametric model accounting for
non-lambertian reflectance by introducing ground cover specific
correction factors (c-factor; Civco, 1989; Meyer, Itten, Kellenberger,
Sandmeier, & Sandmeier, 1993). C-factors were derived from the
regression coefficients of the digital number against the sun incidence

700'E

angle as calculated from DEM (based on 30.000 random points).
Bands with significant topography effect on reflectance were corrected
(BANDS 2-5 and 7).

24. Lichen volume estimation

In order to remove possible confounding reflectance values we
masked out areas where lichens were not detected and we focused on
areas with lichen dominated vegetation types (land cover class alpine
heath; Falldorf et al., manuscript). Within each lichen dominated area
we modeled lichen volumes as follows. First, we screened the data
for possible correlations between the observed lichen volume and
reflectance values of individual Landsat bands (scatterplots, linear/logistic
regression). This revealed most promising results using Landsat bands 2, 4
and 5. Utilizing these findings, a modest negative correlation was found
between NDLI and lichen volume with strongest sensitivity at inter-
mediate values but poorer predictability for both very low and high lichen
volumes. Also the Normalized Difference Moisture Index (NDMI = [Band
4 — Band 5] /[Band4 + Band 5]) appeared to be a reasonable candidate
for further analyses. NDMI contrasts the near-infrared band 4, which is
sensitive to the reflectance of leaf chlorophyll content, to the mid-
infrared band 5 — which is sensitive to the absorbance of leaf moisture
(Wilson & Sader, 2002). Rees et al. (2004) showed that lichens of the
species Cladonia, Stereocaulon and Flavocetraria are well separated from
each other in the mid-infrared band 5 (TM), and Neta, Cheng, Bello, and
Hu (2010) supported such findings also for wet samples of the same
species. Preliminary data investigation suggested better results using
multi-dimensional Gaussian curve estimates rather than single two
dimensional linear regression models. The final regression model used
to predict the observed lichen volume, i.e. the Lichen Volume Estimator
(LVE), is:

( (NDL[— NDLmean )2 + (NDM]—N?M[mean )2 )

LVE(NDLI, NDMI) = a x exp™ *** b ; (1)

where NDLI 1,ean and NDMI ¢4, are the NDLI and NDMI respectively, and
a, b and c are the normal distribution parameters to be parameterized.
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Fig. 2. Lichen biomass (Unit: dm’/m?) was estimated in Hardangervidda based on Landsat 5 TM; Path/row: 199/18; 9th Aug. 2003.
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Model building and parameter estimation was done using SigmaPlot 2000.
Due to limited sample size, the model was validated using a tenfold cross-
validation procedure (Boyce, Vernier, Nielsen, & Schmiegelow, 2002).

3. Results

A strong positive correlation was found between lichen volume and
NDMI with a steady increase between 10 and 60 dm? of lichen per m?.
While NDMI performed better than NDLI in separating among lichen
volume classes below 60 dm?/m?, for lichen volumes higher than
60 dm?/m? little or no difference between the two methods could be
detected (Fig. 3). The lichen volume model with both NDLI and NDMI
as simultaneous predictors (Eq. (1)) was successful in correctly
classifying the observed lichen volume classes (adjusted R?: 0.70,
df =4/201, F=120.5, p<0.001). Univariate logistic regression models
using NDLI or NDMI indicated significantly lower accuracies (NDLI:
R? = 0.61; NDMI: R? = 0.37, respectively; Figs. 3 and 4). All estimated
parameters were highly significant (p<0.001) and no severe violations
of regression assumptions (normal distribution of residuals, constant
variance between residuals, absence of autocorrelation, no co-linearity
between predictors) were detected.

The maximum estimable lichen volume was approximately

60 dm?/m? (indicating lichen mats of ca. 6 cm and 100% coverage),
and corresponded to NDLI values of 0.4 and NDMI values of 0.05,
respectively (Figs. 3 and 4). The cross validation procedure indicated a
relatively high accuracy of the predictive model (average adjusted R*:
0.67, SD = 0.115, Table 1). All ten cross validation models were highly
significant and all estimated model parameters remained significant
through the cross validation procedure; coefficient estimates were
also stable among groups (Table 1). Further examinations of the 10
different cross validation models did not indicate any severe violations
of assumptions for the regression models. Although band 5 was used
in both NDLI and NDM], the correlation between the two indices was
still considered modest (Pearson's 2-tailed correlation index: —0.58),
and the hypothesis of co-linearity was thus rejected. Analysis of
residuals indicated constant variances between sub-groups, and the
hypothesis of autocorrelation could thus also be rejected.
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Fig. 4. Surface plot from a two dimensional Gaussian regression showing the relationship between the observed lichen volume, the Normalized Difference Lichen Index (NDLI = (Landsat
TM (band 5 — band 4 /band 5 + band 4)), and the Normalized Difference Moisture Index (Landsat TM 5: (band 4 — band 5 /band 4 + band 5)).
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Table 1

Summary of the tenfold cross-validation of the two dimensional Gaussian regression to
predict lichen volume in dm?/m?, based on the Normalized Difference Lichen Index,
NDLI (Landsat TM: (band 5 — band 4 / band 5 + band 4)), and on the Normalized
Difference Moisture Index, NDMI (Landsat TM: (band 4 — band 5 / band 4 + band 5)),
following Eq. (1).

