Evolutionary Ecology

Explaining variation in brood parasitism rates between potential host species with similar habitat requirements --Manuscript Draft--

Manuscript Number:	EVEC-D-15-00179R1			
Full Title:	Explaining variation in brood parasitism rate similar habitat requirements	es between potential host species with		
Article Type:	Original Research			
Keywords:	brood parasitism; common cuckoo; egg rejection; host specificity; nest defence; Oriental reed warbler; parasitism rate; reed parrotbill; Yellow river delta.			
Corresponding Author:	Wei Liang Hainan Normal University Haikou, Hainan Province CHINA			
Corresponding Author Secondary Information:				
Corresponding Author's Institution:	Hainan Normal University			
Corresponding Author's Secondary Institution:				
First Author:	Wei Liang			
First Author Secondary Information:				
Order of Authors:	Wei Liang			
	Donglai Li			
	Zhengwang Zhang			
	Tomáš Grim			
	Bård G. Stokke			
Order of Authors Secondary Information:				
Funding Information:	the National Natural Science Foundation of China (31301888)	Dr. Donglai Li		
	the National Natural Science Foundation of China (31272328 and 31472013)	Dr. Wei Liang		
	Open Fund of Ministry of Education Key Laboratory for Biodiversity Sciences and Ecological Engineering, Beijing Normal University (K1401)	Dr. Donglai Li		
	General scientific research project of Education Department of Liaoning Province (L2015196)	Dr. Donglai Li		
	National Basic Research Program of China (2006CB403305)	Prof. Zhengwang Zhang		
	United Foundation for Natural Science of National Natural Science Foundation of China and People's Government of Guangdong Province (U0833005)	Prof. Zhengwang Zhang		
	the Research Council of Norway (218144)	Dr. Bård G. Stokke		
	Human Frontier Science Program (awards RGY69/2007 and RGY83/2012)	Prof. Tomáš Grim		

	the Czech Science Foundation (grant no. P506/12/2404)	Prof. Tomáš Grim
Abstract:	Host specialization evolved in many parasit of host specificity may be influenced by hos the parasite, and host anti-parasite strategie is poorly understood in situations that offer similar habitat requirements. The common of parasite on the species level, but individual reed beds of the Yellow River delta, China, characteristics, Oriental reed warblers Acro Paradoxornis heudei, breed in sympatry. W much higher rates than parrotbills. Both hos model eggs well, indicating that they have b Cuckoo eggs closely resembled warbler eg warblers but rejected by parrotbills. Only wa specific threat. Both hosts were equally goo density, partial isolation by breeding time, s characteristics, and high rejection rates of m for the low current parasitism rate in parrotb of integrating the study of general host life-t parasitism strategies of hosts across all bre host specificity.	e-host systems. Evolution and maintenance t life-history traits, active host selection by es. The relative importance of these factors parasites a choice between hosts with cuckoo Cuculus canorus is a generalist females prefer particular host species. In two potential hosts with similar nest cephalus orientalis and reed parrotbills e found that warblers were parasitized at ats recognized and rejected non-mimetic been involved in an arms-race with cuckoos. gs, and such eggs were mostly accepted by arblers recognized adult cuckoos as a od at raising cuckoo chicks. Low nest mall scale differences in nest and nest site iatural cuckoo eggs are likely responsible bills. This study emphasizes the importance history characteristics and specific anti- eding stages to understand the evolution of
Response to Reviewers:	Please see attached file as "Reply to comm	ents (EVEC-D-15-00179)_R1".

1	Explaining variation in brood parasitism rates between potential host species
2	with similar habitat requirements
3	
4	Donglai Li ^{1, 2, 3} , Zhengwang Zhang ² , Tomáš Grim ⁴ , Wei Liang ^{3, *} , Bård G. Stokke ⁵
5	
6	¹ College of Life Sciences, Liaoning University, Shenyang 110036, China
7	² Ministry of Education Key Laboratory for Biodiversity Sciences and Ecological
8	Engineering, College of Life Sciences, Beijing Normal University, Beijing 100875,
9	China
10	³ Ministry of Education Key Laboratory for Tropical Animal and Plant Ecology,
11	College of Life Sciences, Hainan Normal University, Haikou 571158, China
12	⁴ Department of Zoology and Laboratory of Ornithology, Palacký University, 17.
13	listopadu 50, CZ-771 46 Olomouc, Czech Republic
14	⁵ Norwegian University of Science and Technology, Norwegian Institute for Nature
15	Research (NINA), P. O. Box 5685 Sluppen, NO-7485 Trondheim, Norway
16	
17	* Corresponding author. Email: liangwei@hainnu.edu.cn
18	
19	Word count: <u>91889693</u>
20	
21	Running title: Cuckoo host selection

23 Abstract

Host specialization evolved in many parasite-host systems. Evolution and 24 maintenance of host specificity may be influenced by host life-history traits, active 25 host selection by the parasite, and host anti-parasite strategies. The relative 26 importance of these factors is poorly understood in situations that offer parasites a 27 choice between hosts with similar habitat requirements. The common cuckoo Cuculus 28 canorus is a generalist parasite on the species level, but individual females prefer 29 30 particular host species. In reed beds of the Yellow River delta, China, two potential hosts with similar nest characteristics, Oriental reed warblers Acrocephalus orientalis 31 and reed parrotbills Paradoxornis heudei, breed in sympatry. We found that warblers 32 33 were parasitized at much higher rates than parrotbills. Both hosts well-recognized and rejected non-mimetic <u>model eggs well</u>, indicating that they have been involved in an 34 arms-race with cuckoos. Cuckoo eggs closely resembled warbler eggs, and such eggs 35 were mostly accepted by warblers but rejected by parrotbills. Only warblers 36 recognized adult cuckoos as a specific threat. Both hosts were equally good at raising 37 cuckoo chicks. This is in line with the hypothesis that an effective anti-parasitism 38 defence will lower the selection pressure on defences at later stages. Low nest density, 39 partial isolation by breeding time, small scale differences in nest and nest site 40 characteristics, and high rejection rates of natural cuckoo eggs are likely responsible 41 for the low current parasitism rate in parrotbills. This study emphasizes the 42 importance of integrating the study of general host life-history characteristics and 43

44	specific anti-parasitism strategies of hosts across all breeding stages to understand the
45	evolution of host specificity.

47	Keywords:	brood	parasitism;	common	cuckoo;	egg	rejection;	host	specificity;	nest
						- 00	,			

48 defence; Oriental reed warbler; parasitism rate; reed parrotbill; Yellow river delta.

50 Introduction

Generalist parasites often form specialized races, each adapted to a particular host via 51 highly polygenic morphological and physiological traits (Futuyma and Moreno 1988), 52 yet still belonging to a single species (i.e., host races may be connected by gene flow). 53 For example, the common cuckoo, Cuculus canorus (hereafter cuckoo), exploits the 54 parental care of many smaller passerines across Eurasia (Moksnes and Røskaft 1995). 55 The cuckoo is a generalist at the species level, but individual cuckoo females prefer 56 one or a few host species (Gibbs et al. 2000; Fossøy et al. 2011). Cuckoos have 57 evolved distinct egg morphs that mimic particular host species in colour, spottiness, 58 and size (Moksnes and Røskaft 1995) to reduce the risk of host egg rejection (Brooke 59 and Davies 1988). 60

Despite intense research, especially during recent decades, the mechanisms 61 underlying host selection in cuckoos remain poorly known. This is because there are 62 many factors that may contribute to host selection (Soler et al. 1999), making it 63 difficult to investigate their relative importance. Some, like foreign egg rejection, may 64 represent specific anti-parasite adaptations (Davies and & Brooke 1989; Moksnes et al. 65 1991a) while others, like nest design (Grim et al. 2009) or chick diet (Yang et al. 66 2013), probably did not evolve in response to parasitism (Grim et al. 2001). A strong 67 test to understand causes of host selection is to analyse parasitism in sympatrically 68 occurring potential hosts with similar nest characteristics, food and habitat 69 70 requirements. This was done has rarely been done so far (Ortega and Cruz 1991; Peer 71 and Bollinger 1997; Mermoz and Fernández 1999; Edvardsen et al. 2001; Grim et al. 72 2011).

73	In the reed beds of the Yellow River Delta, China (YRD), two potential cuckoo
74	hosts breed in sympatry: the Oriental reed warbler, Acrocephalus orientalis, and the
75	reed parrotbill, Paradoxornis heudei (hereafter, warbler and parrotbill, respectively).
76	The two species are phylogenetically distant, but they construct nests that are
77	surprisingly similar in appearance and position (Fig. 1). Previous work, however,
78	showed that warblers are commonly victimized by cuckoos in YRD and elsewhere in
79	Eastern China, whereas parrotbills are almost never parasitized (Yang et al. 2014).
80	These differences are striking considering the extremely homogeneous habitat (reed
81	beds) that both passerines share. Disentangling reasons for such patterns requires a
82	comprehensive approach that considers all potential factors, including nest site
83	locations (Moskát and Honza 2002) and host responses to parasites at all stages of
84	development, i.e. adults (Sealy et al. 1998), eggs (Davies and Brooke 1989), and
85	chicks and adults (Grim et al. 20112006a). Therefore we combined these approaches
86	and studied both general life-history traits and potentially specific anti-parasite host
87	responses at adult, egg, and chick stages in order to comprehensively understand host
88	selection in a homogeneous ecological setting (see also-Grim et al. 2011).

90 Materials and Methods

We carried out the fieldwork from May to August in 2008 (parrotbills only) and in
2010–2012 (warblers and parrotbills) in the YRD National Nature Reserve
(37°35′-38°12′ N, 118°33′-119°20′ E), Shandong, Eastern China. The study area is
located in the second largest estuarine wetland area of China and contains extensive

95	reed habitats, interspersed with stretches of black locust Robinia pseudoacacia forests
96	and farmlands (see Li et al. 2015a for more details). Warblers are recognized as the
97	main hosts of the cuckoo in lowland reed habitats of Eastern Asia (Yang et al. 2012,
98	2014). Parrotbills are potential cuckoo hosts, but reports of parasitism are very rare
99	(Lin et al 2008; Yang et al. 2012, 2014). Although a larger area was searched for nests
100	(see below), most nests were found in three specific reed bed plots (Fig. S1). We
101	systematically searched for nests of the two passerines during throughout the breeding
102	season. Most nests (80.0%, $n = 526$) were found when they were at the nest building
103	or egg stage and we randomly selected nests for experiments. All nests, experimental
104	or not, were monitored every 1-4 days until the final nest fate was determined.
105	Our focalus host species (one1 warbler and one1 parrotbill) is an ideal study
106	system - simple and tractable (cf. multiple hosts in other habitats making such systems
107	less tractable, see also discussion in Grim et al. (2011)). Therefore, comparing two
108	species in this particular case is not pseudoreplication the two potential hosts system
109	is simply a full reality to test the host choice, see also discussion in Grim et al. (2011).
110	Cuckoo parasitism rate was defined as a proportion of active nests that we found
111	parasitized. Parasitism rates in any hosts may potentially be underestimated due to the
112	high egg rejection rates by hosts (Davies 2000). However, we find this possibility
113	unlikely for the following reasons. First, among parrotbill nests that were visited daily
114	during the egg-laying stage, we only found one case of a missing host egg ($n = 32$).
115	Second, cuckoos typically remove one or several eggs from each host nest during the
116	act of parasitism (Moksnes et al. 2000). Non-parasitized parrotbills usually have a

clutch size of 5 eggs (83.1%, n = 83), and there was no significant difference in the percentage of nests with less than 5 eggs before (17.9%, n = 46) and after (23.3%, n = 37) cuckoo parasitism commenced in the area (Chi-square test: $\chi^2 = 0.02$, df = 1, p = 0.88). This suggests that at most only a few parasitized parrotbill nests escaped our attention.

The local abundance and distribution of each species was comprehensively 122 surveyed along the roads or paths that pass through almost all reed habitats at the 123 study site. One survey was conducted every year when most territories were 124 125 established, in the first week of June. All three study species were easily visible due to their conspicuous behaviour. Territories were marked using a GPS (Garmin 60s), from 126 which local population sizes were estimated. The spatial breeding distribution of each 127 128 bird species was measured on GoodyGIS (Version. 3.21; http://www.goodygis.com/) based on the GPS data. The nest density of each host species was calculated as the 129 total number of nests divided by the breeding area per year (see, e.g., Samaš et al. 130 131 2013, see also Jelínek et al. 2014). , which should This estimate constitutes a suitable index for comparing the relative breeding population for each host species because 132 133 both parrotbill and warbler nests were searched with similar search effort. Importantly, the method directly takes into account all simultaneously active nests that are 134 available to cuckoos in the peak part of the season. 135

We investigated differences in characteristics of nests and nest sites between parrotbills and warblers, following the protocol of Moskát and Honza (2000): (1) distance from nest to the closest potential cuckoo perch site, i.e. tree or electric wire

139	(to the nearest m); (2) distance to the closest reed edge (m); (3) nest visibility to a
140	human observer (DL), on ordinal scale of five degrees from bad to good visibility; (4)
141	the height of the reeds above the nest (m); (5) the number of green reed stems in a 0.5
142	\times 0.5 m quadrat at breast height (1.5 m) around the nest; (6) the mean height of the
143	five highest reed stems in a 0.5 \times 0.5 m quadrat of the nest site (m); not used by
144	Moskát and Honza (2000); (7) the nest height above the water or ground (m); (8) the
145	nest volume, an index expressing the size of the nest, which was calculated by
146	multiplying three values: (a) outer nest height from the bottom of the nest to the rim;
147	(b) maximum outer nest width; and (c), minimum outer nest width (all to the nearest
148	cm).

In order to investigate specific host responses to adult parasites, we presented 149 150 stuffed dummies near host nests, following the protocol of Sealy et al. (1998) and Campobello and Sealy (2010). Dummies of three species were used (two specimens 151 per each to minimize the risk that differences between treatments would be a 152 153 by-product of a particular specimen, see Trnka and Grim 2013), representing a brood parasite (common cuckoo, gray morph), a predator of adults (sparrowhawk Accipiter 154 155 nisus), and non--threatening species as a control (spotted dove Spilopelia chinensis). A randomly chosen specimen was placed on bamboo sticks postured in typical life-like 156 position about 0.5 m from the focal nest and at the same height as the nest rim with 157 the head facing the rim. 158

159 The responses of nest owners were observed from a distance of about 10-20 m 160 from a hide. Behaviour was also video-recorded by a camera placed 1-2 m from the

161	nest. Generally, the nest owners would return within 2-3 mins, and the responses were
162	recorded for 5 min from the return of the first bird. Each nest was tested with all three
163	specimens-dummies presented in a random order and separated by 30 mins. Nests
164	were randomly selected during the egg-laying or early incubation stage (≤ 6
165	incubation days). The response of the <u>H</u> host <u>responses</u> to the specimen wereas rated
166	on a four-step scale following Moksnes et al. (1991b): (1) No reaction, in which the
167	hosts paid no attention to the specimendummy, and in some cases, the host even sat
168	on the nest directly; (2) Distress calling, in which the host uttered distress and alarm
169	calls but was not willing to approach the specimendummy; (3) Mobbing, in which the
170	host approached the specimen dummy with aggressive postures and alarm calls, but
171	never made physical contact; (4) Attacks, in which the host vigorously attacked (i.e.,
172	contacted) the dummy. The aggressive response was combined into two categories: no
173	aggression (1 and 2) and aggression (3 and 4) for statistical analysis (Røskaft et al.
174	2002, Grim et al. 2011). In cases when most individuals respond aggressively but
175	some respond with few attacks whereas others respond with many attacks, ordinal or
176	nominal behavioural scales may lack power to detect existing and biologically
177	relevant effects (see analyses in Trnka et al. 2012). Therefore, For a separate analysis
178	(see below) we additionally recorded the exact number of contact body attacks during
179	5 min based on the video recordings (for a separate analysis, see below).
180	Variation in appearance between the eggs of cuckoos and those of the two

180 variation in appearance between the eggs of cuckoos and those of the two
 181 potential host species was measured by spectrophotometry. Egg reflectance spectra
 182 (300–700 nm; 0.597-nm intervals) of three randomly selected portions of the

background, a light spot, and a dark spot on each egg were measured using a
miniature fibre optic spectrometer (AVANTES) connected to a portable computer. All
measurements were taken at a 45° angle and cover an area of approximately 1 mm².
In total, 792 spectra readings were collected from 55, 19, and 14 eggs of warblers,
cuckoos, and parrotbills, respectively.

We artificially parasitized nests with one of three egg types: real cuckoo eggs, 188 blue model eggs, and conspecific eggs. We used natural cuckoo eggs to directly 189 quantify selection pressure by hosts to natural parasitism; some naturally laid (i.e. 190 191 non-experimental) parasite eggs may be rejected by hosts before researchers notice them (but see above), therefore an experimental approach is needed to avoid biases in 192 estimates of egg rejection rates (Moksnes and Røskaft 1992, Samas et al. 2014). We 193 194 employed non-mimetic blue models as a standardized stimulus, which was identical for both study host species (see also Grim et al. 2011). Conspecific eggs were used 195 because rejection of both real cuckoo eggs and non-mimetic models may represent a 196 197 by-product of host egg rejection abilities evolved due to conspecific parasitism (Samas et al. 2014, Liang et al. 2016). 198

Real cuckoo eggs were transferred from parasitized warbler nests into non-parasitized warbler and parrotbill nests. In six cases, warbler eggs were used instead of cuckoo eggs as the experimental eggs in the experiments with reed parrotbills, because of scarcity of cuckoo eggs and due to that warbler eggs are very similar to cuckoo eggs in appearance (see results). Indeed, there was no variation <u>difference</u> in parrotbill rejection of cuckoo (76.9%, n = 12) and warbler eggs (83.3%, n = 6; Fisher Exact Test: p = 1.00). The data from the two groups were therefore merged.

The blue model eggs were made of synthetic clay. The mass of these eggs (3.14 ± 0.04 g; n = 46) were similar to those of real cuckoo eggs (3.13 ± 0.20 g, n = 38; t = 0.40, df = 82, p = 0.69), but the egg sizes (egg length: 19.44 ± 0.76 mm; egg breadth: 15.42 ± 0.41 mm; n = 46) were slightly smaller than real cuckoo eggs (egg length: 22.02 ± 0.90 mm; egg breadth: 16.26 ± 0.42 mm; n = 38; all p < 0.0001). Finally, we included a control group, i.e. nests whose content was not manipulate<u>d</u> but was monitored to estimate the baseline nest desertion rates (Samas et al. 2014).

Host nests were monitored daily or every second day for six consecutive days 214 215 after the initial placement of the eggs, following the standard criteria for rejection 216 (Moksnes et al. 1991a, b). Responses were defined as (1) ejection: the parasitic egg disappeared or were still incubated but heavily pecked (model eggs); (2) desertion: the 217 nest was abandoned with or without any damage to either the parasitic egg or the 218 219 hosts' own eggs; and (3) acceptance: the clutch with the parasitic egg was still warm 220 without peck-broken egg(s) and was incubated at the end of the monitoring period. Nests that were depredated within the 6-day period were excluded from analyses. 221 222 Desertions were included as a rejection response because no control nests were 223 deserted (Results).