Cross val. Adjusted Coefficients

sub-group R-square X Yo N b c

0 0.588 0.343 0.031 62.47 0.133 0.207
1 0.412 0.355 0.021 59.63 0.126 0.197
2 0.762 0.367 0.018 58.70 0.116 0.192
3 0.642 0374 0.008 58.45 0.111 0.175
4 0.630 0.372 0.011 58.75 0.113 0.169
5 0.676 0.375 0.017 59.35 0.110 0.175
6 0.800 0.363 0.033 61.71 0.116 0.194
7 0.713 0.363 0.018 59.04 0.119 0.172
8 0.796 0.341 0.009 61.55 0.129 0.188
9 0.695 0.363 0.013 57.78 0.116 0.179
Average 0.671 0.362 0.018 59.74 0.119 0.185
Std. dev. 0.115 0.012 0.008 159 0.008 0.012

4. Discussion

We developed a novel Lichen Volume Estimator, which we used for
obtaining a continuous prediction of lichen volume on a wide and
remote area based on two previously developed indices derived from
Landsat TM: NDLI and NDMI. Overall, our results for lichen volume
prediction were promising, and suggest that LVE can become an
important tool supporting Rangifer research, management and conser-
vation (Fig. 5).

To our knowledge, LVE performs better than any other prediction
model developed to date for quantify lichen abundance, and by
establishing a direct relationship between remotely sensed images
and lichen volume it allows overcoming the need to complement
remote sensing data with topography or other ancillary data (e.g.

T°00°E
1

Dahlberg, 2001), and the issue of obtaining only a few rough predictive
classes of lichen volume (Colpaert et al., 2003; Nordberg & Allard, 2002;
Temmervik et al., 2003). Hence, once the relationship between the
observed lichen volume and the model formula is established, LVE can
be used to monitor in the long term or even back in time spatial and
temporal changes in lichen volume, provided that Landsat images are
available.

NDLI and NDMI were insensitive to increases in lichen volume
beyond an upper limit of approximately 6 cm in lichen height. This
seems plausible, as lichen mats should yield a theoretical thickness
threshold beyond which further increases in height do not affect their
reflection characteristics. However, note that lichen thicknesses of
>6.cm are rather scarce in the central part of the study area. The average
lichen volume within alpine heaths was predicted to be approximately
154 dm*/m?, though we detected marked spatial differences. Such
spatial differences are likely due to spatial differences in potential lichen
volumes caused by factors such as elevation, climate, soil, and to spatial
differences in reindeer grazing pressure, caused by natural habitat
features and possibly human disturbance (Dale, Reimers, & Colemann,
2008; Nellemann, Vistnes, Jordhgy, & Strand, 2001) in some grazing
areas.

Within the study area light-colored lichen species of the species
Cladonia, Flavocetraria and Stereocaulon are more widespread than
dark-colored species such as Cetraria ericetorum, Cetraria islandica and
Cladonia crispata (Gaare et al., 2005; Hesjedal, 1975a,b). Thus, it may
be argued that LVE primarily relies on changes in reflectance of light-
colored species as their volume in-/decreases. We recommend performing
experiments in visible-wavelength radiation under different proportions of
light- and dark-colored lichens to assess the reliability of LVE in areas where
dark-colored lichens dominate, and to assess its sensitivity to the ratio
between light- and dark-colored lichens.

The method we developed allows predicting lichen volume, which
can be used as a proxy for lichen biomass, reflecting the quality of
reindeer winter pastures. Although we did not directly assess the

800E 900E
i L

60°30°0"N—

60°00°N—]

[F60°300°N

[F60°0'0"N

Lichen

volume

[cdmisqm]
Mo-s
M- 10
En-15

[CJ16-20
21-30
— — 3 -e0
] 5 10 15
T Li Li
T00E 8°00'E S00E

Fig. 5. Lichen volume (dm?/m?) in Hardangervidda, estimated by applying the Lichen Volume Estimator to the Landsat 5 TM image from August 2003.
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relationship between LVE and lichen biomass, several authors previously
assessed the strength of the relationship between the volume and the
biomass of the lichen standing crop (Colpaert & Kumpula, 2012;
Kumpula, Colpaert, & Nieminen, 2000; Temmervik, Bjerke, Gaare,
Johansen, & Thannheiser, 2012). Kumpula et al. (2000) and Moen et al.
(2007), for example, obtained correlation coefficients of R? = 0.78
and R? = 0.81, respectively. However, if growth rates and productivity
estimates are needed, it will be necessary to calculate LVE independently
for species with different growth rates, which depends on chlorophyll
content and distribution (Moen et al., 2007; Palmqvist & Sundberg,
2000). Indeed, we suggest future studies to discriminate between
dominant lichen species on alpine heaths by using high resolution
satellite sensors (e.g. SPOT 5 and Sentinel 2). This may be done for
example using three categories: (i) Cladonia stellaris dominant
ridge/heath, (ii) Cladonia arbuscula and Cladonia rangiferina/stygia
dominant heaths, and (iii) Flavocetraria nivalis dominant ridge/
heath. Furthermore, although the predicted lichen volumes were
reliable in our study area, we recommend performing field tests
before adopting LVE in other areas, since both the relative proportion
and the height of lichens and vascular vegetation might change and
alter the reflectance values. Note, however, that the collection of
field data required for the first model parameterization is time
consuming, although the model can thereafter be used in the same
area multiple times. Finally, note that the applicability of the
proposed model is limited to alpine heaths dominated by lichen
heath communities.

The approach we proposed reliably predicted lichen volume in the
Hardangervidda plateau. As several studies highlighted a strong cor-
relation between lichen volume and biomass, the approach we proposed
can be reliably used to predict the quality of reindeer winter grazing
areas and, ultimately, to facilitate and improve Rangifer habitat and
population management. On a more general perspective, if appropriate
field tests are performed our approach can be adopted across the
circumpolar range of Rangifer to aid adaptive management for the
species.
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