We carried out cross-fostering experiments in order to investigate whether warblers and parrotbills differed in their ability to raise a cuckoo chick. We exchanged 14 cuckoo chicks (aged 3–5 days) from <u>naturally</u> parasitized warbler nests with host

chicks in non-parasitized parrotbill (n = 6) or warbler (n = 8) nests. Another 18 227 cuckoo chicks in naturally parasitized nests served as the control group. We 228 cross-fostered cuckoos between naturally parasitized and non-parasitized nests to 229 check whether cross-fostering of cuckoos from warbler to parrotbill nests itself did 230 not affect their growth and survival in parrotbill nests (see also Grim 2007). All the 231 cuckoo chicks were monitored every other day until fledging or death. Body weight 232 (0.01 g) and tarsus length (mm) were measured daily or every other day until 233 fledging. 234

235

236 Statistical analyses

The date of the first egg laid in each focal nest was either recorded directly (for nests 237 found in nest building and egg-laying stage) or inferred (nests found with completed 238 clutches or chicks) using incubation time of 14 and 12 days for two hosts and cuckoo 239 respectively, and fledging time of 14 and 20 days for two hosts and cuckoo, 240 241 respectively (D. Li et al. unpublished data). We used the first egg-laying date (or egg laying for the cuckoo) for each nest to compare breeding time synchronization for the 242 cuckoo and two hosts. Independent sample t-tests were used to compare the breeding 243 time among groups because all data fitted normality distribution. 244

All egg and nest characteristics were assessed for normality using the Shapiro–Wilk tests. When necessary, data were ln transformed to achieve normality. In cases where there was still a lack of normality after transformation, we used Mann-Whitney U tests to compare the differences between groups, otherwise an independent sample t-tests were used. The sample size for nest sites and nest characteristics varied for different comparisons because weather or predators destroyed some nests. For analyses of differences in parasitism rates, egg rejection rates and fledgling success rates, Pearson's χ^2 tests were used with Yates' continuity correction, except when 20% of the expected values in the contingency table were <5, in which case we used Fisher exact tests.

We used the generalized linear mixed model (GLMM) to test the host responses 255 to dummies with response variable as nominal (no aggression or aggression) or 256 257 continuous (number of contact attacks per 5 min). All GLMMs included two main fixed factors: host species (nominal) and dummy species (nominal) and their 258 interaction. Other potential confounding factors, namely, year and nest stage (two 259 260 categories: egg-laying vs. early incubation-, i.e. less than 6 days of incubation) were also statistically controlled for. Specimen id was modelled as a fixed (rather than a 261 random) effect because the number of levels was lower than six (see Fox et al. 2015). 262 Nest identity was entered as a random factor to control for non-independence among 263 trials at the same nest. The first GLMM used a binomial distribution with a logit link, 264 as the host aggression is a binary response (no aggression or aggression). The second 265 GLMM used a Poisson distribution with a log link, because the response variable 266 "number of attacks" is a count of occurrences during a fixed period of time. We 267 followed backward elimination of non-significant terms. We checked the final 268 269 (minimum adequate) model by adding the previously removed terms (one at a time) and found that none explained any significant variation. Test statistics and P-values 270

271 reported are from a sequential backward elimination procedure just before the
272 particular term (being the least significant) and was removed from the model. The
273 minimum adequate model contained only significant predictors.

Three separate principal component analyses were used to explore the colour 274 variations in the background and the two types of spots for the three species. This type 275 of analysis is useful for evaluating variation in spectral data because it reduce the 276 correlated variables of reflectance spectra into a few orthogonal variables that 277 describe achromatic (brightness) and chromatic (colour) variation (Cuthill et al. 1999, 278 279 Cherry and Bennett 2001). The first principal component (PC1) represents variation in mean reflectance, or brightness, whereas the subsequent principal components 280 281 represent variation in colour (Endler and Thery 1996). PC1 explaineds 83.6%, 85.5%, 282 and 71.0% of the overall colour variations of background, light spots, and dark spots, respectively, whereas the PC2 and PC3 explaineds the remaining variation among 283 8.4-13.9% and 3.3-6.2% respectively. The coefficients were plotted against 284 285 wavelength to depict the variation in colour that was explained by each principal component (Fig. S2), and the differences in principal component scores between 286 cuckoo eggs and those of the two hosts were compared to reflect the egg mimicry. 287

Following the suggestion in Grim (2006), wWe used logistic regression tTo estimate standard growth parameters (K = growth rate, A = asymptotic mass) of cuckoo chicks we used logistic regression (for details see Grim 2006b). Only chicks with growth data across the majority of nestling period could be used to estimate standard growth parameters (Starck and Ricklefs 1998, Grim 2006b). The benefit of this approach is to estimate K and A parameters at individual chick level that can be included in future meta-analyses. The disadvantage is that, chicks that died, due to predation or inclement weather, before reaching the asymptotic phase of growth had to be excluded. <u>Therefore, w</u>We run a separate analysis based on all growth data, with chick id as a random effect; the single population estimates of K and A were very similar to those <u>reported herebased on individual chicks</u> (Table 3).

We used Oone-way ANOVAs were used to compare the estimated growth 299 parameters (K, A) of young cuckoo raised in three groups (Kruskal-Wallis tests on the 300 301 same data lead to same conclusions, results not shown). Only chicks with growth data across the majority of nestling period could be used to estimate standard growth 302 303 parameters (Starck and Ricklefs 1998, Grim 2006). The benefit of this approach is to estimate K a A parameters at individual chick level that can be included in future 304 meta-analyses. The disadvantage is that, chicks that died, due to predation or 305 inclement weather, before reaching the asymptotic phase of growth had to be 306 307 excluded. We run a separate analysis based on all growth data, with chick id as a 308 random effect; the single population estimate of K and A were very similar to those reported here (Table S2). The differences in fledging age and body measures (body 309 mass and tarsus length) were only compared between host species (naturally 310 parasitized warblers and cross-fostered warblers were pooled because of the relatively 311 small sample sizes) using independent sample t-tests. 312

All statistical analyses were carried out using IBM SPSS 20.0. The statistical tests were two-tailed, and <u>data wasestimates are</u> reported as means ± SE, excepect when stated otherwise. Significan<u>cet</u> levels were set at p < 0.05.

316 In the present study, blinded methods were not used. It was not possible to record 317 data blindly because our study involved focal animals in the field.

318

319 **Results**

320 *Parasitism rate*

The overall parasitism rate in warblers (24.9%; n = 362) was significantly higher than in parrotbills (0.8%; n = 132; Chi-square test: χ^2 = 35.81, df = 1, *p* < 0.001; Table S1). There was no significant annual variation in the parasitism rate in the two hosts (warbler: χ^2 = 0.44, df = 2, *p* = 0.80; parrotbill: χ^2 = 2.32, df = 3, *p* = 0.51). Approximately 2.5% of the warbler nests (n = 362) were multiply parasitized (contained two cuckoo eggs), and there was no annual variation in multiple parasitism $(\chi^2 = 0.02, df = 2, p = 0.99, Table S1).$

328

329 Spatial distribution, nest density, nest and nest site characteristics

Our survey disclosed that parrotbills have a considerably larger spatial breeding distribution (ca. 103 km²) than warblers (ca. 3.67 km²) in the Yellow River delta, but the estimated average nest density (11.0 nests/km²) of parrotbills was only about a quarterguarter of that of warblers (40.–8 nests/km²) from the data collected in three main study sites (Fig. S1 and Table S2). Warblers weare mainly found concentrated in three main reed plots (>-90% of the population in the study area), where they breed in the densest and tallest reeds₂, but <u>T</u>the breeding populations showed dramatic annual fluctuations in each reed plots (Table S2) depending on the local hydrological conditions for reed growth. Parrotbills breed in a broader range of reeds, but the nest density <u>wais</u> not uniform: parrotbill nest density in site A was much higher than in site B and C (Table S2). Within the three study plots, the nest density of parrotbills was much lower than that of warblers in site B and C, but was about half (0.58) of that of warblers in site A (Table S2).

Both parrotbills and warblers built cup nests of remarkably similar appearance 343 sewn around 3-7 reed stems (Fig. 1). There were no significant differences between 344 345 the distances of parrotbill and warbler nests to cuckoo perches, but parasitized warbler nests were closer to perches than non-parasitized ones (Table 1). There were no other 346 nest or nest-site characteristics showing any statistically significant difference 347 348 between parasitized and non-parasitized warbler nests. However, compared to parrotbills, warblers generally placed their nests further from the nearest reed edge 349 (from water or dry land, but significantly so only for warblers that were not 350 351 parasitized), in larger and denser reeds, nested in less dry reeds, had larger and more 352 visible nests, and placed their nests higher in the reeds, but the warblers that were parasitized were more like to place their nests further from the nearest reed edge than 353 354 parrotbills (Table 1).

355

356 *Timing of breeding season*

Parrotbills were local residents and started to breed earlier (first egg-laying dates for
the first nest in each season: 2008: April 28; 2010: May 15; 2011: May 8; 2012: April

359 25) than migratory warblers (2010: May 25; 20110: May 25; 2012: May 18) or migratory cuckoos (2010: June 1; 2011: June 6; 2012: May 30). There were no 360 significant differences between the averages of the first egg-laying dates of cuckoos 361 and warblers during 2010–2011 (2010: t = 1.13, df = 176, p = 0.26; 2011: t = 0.27, df362 = 138, p = 0.79), but in 2012, cuckoos initiated their egg-laying season somewhat 363 later than warblers (t = 2.57, df = 150, p = 0.01). The average first egg-laying dates of 364 parrotbills were much earlier than those of cuckoos (for all years, $p \leq 0.005$) and 365 warblers (for all years, $p \leq 0.005$) during the three years of study. In fact, on 366 367 average, 55.3% (2010: 38.5%, n = 26; 2011: 69.4%, n = 36; 2012: 53.7%, n = 41) parrotbill nests were fully laid and the eggs were nearly ready to hatch before the 368 onset of cuckoo parasitism. However, still a considerable number of parrotbill nests (n 369 370 = 46) were available to cuckoos, but very few actually were used (Table S1). Considering the time when only the parrotbill nests available to cuckoos during 371 2010-2012, parasitism rate in parrotbills (0%, n = 46) was also significantly lower 372 than in warblers (25.9%; n = 348; $\chi^2 = 13.99$, df = 1, p < 0.001). 373

374

375 *Response to dummies*

Ordinal scoring showed that warblers were more aggressive (68% of trials) than parrotbills (19% of trials; $F_{1,209} = 24.18$, p < 0.0001; Fig.2a). Both specimen id ($F_{2,204}$ = 0.15, p = 0.86), specimen-host species interaction ($F_{4,205} = 1.18$, p = 0.32) and breeding stage ($F_{1,204} = 0.35$, p = 0.56) were non-significant and removed from the final model. The final model controlled for significant differences among years ($F_{2,209}$ 381 = 3.78, p = 0.024) and nests (Z = 3.09; p = 0.002).

Warblers launched a larger number of direct attacks (estimate \pm SE: 6.83 \pm 2.12) 382 to all dummies than parrotbills (0.08 \pm 0.04, F_{2.207} = 45.59, p < 0.0001), and were 383 especially aggressive against the cuckoo when compared to the aggression of the 384 parrotbill (14.61 ± 4.53 vs 0.07 ± 0.05; t = 5.32, p < 0.0001). Both years (F_{2,205} = 2.62, 385 p = 0.08) and breeding stage (F_{1, 204} = 0.11, p = 0.75) were non-significant and 386 removed from the final model. The final model controlled for significant differences 387 among nests (z - Z = 4.60, p < 0.000), specimens (F_{2,207} = 11.06, p < 0.0001), and in the 388 389 interaction between host species and specimens ($F_{2,207} = 14.20$, p < 0.0001). The warblers showed more aggressive attacks towards mounted cuckoos than hawks and 390 doves (F_{2.207} = 5.14, p = 0.007; cuckoo versus hawk: t = 3.21, df = 207, p = 0.002; 391 392 cuckoo versus dove: t = 3.20, df = 207, p = 0.002; Fig. 2b), whereas parrotbills showed no significant variation in the number of attacks they made towards cuckoos 393 vs. the other two stuffed specimens dummy types ($F_{2, 207} = 1.12$, p = 0.33; cuckoo 394 395 versus hawk: t = 1.00, df = 207, p = 0.32; cuckoo versus dove: t = -1.24, df = 207, p = 0.22; Fig. 2b). 396

397

398 Egg mimicry

Cuckoo egg background colour was pale green-blue, speckled and blotched with pale grey, light and olive green, and dark brown spots (Fig. 3b), displaying almost perfect mimicry of warbler eggs to the human eye and according to the objective spectral analysis. However, both the background colour and the light spots of the cuckoo eggs

403	were brighter than those of the warbler eggs (Fig. 3a). Parrotbill eggs were
404	greenish-white with dark brown spots and blotches or clouds of underlying pale
405	sienna spots (Fig. 1d; Fig. 3b), and varied considerably but differed distinctly from
406	cuckoo eggs (Fig. 3b).

There were significant differences in three scores of PC1-3 between cuckoo and the two hosts (all p < 0.05), except for the PC1 of the dark spots between cuckoo and warbler (t = 1.85, df = 214, p = 0.07) and the PC2 of the background between cuckoo and warbler (t = 0.41, df = 223, p = 0.68), and the PC3 of the dark spots between cuckoo and both hosts (cuckoo vs. warbler: t = 0.95, df = 214, p = 0.34; cuckoo vs. parrotbill: t = -1.13, df = 98, p = 0.26; Fig. S3).

413

414 *Egg recognition experiments*

Neither parrotbills (n = 20) nor warblers (n = 32) in the control groups showed any egg rejection (rejection errors) or nest desertion (Fig. 4). Therefore, we included desertion as a specific response to parasitism.

Parrotbills (77.8%, n = 18) displayed a higher rejection rate of real cuckoo eggs than did warblers (10.5%, n = 19; $\chi^2 = 14.40$, df = 1, p < 0.001; Fig. 4). Both hosts used ejection of the eggs from the nest as their only egg rejection strategy, with no loss sustained due to erroneous or accidental ejection of own eggs.

422 Parrotbills (78.9%, n = 19) and warblers (75.8%, n = 33) showed a similar high 423 rate of egg rejection for non-mimetic blue model eggs ($\chi^2 = 1.97$, df = 1, p = 0.16; Fig. 424 4). Ejection (both successful and attempted but unsuccessful) was the ______ and in_most

425	cases ejected common method of rejection of the foreign eggs in both (parrotbills
426	(93.3%, $n = 15$) - vsand warblers (: 93.3% ($n = 15$) vs 92.0%, ($n = 25$); Fisher exact
427	test: $p = 1.00$). However, while warblers successfully removed model eggs in most
428	cases (91.3%, $n = 23$), parrotbills only successfully ejected 7.1% ($n = 14$) such eggs
429	$(\chi^2 = 22.20, df = 1, p < 0.001)$. The inability of the parrotbills to eject model eggs
430	always ended in either the forced acceptance of the parasite eggs (35.8%, $n = 14$) due
431	to physical inability to reject the eggs or complete desertion (57.1%; $n = 14$) of the
432	nest and breakage of almost all host own eggs (2-4 eggs). Two unsuccessful attempts
433	to eject that finally led to nest desertion also contained two or three broken host eggs,
434	but the rate of loss associated with damage to the host's own eggs was significantly
435	lower for warblers (8.7%; $n = 23$) than parrotbills (71.4%, $n = 14$; Fisher exact test: p
436	< 0.001). Oriental reed warblers and reed parrotbills have distinctly different bill
437	morphology (Xiong and Lu 2013). Due to their short and blunt bills, parrotbills are
438	most probably not able to grasp eject eggs and therefore have to rely on puncture
439	ejection (or desertion). This seemed to work without problems when ejecting real
440	cuckoo eggs, but they obviously faced problems when trying to get rid of the
441	thicker-shelled model eggs. Warblers, on the other hand, should be able to grasp eject
442	eggs (Antonov et al. 2006), or puncture and remove even hard-shelled model eggs
443	without any substantial costs (Honza and Moskat 2008). These results taken together
444	strongly suggest that the "forced acceptance" of model eggs by parrotbills wasere
445	simply due to their inability to remove such eggs (even though they were pecked, i.e.
446	we observed pecking marks on the surface of the eggs).

Both parrotbills (12.0%, n = 25) and warblers (11.1%, n = 18) showed a low rejection rate of conspecific eggs which did not differ between the two hosts (Fisher Exact Test: p = 1.00). The rejection by both species was by both ejection and desertion.

451

452 *Cuckoo chick cross-fostering experiments*

There were no significant differences in the fledging success of cuckoo chicks among 453 the three <u>treatment</u> groups (Table 2; $\chi^2 = 2.57$, df = 2, p = 0.28). The parrotbill hosts 454 did not discriminate against cuckoo chicks - there were no differences in the growth 455 parameters of the cuckoo chicks raised in the original warbler nests, cross-fostered to 456 457 different warbler nests and cross-fostered to parrotbill nests (Fig. 5, Fig. S4, Table 3). Furthermore, there was no significant variation in the fledging age (warbler: $18.3 \pm$ 458 0.3 days, parrotbill: 17.5 ± 0.5 days; t = -0.95, df = 8, p = 0.37), fledging body mass 459 (warbler: 58.7 \pm 0.9 g, parrotbill: 56.4 \pm 2.6 g; t = -1.04, df = 8, p = 0.33) and 460 fledging tarsus length (warbler: 25.4 ± 0.3 mm, parrotbill: 25.0 ± 0.9 mm; t = -0.51, 461 df = 8, p = 0.63) of cuckoo chicks fostered by the two hosts. 462

463

464 **Discussion**

465 Despite the very homogeneous habitat, cuckoos in the Yellow River delta parasitized
 466 warblers at much higher rates than parrotbills, and cuckoo eggs showed exquisite
 467 mimicry to warbler eggs, but not to parrotbill eggs. Hence, cuckoo parasitism was
 468 highly host-specific among these two sympatric reed bed breeding passerines, in line

469 with the host preference hypothesis (Moksnes and Røskaft 1995; Skjelseth et al.
470 2004). This finding is intriguing, since our cross-fostering experiments showed that
471 both hosts are equally good at raising cuckoo chicks.

472 Furthermore, egg recognition experiments disclosed that there were no significant
473 differences in the egg recognition ability by warblers and parrotbills, as both show a
474 high rejection rate of non-mimetic eggs. The highly developed ability to reject foreign
475 eggs suggests that both warblers and parrotbills have been utilized by cuckoos in the
476 past. However, cuckoos have only evolved mimetic eggs towards warblers.

The question then is why a cuckoo gens specializing on warblers has evolved, 477 while at the same time there seems to be no gens utilizing parrotbills. Obviously, the 478 fact that the parrotbill show high rejection rate of natural "warbler" cuckoo eggs 479 480 appears to be an important factor in explaining the apparent low parasitism rate on parrotbills in our study area and elsewhere (Yang et al. 2014). The rejection of cuckoo 481 eggs by this species has most likely evolved due to past parasitism by cuckoos and 482 483 was not explained as a "collateral damage" (Samas et al. 2014) from adaptations against conspecific parasitism because (1) parrotbills rejected conspecific eggs rarely 484 and at much lower rates than cuckoo eggs, and (2) we detected no cases of conspecific 485 486 parasitism. However, cuckoos have not responded by evolving a mimetic egg. Hence, 487 parrotbills are now difficult for cuckoos to successfully parasitize since their eggs are so different from the parrotbill eggs, even though we cannot rule out that they still are 488 489 hosts in other parts of their breeding range. Could there be other characteristics of parrotbills that make them less likely to be favoured by cuckoos? 490

491	
-----	--

492	There were no significant differences in the general habitat patterns of the reed
493	bed between the nest patches of the two hosts. In fact, the parrotbill territories often
494	overlapped with the warbler territories. However, parrotbills preferred to nest in
495	patches of reeds that were lower in height and with a greater percentage of dry reed
496	stems than warblers (see also Li et al. 2015b). Hence, we cannot rule out host
497	selection based on small scale differences between parrotbill and warbler nest and
498	nest site characteristics (Moskát and Honza 2000; Antonov et al. 2007, i.e. the habitat
499	imprinting hypothesis: (Teuschl et al. 1998)).
500	Host behaviour can also be influential for explaining variation in cuckoo
501	parasitism (Gill et al. 1997; Davies 2000). The dummy experiments disclosed that
502	warblers, but not parrotbills responded aggressively to cuckoos. Further, parrotbills, in
503	contrast to warblers, did not recognize cuckoos as a specific threat. The response of
504	warblers to the intruders was consistent with previous work on closely related great
505	reed warblers Acrocephalus arundinaceus in Europe (Honza et al. 2006; Trnka and
506	Grim 2013). Since warblers are noisy, aggressive and large birds, they are easy to
507	detect. Parrotbills on the other hand are smaller and less conspicuous, and since they
508	do not behave aggressively towards cuckoos, they are more difficult to detect (i.e.,
509	lower opportunity for eavesdropping on these hosts by cuckoos).
510	Life-history features and adaptations by the hosts may contribute to host-specific
511	parasitism (Antonov et al. 2010; Grim et al. 2011; Møller et al. 2011; Grim et al.
512	2014). The parrotbill is a resident of the area and starts to breed much earlier than the
I	

warbler and cuckoo, both of which are migratory, summer visitors. In fact, over half 513 (52.7 %) the nests of parrotbills complete egg-laying before the cuckoo breeding 514 515 season begins, thereby avoiding being parasitized by cuckoos, a fact that may likely contribute to the lower parasitism rate in reed parrotbills and lower selection on 516 specific anti-cuckoo adaptations in this host (for similar cases see Peer and Bollinger 517 518 1997; Gill 1998). However, in other areas, many resident birds are common hosts for cuckoos even though their breeding period is poorly synchronized with that of the 519 cuckoo (Kim 1996; Medina and Langmore 2016). -Furthermore, although half of the 520 nests of parrotbills in our study were available for parasitism, they still experienced a 521 significantly lower parasitism rate than warblers. Therefore, our results suggest that 522 being a resident and having a partially separated breeding season cannot solely 523 524 explain the lower parasitism rate on parrotbills by cuckoos. Still, we cannot rule out that parrotbills have adopted an earlier initiation of breeding in order to decrease the 525 risk of parasitism by cuckoos. 526 527 Warblers had a higher local density and aggregated breeding than parrotbills, which may make them more available and suitable as cuckoo hosts than parrotbills 528 (Stokke et al. 2007; Soler et al. 2009; Jelínek et al. 2014). Hence, significantly less 529 530 search effort is most likely required from cuckoos utilizing warblers than parrotbills. However, the apparent low parasitism rate of the parrotbills cannot be completely 531 explained by differences in density, because it appears that the density of warblers and 532 533 parrotbills were nearly similar in some areas (e.g. Area A, Fig S1), but still parasitism

534 <u>rates were strikingly different.</u>

535	The mismatch in breeding synchrony between cuckoos and parrotbills (Møller et
536	al. 2011) and the differences in aggression and nest/nest site characteristics may boost
537	a possible "density" effect and lead to a low availability of parrotbills for parasitism.
538	Hence, it seems likely that not only one but rather several mechanisms may additively
539	and interactively to-render parrotbills less suitable to cuckoos than warblers. It is
540	important to acknowledge that our study is both restricted in time and space, making
541	inference about the past and other sites impossible. Egg rejection in parrotbills may
542	have evolved due to high parasitism in the past, perhaps in areas or times with higher
543	density and a better breeding synchrony with cuckoos. Alternatively, rejection
544	behaviour may be an ancestral trait that has been retained in the absence of parasitism
545	even through evolutionary events on the species level (e.g. Rothstein 2001; Peer and &
546	Sealy 2004), or have evolved due to other reasons than brood parasitism (see Stokke
547	et al. 2016 for a discussion of such events).
548	
549	Despite the very homogeneous habitat, cuckoos in the Yellow River delta parasitized
550	warblers at much higher rates than parrotbills (24.9% vs 0.8%), and cuckoo eggs
551	showed exquisite mimicry of warbler eggs, but not to the parrotbill eggs. Hence,
552	cuckoos showed host specific parasitism on among these two sympatric reed bed
553	breeding passerines, in this area, similar to results in Yang et al. (2014), in line with

the host preference hypothesis (Moksnes and Røskaft 1995; Skjelseth et al. 2004).
<u>Tthere were no significant differences in the general habitat patterns of the reed bed</u>

556 <u>between the nest patches of the two hosts. In fact, the parrotbill territories often</u>

557	overlapped the warbler territories. Although However, the parrotbills preferred to nest
558	in habitats patches of reeds that were lower in height and with a greater percentage of
559	dry reed stems than warblers (see also Li et al. 2015b), there were no significant
560	differences in the general habitat patterns of the reed bed between the nest patches of
561	the two hosts. In fact, the parrotbill territories often overlapped the warbler territories.
562	ThereforeHence, we cannot rule out host selection based on small scale differences
563	between parrotbill and warbler nest and nest site characteristics (Moskát and Honza
564	2000; Antonov et al. 2007, i.e. the habitat imprinting hypothesis (Teuschl et al. 1998)).
565	cannot explain the significant difference in cuckoo parasitism between warblers and
566	parrotbills. <u>Host behaviour can also be influential for explaining variation in cuckoo</u>
567	parasitism (Gill et al. 1997; Davies 2000). The dummy experiments disclosed that
568	warblers, but not parrotbills responded aggressively to cuckoos. Further, parrotbills, in
569	contrast to warblers, did not recognize cuckoos as a specific threat. The response of
570	warblers to the intruders was consistent with previous work on closely related great
571	reed warblers Acrocephalus arundinaceus in Europe (Honza et al. 2006; Trnka and
572	Grim 2013). Since warblers are noisy, aggressive and large birds, they are easy to
573	detect. Parrotbills on the other hand are smaller and less conspicuous, and since they
574	do not behave aggressively towards cuckoos, they are more difficult for cuckoos to
575	detect (i.e., lower opportunity for eavesdropping on these hosts by cuckoos).
576	Life-history features and adaptations by the hosts may contribute to host-specific
577	parasitism (Antonov et al. 2010; Grim et al. 2011; Møller et al. 2011; Grim et al.
578	2014). The parrotbill is a resident of the area and starts to breed much earlier than the

579	warbler and cuckoo, both of which are migratory, summer visitors. In fact, over half
580	(52.7 %) the nests of reed parrotbills complete egg laying before the cuckoo breeding
581	season begins, thereby avoiding being parasitized by cuckoos, a fact that may be
582	partly responsible for <u>likely contribute to</u> the lower parasitism rate in reed parrotbills
583	(for a similar cases see Ortega and Cruz 1991; Peer and Bollinger 1997; Gill 1998).
584	However, in other areas, many resident birds are common hosts for cuckoos, such as
585	the Vinous throated parrotbill (Paradoxornis webbianus) in Korea, even though
586	itstheir breeding timeperiod is poorly synchronized with that of the cuckoo (Kim 1996;
587	Medina and Langmore 2016). Recent study in yellow-rumped thornbill, Acanthiza
588	chrysorrhoa, also showed that even though this trornbill speices has shifted their
589	breeding phenology by commencing the egg laying time earlier, they also heavily
590	been parasitized by the shining bronze-cuckoo, Chalcites lucidus (Medina and
591	Langmore 2016). Furthermore, aAlthough half of the nests of parrotbills in our
592	study were available for parasitism, they still experienced a significantly lower
593	parasitism rate than warblers. Therefore, we concludeour results suggest that being a
594	resident and having a partially separated breeding season were not sufficient tocannot
595	solely explain the lower parasitism rate on parrotbills by cuckoos. HoweverStill, we
596	cannot rule out that whether reed parrotbills have adopted an earlier initiation of
597	breeding time in order to decrease the possibilityrisk of parasitism by cuckoos (Møller
598	et al. 2011) is need further explored.
599	Previous study have showed that the host density have a good prediction for
600	presence of cuckoo parasitism in one of its main host, reed warbler, in Europe (Stokke

601	et al. 2007). Even we didn't used the point count (or line transect) to estimate a kernel
602	density of warblers and parrotbills, but used the nest density to assess the local density
603	of these two hosts. We propose that tWarblers had ahe higher local density and
604	aggregated breeding of warblersthan parrotbills, which may make them more suitable
605	as cuckoo hosts than parrotbills (Stokke et al. 2007; Soler et al. 2009; Jelínek et al.
606	2014). Hence, significantly less search effort is most likely required from cuckoos
607	utilizing warblers than parrotbills. The mismatch in breeding synchrony between
608	cuckoos and parrotbills may boost this effect (Møller et al. 2011) and lead to a low
609	availability of parrotbills for parasitism. However, the apparent low parasitism rate of
610	the parrotbills can'tcannot be completely explained by the density
611	hypothesisdifferences in density, first because some host holding even low breeding
612	density can be parasitized by cuckoo, second, because it appears that the density of
613	each specieswarblers and parrotbills were nearly equalsimilar in some areas (e.g.Area
614	A, Fig S1), but still parasitism rates were strikingly different, warbler and parrotbill
615	the nest density of these two in Area A (Fig S1), yet parasitism rates are still very
616	different.
617	Nest concealment and small nest entrances are well-known traits that prevent
618	cuckoo parasitism on some potential hosts (Davies 2000). In a recent study of thrush
619	species that use a cup shaped nest design, it was reported that the nest shape
620	effectively prevented the cuckoo chicks from evicting the host eggs or chicks, thereby
621	forcing cuckoo chicks to compete with host chicks, with fatal consequences for the
622	parasite (Grim et al. 2011). In the present study, both reed parrotbills and Oriental
I	

623	reed warblers build a similar cup nest utilizing 3 5 reed stems (Li et al. 2015), which
624	appears to be very suitable for cuckoo parasitism. The volume of reed parrotbill nests
625	was only about half of that of the Oriental reed warbler, but the nest volume is not the
626	main constraint for cuckoo use, as many birds (e.g., vinous-throated parrotbill) that
627	have even smaller nest volumes are parasitized by the common cuckoo. According to
628	the perch proximity hypothesis, the distance of the nests to the closest perch site is an
629	important factor that affects whether the nest can be parasitized by a cuckoo. In this
630	study, the parasitized Oriental reed warbler nests were closer to the nearest perch than
631	were the non-parasitized nests, but there was no significant difference between the
632	average distances to the nearest perch of the two hosts' nests. None of the examined
633	variables supported the nest exposure hypothesis that the reed parrotbill nests were
634	more difficult to parasitize by cuckoos than were the nests of Oriental reed warblers.
635	Therefore, the search for and approach to the nests of reed parrotbills were not
636	important reasons for the low parasitism rate by cuckoos.
637	In addition, small scale nest or nest site characteristics may play a role in cuckoo
638	host selection in our study area (Moskát and Honza 2000; Antonov et al. 2007). Host
639	behavior can also be influential for explaining variation in cuckoo parasitism (Gill et
640	al. 1997; Davies 2000). Warblers are noisy, aggressive and large birds, which are easy
641	to detect. Parrotbills on the other hand are smaller and less conspicuous, and do not
642	behave aggressively, which may make their nests more difficult for cuckoos to find
643	(i.e., lower opportunity for eavesdropping on these hosts by cuckoos).
644	
1	

645	Thus, these various parameters seem additively decrease suitability of parrotbills
646	as hosts leading to an apparent preference for other sympatric host (see Grim et al.
647	2011). However, all these life history features can't complete explain the obvious
648	deviation in the host use.
649	Previous studies have showed that many potential hosts escaped from cuckoo
650	parasitism due to their aggressive defense against cuckoos when cuckoos approached
651	their nests, as the first line of nest defense (Moksnes et al. 1991b; Røskaft et al. 2002;
652	Welbergen and Davies 2009).
653	The dummy experiments disclosed that warblers, but not parrotbills responded
654	aggressively to cuckoos. Further, parrotbills, in contrast to warblers, did not recognize
655	cuckoos as a specific threat. The response of warblers to the intruders was consistent
656	with previous work on closely related great reed warblers Acrocephalus arundinaceus
657	in Europe (Honza et al. 2006; Trnka and Grim 2013). The significant differences
658	between the responses of the two hosts in our study may imply that the Oriental reed
659	warblers have a closer host parasite relationship with common cuckoo than do reed
660	parrotbills. There were two other main reasons for the lower level of aggression
661	shown by reed parrotbills to the cuckoo dummy. First, the success of egg rejection
662	during the egg brooding stage may represent a shift of anti-parasitism strategies from
663	nest defense during egg laying to defense during the egg brooding stage, resulting in
664	a failure of the parrotbills to recognize cuckoo adults. Secondly, the reed parrotbills
665	may have lost the ability to recognize adult cuckoos during post-parasitism
666	interactions with them, due to the lack of selection pressure to keep the trait.
I.	

667	Egg recognition experiments showed that there were no significant differences in
668	the egg recognition ability by warblers and parrotbills, as both show a high rejection
669	rate of non-mimetic eggs. However, the fact that the reed parrotbills show a much
670	higher rejection rate of natural cuckoo eggs than warblers appears to be an important
671	factor in explaining the apparent low parasitism rate on reed parrotbills in our study
672	area and elsewhere (Yang et al. 2014). The rejection of cuckoo eggs by parrotbills has
673	most likely evolved due to past parasitism by cuckoos and was not explained as a
674	"collateral damage" (Samas et al. 2014) from adaptations against conspecific
675	parasitism because (1) parrotbills rejected conspecific eggs rarely and at much lower
676	rates than cuckoo eggs, and (2) we detected no cases of conspecific parasitism.
677	However, cuckoos have not responded by evolving a mimetic egg. Hence, parrotbills
678	are now difficult for cuckoos to successfully parasitize since their eggs are so different
679	from the parrotbill eggs. Nevertheless, the well-developed egg recognition abilities in
680	parrotbills suggest that they have been used by cuckoos in the past, and we cannot
681	rule out that they still are hosts in parts of their breeding range. However, there is one
682	cuckoo gens that mimic rufous-tailed shrike (Lanius isabellinus) eggs in the
683	north-western part of China (Ma et al. 2012) with eggs that appear very similar to
684	parrotbill eggs when judged by human eyes. Theoretically, shrike race cuckoo might
685	be successful in the invasion of the reed parrotbill if they had the opportunity to
686	disperse their breeding scale to the reed habitat. This might be tested with egg
687	experiments in the future.

688 Cross fostering experiments showed that both hosts are equally good at raising

689 cuckoo chicks as warblers. On the one hand, some samples in this study were large and interspersed in space (study sites) and time (years). On the other hand, we 690 691 acknowledge that the sample sizes for chick growth were relatively small; however, similar or smaller sample sizes were sufficient to reveal statistically highly significant 692 693 differences in cuckoo growth (Grim 2006) and even survival (Grim et al. 2009, 2011, Yang et al. 2013) across different hosts. This suggests that our sample sizes were 694 representative and our conclusions are reliable. Hence, parrotbills should be good 695 quality hosts for cuckoos. The reason that the reed parrotbills have not evolved chick 696 discrimination to resist cuckoo parasitism during the nestling stage is most likely the 697 low evolutionary pressure due to the success of egg rejection at the earlier, egg-laying 698 699 stage.

700 Conclusion

The host-specific parasitism in which the common cuckoo favoured Oriental reed 701 warbler over reed parrotbill may be attributed to factors associated with both sides of 702 703 the brood parasitism system (i.e., the initial selection by the cuckoo and constraints imposed by the hosts). In this study, we used a comprehensive approach to test the 704 705 host responses to cuckoo parasitism at all developmental stages (e.g., adults, eggs, nestlings, adults) and examined the influence of life-history traits that are not directly 706 involved in parasite-host arms-races but still may affect their outcome. We showed 707 that the main constraint preventing cuckoos from using reed parrotbills as hosts was 708 the high frequency of egg rejection of non-mimetic cuckoo eggs. During the 709 egg-laying stage specifically, the egg rejection rate reached ~90%, which may be 710

711 sufficient to make this host effectively secondarily unsuitable (seensu Grim et al. 2011) for cuckoos. The egg rejection was the only successful anti-parasitism strategy; as 712 there were no effective adaptations against cuckoo adults and chicks to counteract 713 cuckoo parasitism in the reed parrotbill. However, we did find an obvious partial 714 separation in the breeding time between the common cuckoo and the reed parrotbill, 715 which would decrease the overall parasitism rate at the population level independently 716 of other factors. Whether reed parrotbills have adopted an earlier breeding time in 717 order to decrease the possibility of parasitism by cuckoos (Møller et al. 2011) is 718 impossible to test directly but cannot be excluded. We suggest that future studies of 719 host selection by parasitic birds will benefit from a comprehensive approach we used 720 here, i.e. combination of observations and experiments across all developmental 721 722 stages of parasite-host interactions.

724 Acknowledgements

We are grateful to John A. Endler, Sara Helms Cahan and two anonymous referees for 725 726 constructive comments that significantly improved the manuscript. We thank the Yellow River Delta Management Bureau for permission to undertake this study 727 including all experimental procedures. The experiments comply with the current laws 728 of China. We are particularly grateful to two French volunteers (Andrieu Julie and 729 Marion Soresina) for their help with data collection in the field; Yueliang Liu, Shuyu 730 Zhu, Kai San, Xianghai Du, Shuyi Zhang, and Pengfei Guo for their kind support, and 731 Baoshan Cui for sharing the laboratory in the field station. We would also like to 732 thank Chao Li (Gudong Oil Production Plant, Sinopec Shengli Oilfield), Junlin Chen 733 (Anhui University), Xianxian Liu, Xiaomei Shen, and Qiao Wu for their kind help 734 during this study. This work was supported by the National Natural Science 735 736 Foundation of China (Nos. 31301888 to DL; 31272328 and 31472013 to WL), Open Fund of Ministry of Education Key Laboratory for Biodiversity Sciences and 737 Ecological Engineering, Beijing Normal University (K1401 to DL), General scientific 738 research project of Education Department of Liaoning Province (L2015196 to DL), 739 National Basic Research Program of China (2006CB403305 to ZZ) and United 740 Foundation for Natural Science of National Natural Science Foundation of China and 741 People's Government of Guangdong Province (U0833005 to ZZ). BGS was funded by 742 the Research Council of Norway (218144). TG acknowledges the support from 743 Human Frontier Science Program (awards RGY69/2007 and RGY83/2012) and the 744 745 Czech Science Foundation (grant no. P506/12/2404). We declare that all authors have no conflict of interest. 746

748	
749	References
750	Antonov, A., Stokke, B.G., Moksnes, A., Kleven, O., Honza, M. and Røskaft, E. (2006)
751	Eggshell strength of an obligate brood parasite: a test of the puncture resistance
752	hypothesis. Behavioral Ecology and Sociobiology 60: 11–18.
753	Antonov, A., Stokke, B.G., Moksnes, A. and Røskaft, E. (2007) Factors influencing
754	the risk of common cuckoo Cuculus canorus parasitism on marsh warblers
755	Acrocephalus palustris. Journal of Avian Biology 38: 390-393.
756	Antonov, A., Stokke, B.G., Ranke, P.S., Fossøy, F., Moksnes, A. and Røskaft, E. (2010)
757	Absence of egg discrimination in a suitable cuckoo Cuculus canorus host
758	breeding away from trees. Journal of Avian Biology 41: 501–504.
759	Brooke, M.L. and Davies, N. (1988) Egg mimicry by cuckoos Cuculus canorus in
760	relation to discrimination by hosts. Nature 335: 630-632.
761	Campobello, D., and Sealy, S.G. (2010) Enemy recognition of reed warblers
762	(Acrocephalus scirpaceus): threats and reproductive value act independently in
763	nest defence modulation. Ethology 116: 498–508.
764	Cherry, M.I. and Bennett, T.D. (2001) Egg colour matching in an African cuckoo, as
765	revealed by ultraviolet-visible reflectance spectrophotometry. Proceedings of the
766	Royal Society of London, Series B: Biological Sciences 268: 565-571.
767	Clarke, A.L., Øien, I.J., Honza, M., Moksnes, A. and Røskaft, E. (2001) Factors
768	affecting Reed reed_Warbler warbler_risk of brood parasitism by the Common
769	common Cuckoocuckoo. Auk 118: 534-538.

770	Cuthill, I.C., Bennett, A.T.D., Partridge, J.C. and Maier, E.H. (1999). Plumage
771	reflectance and the objective assessment of avian sexual dichromatism. American
772	Naturalist 160: 183–200.
773	Davies, N.B. (2000) Cuckoos, cowbirds and other cheats. T & A. D Poyser, London,
774	UK.
775	Davies, N.B. and Brooke, M.D.L. (1989) An experimental study of co-evolution
776	between the cuckoo, Cuculus canorus, and its hosts. I. Host egg discrimination.
777	Journal of Animal Ecology 58: 207–224.
778	De Mársico C.D. and Reboreda J.C. (2008) Differential reproductive success favours
779	_strong host preference in a highly specialized brood parasite. Proceedings of the
780	Royal Society of London, Series B: B: Biological Sciences Biological Sciences
781	275: 2499–2506.
782	Dröscher, L.M. (1988) A study on radio-tracking of the European Cuckoo cuckoo

783 (*Cuculus canorus canorus*), Bonn.

- Edvardsen, E., Moksnes, A., Røskaft, E., Øien, I.J. and Honza, M. (2001) Egg
 mimicry in cuckoos parasitizing four sympatric species of *Acrocephalus* warblers.
 Condor 103: 829–837.
- Endler, J.A. and Thery, M. (1996) Interacting effects of lek placement, display
 behavior, ambient light, and color patterns in three neotropical forest-dwelling
 birds. American Naturalist 148: 421–452.
- 790 Fossøy, F., Antonov, A., Moksnes, A., Røskaft, E., Vikan, J.R., Møller, A.P., Shykoff,
- J.A. and Stokke, B.G. (2011) Genetic differentiation among sympatric cuckoo

- host races: males matter. Proceedings of the Royal Society of London, Series B:
 Biological Sciences 278: 1639–1645.
- Fox, G.–A., Negrete-Yankelevich, S. and Sosa, V.–J. (2015): Ecological Statistics:
 Contemporary Theory and Application. Oxford University Press, Oxford.
- Futuyma, D.J. and Moreno, G. (1988) The evolution of ecological specialization.
 Annual Review of Ecology and Systematics 19: 207–233.
- Gibbs, H.L., Sorenson, M.D., Marchetti, K., de L. Brooke, M., Davies, N.B. and
 Nakamura, H. (2000) Genetic evidence for female host-specific races of the
 common cuckoo. Nature 407: 183–186.
- 801 Gill, B.J. (1998) Behavior and ecology of the shining cuckoo *Chrysococcyx lucidus*.
- In: Rothstein, S.I. and Robinson, S.K. (eds), Parasitic birds and their hosts:
 studies in coevolution. Oxford University Press, Oxford. <u>pp.143–151.</u>
- Gill, S.A., Grieef, P.M., Staib, L.M. and Sealy, S.G. (1997) Does nest defence deter or
- facilitate cowbird parasitism? A test of the nesting-cue hypothesis. Ethology 103:
 56–71.
- 807 <u>Grim, T. (2006a) The evolution of nestling discrimination by hosts of parasitic birds:</u>
 808 <u>why is rejection so rare? Evolutionary Ecology Research 8: 785–802.</u>
- Grim, T. (2006b) Cuckoo growth performance in parasitized and unused hosts: not
 only host size matters. Behavioral Ecology and Sociobiology 60: 716–723.
- 811 Grim, T. (2007) Experimental evidence for chick discrimination without recognition
- 812 in a brood parasite host. Proceedings of the Royal Society of London –BB:
- 813 <u>Biological Sciences Proc R Soc Lond B 2007, 274: 373–381.</u>

814	Grim, T. (2006) The evolution of nestling discrimination by hosts of parasitic birds:
815	why is rejection so rare? Evolutionary Ecology Research 8: 785-802.
816	Grim, T., Rutila, J., Cassey, P., and Hauber, M.E. (2009) Experimentally constrained
817	virulence is costly for Common <u>-Cuckoo cuckoo</u> chicks. Ethology 115,
818	14_22.
819	Grim, T., Samaš, P., Moskát, C., Kleven, O., Honza, M., Moksnes, A., Røskaft, E. and
820	Stokke, B.G. (2011) Constraints on host choice: why do parasitic birds rarely
821	exploit some common potential hosts? Journal of Animal Ecology 80: 508–518.
822	Grim, T., Samaš, P., Procházka, P. and Rutila, J. (2014) Are tits really unsuitable hosts
823	for the Common common Cuckoocuckoo? Ornis Fennica 91: 1–12.
824	Honza, M. and Moskát, C. (2008) Egg rejection behaviour in the great reed warbler
825	(Acrocephalus arundinaceus): the effect of egg type. Journal of Ethology 26:
826	<u>389—395.</u>
827	Honza, M., Šicha, V., Procházka, P. and Ležalová, R. (2006) Host nest defense against
828	a color-dimorphic brood parasite: great reed warblers (Acrocephalus
829	arundinaceus) versus common cuckoos (Cuculus canorus). Journal of
830	Ornithology 147: 629–637.
831	Jelínek, V., Procházka, P., Požgayová, M. and Honza, M. (2014) Common Cuckoos
832	cuckoos Cuculus canorus change their nest-searching strategy according to the
833	number of available host nests. Ibis 156: 189–197.

834	Kim, C. H. (1996) Behavioral characteristics between the parasite and host: crow tits
835	Paradoxonis webbiana and common cuckoo Cuculus canorus. Korean Journal
836	Ornithology 3, 831–839.

- Li, D., Sun, X., Lloyd, H., Que, P., Liu, Y., Wan, D. and Zhang, Z. (2015a) Reed 837 Parrotbill parrotbill nest predation by tidal mudflat crabs: Evidence for an 838 ecological trap? Ecosphere 6: art20. 839
- Li, D., Wei, H., Sun, X. and Zhang, Z. (2015b) Nest-site selection of Reed-reed 840 Parrotbills parrotbills in the patchy reed habitats at post-harvest. Acta Ecologica 841 842 Sinica 35: 5009–5017.
- Liang W., Møller A.-P., Stokke B.-G., Yang C., Kovařík P., Wang H., Yao C.-T., Ding 843
- P., Lu X., Moksnes A., Røskaft E. & Grim T. 2016: Geographic variation in egg 844 845 ejection rate by great tits across 2 continents. Behavioral Ecology (doi: 10.1093/beheco/arw061). 846
- Lin, J., Li, Y., Zhang, E. and Wu X. S. (2008) Reed parrotbill. China Nnature 2: 847 22-25. 848
- Ma, W., Liu, N., Ding, W., Wang, L. and Bao, X. (2012) Brood parasitism on Lanius 849 isabellinus by Cuculus canorus. Sichuan Journal of Zoology 31: 74-76. 850
- Medina, I. and Langmore, N. E. (2016) Batten down the thatches: front-line defences 851 in an apparently defenceless cuckoo host. Animal Behaviour 112:, 195-201. 852
- Mermoz, M.-E. and Fernández, G.-J. (1999) Low frequency of shiny cowbird 853 parasitism on scarlet-headed blackbirds: anti-parasite adaptations or nonspecific 854 host life-history traits? Journal of Avian Biology 30: 15-22.

856	Møller, A.P., Antonov, A., Stokke, B.G., Fossøy, F., Moksnes, A., Røskaft, E. and
857	Takasu, F. (2011) Isolation by time and habitat and coexistence of distinct host
858	races of the common cuckoo. Journal of Evolutionary Biology 24: 676-684.
859	Moksnes, A., and Røskaft, E. (1992)- Responses of some rare cuckoo hosts to mimetic
860	model cuckoo eggs and to foreign conspecific eggs. Ornis Scandinavica 23:
861	17–23.

- Moksnes, A. and Røskaft, E. (1995) Egg-morphs and host preference in the common
 cuckoo (*Cuculus canorus*): an analysis of cuckoo and host eggs from European
 museum collections. Journal of Zoology 236: 625–648.
- Moksnes, A., Røskaft, E. and Braa, A.T. (1991a) Rejection behavior by Common
 <u>common Cuckoo cuckoo</u> hosts towards artificial brood parasite eggs. Auk 108:
 348–354.
- Moksnes, A., Røskaft, E., Braa, A.T., Korsnes, L., Lampe, H.M. and Pedersen, H.C.
- 869 (1991b) Behavioural responses of potential hosts towards artificial cuckoo eggs
 870 and dummies. Behaviour 116: 64–89.
- Moksnes, A., Røskaft, E., Hagen, L., Honza, M., Mørk, C. and Olsen, P. (2000)
 Common cuckoo *Cuculus canorus* and host behaviour at reed warbler *Acrocephalus scirpaceus* nests. Ibis 142: 247–258.
- Moskát, C. and Honza, M. (2000) Effect of nest and nest site characteristics on the
 risk of cuckoo *Cuculus canorus* parasitism in the great reed warbler *Acrocephalus arundinaceus*. Ecography 23: 335–341.

877	Moskát, C. ar	nd Honza	a, M. (2002)	Eu	rop	ean cucko	oo Cuculus c	anorus	parasi	tism and
878	host's re	ejection	behaviour	in	a	heavily	parasitized	great	reed	warbler
879	Acrocept	halus aru	<i>ndinaceus</i> p	opu	lati	on. Ibis 14	44: 614–622.			

- 880 Ortega, C. P. and Cruz, A. (1991) A comparative study of cowbird parasitism in
- 881 yellow-headed blackbirds and red-winged blackbirds. The Auk 108:, 16–24.
- Patten, M., Reinking, D. and Wolfe, D. (2011) Hierarchical cues in brood parasite nest
 selection. Journal of Ornithology 152: 521–532.
- Payne, R.B., Payne, L.L., Woods, J.L. and Sorenson, M.D. (2000) Imprinting and the
 origin of parasite-host species associations in brood-parasitic indigobirds, *Vidua chalybeata*. Animal Behaviour 59: 69–81.
- Peer, B. D. and Bollinger, E. K. (1997) Explanations for the Hinfrequent cowbird
 parasitism on common Grackles. The Condor 99:, 151–161.
- Peer, B. D. and Sealy, S. G. (2004) Correlates of egg rejection in hosts of the
 brown-headed cowbird. The Condor 106:, 580–599.
- Røskaft, E., Moksnes, A., Stokke, B.G., Bicík, V. and Moskát, C. (2002) Aggression to
 dummy cuckoos by potential European cuckoo hosts. Behaviour 139: 613–628.
- 893 Rothstein S. I, Robinson S. K, eds. (1998) Parasitic birds and their hosts. Oxford,:
- 894 Oxford University Press. Rothstein, S.–I. (2001) Relic behaviours, coevolution
- and the retention versus loss of host defences after episodes of avian brood
- 896 parasitism. Animal Behaviour 61;: 95–107.

897	Samas P., Hauber M. E., Cassey P. and Grim T. (2014) Host responses to interspecific
898	brood parasitism: a by-product of adaptations to conspecific parasitism?
899	Frontiers in Zoology 11: <u>297–300</u> 34.
900	Samaš P., Grim T., Hauber ME., Cassey P., Weidinger K. and Evans KL. (2013)
901	Ecological predictors of reduced avian reproductive investment in the southern
902	hemisphere. Ecography 36: 809–818.
903	
904	Sealy S.G., Neudorf D.I., Hobson K.A. and Gill S.A. (1998) Nest defense by potential
905	hosts of the Brownbrown-headed Cowbirdcowbird. In: Rothstein, S.I. and
906	Robinson, S.K. (eds) Parasitic birds and their hosts: studies in coevolution.
907	Oxford University Press, New York, pp. pp-194–211.
908	Skjelseth, S., Moksnes, A., Røskaft, E., Lisle Gibbs, H., Taborsky, M., Taborsky, B.,
909	Honza, M. and Kleven, O. (2004) Parentage and host preference in the common
910	cuckoo Cuculus canorus. Journal of Avian Biology 35: 21–24.
911	Soler, J.J., Møller, A.P. and Soler, M. (1999) A comparative study of host selection in
912	the European cuckoo Cuculus canorus. Oecologia 118: 265–276.
913	Soler, J., Vivaldi, M. and Møller, A. (2009) Geographic distribution of suitable hosts
914	explains the evolution of specialized gentes in the European cuckoo Cuculus
915	canorus. BMC Evolutionary Biology 9: 88.
916	Starck, J.M., Ricklefs, R.E. (1998) Avian growth and development: Evolution within
917	the altricial-precocial spectrum. Oxford University Press, New York.

918	Stokke, B.G., Hafstad, I., Rudolfsen, G., Bargain, B., Beier, J., Bigas Campàs, D.,
919	Dyrcz, A., Honza, M., Leisler, B., Pap, P.L., Patapavičius, R., Procházka, P.,
920	Schulze-Hagen, K., Thomas, R., Moksnes, A., Pape Møller, A., Røskaft, E. and
921	Soler, M. (2007) Host density predicts presence of cuckoo parasitism in reed
922	warblers. Oikos 116: 913–922.
923	Stokke, BG., Røskaft, E., Moksnes, A., Møller, AP., Antonov, A., Fossøy, F., Liang,
924	W., López-Iborra, G., Moskát, C., Shykoff, JA., Soler, M., Vikan, JR., Yang, C.
925	and Takasu, F. (2016) Disappearance of eggs from nonparasitized nests of brood
926	parasite hosts: the evolutionary equilibrium hypothesis revisited. Biological
927	Journal of the Linnean Society 118-: 215-225.
928	Teuschl, Y., Taborsky, B. and Taborsky, M. (1998) How do cuckoos find their hosts?
929	The role of habitat imprinting. Animal Behaviour 56: 1425–1433.
930	Trnka, A. and Grim, T. (2013) Color plumage polymorphism and predator mimicry in
931	brood parasites. Frontiers in Zoology 10: <u>597–600</u> 25.
932	Trnka, A., Prokop, P. and Grim, T. (2012) Uncovering dangerous cheats: how do avian
933	hosts recognize adult brood parasites? PLoS ONE 7: e37445.
934	Vogl, W., Taborsky, M., Taborsky, B., Teuschl, Y. and Honza, M. (2002) Cuckoo
935	females preferentially use specific habitats when searching for host nests. Animal
936	Behaviour 64: 843–850.
937	Xiong, LH. and Lu, JJ. (2013) Exploitation of reed beds by specialist passerines:
938	reed parrotbill and Oriental reed warbler. Wilson Journal of Ornithology 125:
939	<u>165—173.</u>

940	Yang, C., Liang, W., Antonov, A., Cai, Y., Stokke, B.G., Fossøy, F., Moksnes, A. and
941	Røskaft, E. (2012) Diversity of parasitic cuckoos and their hosts in China.
942	Chinese Birds 3: 9–32.
943	Yang, C., Stokke, B.G., Antonov, A., Cai, Y., Shi, S., Moksnes, A., Røskaft, E., Møller,
944	A.P., Liang, W. and Grim, T. (2013) Host selection in parasitic birds: are
945	open-cup nesting insectivorous passerines always suitable cuckoo hosts? Journal
946	of Avian Biology 44 <u>:</u> , 216 <u>–</u> 220.
947	Yang, C., Li, D., Wang, L., Liang, G., Zhang, Z and Liang, W. (2014) Geographic
948	variation in parasitism rates of two sympatric cuckoo hosts in China. Zoological

949 Research 35: 67–71.

952 Figure legends

Figure 1. Nests of reed parrotbill (a, c) and Oriental reed warbler (b, d).

954

Figure 2. Host responses to dummies <u>quantified</u> on ordinal (a) and continuous scales(b).

957

Figure 3. Background color and spots of eggs of the common cuckoo (n = 19) and its two hosts (warblers: n = 55; parrotbills: n = 14): (a) reflectance spectra (300–700 nm; 0.597-nm intervals) of background color and spots, (b) the difference between light spots (LS), corresponding to the square frame in red), and dark spots (DS), corresponding to the square frame in yellow.

963

Figure 4. Host responses to egg experiments: acceptance (white), desertion (grey),
ejection (black). Sample sizes given within bars.

966

Figure 5. The growth (body mass, g) of common cuckoo chicks raised by two hosts: (a) the filled circles and black solid <u>line</u> represent <u>cuckoo chicks in</u> the original <u>(i.e.,</u> <u>naturally parasitized)</u> warbler nests (n = 15); the hollow circles and grey solid <u>line</u> represent <u>cuckoo chicks</u> the cross-forester<u>ed between</u> warbler nests (n = 5); (b) the triangle and the dotted <u>line</u> represent <u>cuckoo chicks</u> the cross-forester<u>ed from warbler</u> <u>to</u> parrotbill nests (n = 6).

Fig. 1

1000	
1001	
1002	Table legends
1003	
1004	Table 1. Cuckoo parasitism rates on Oriental reed warblers and reed parrotbills in the
1005	Yellow River delta, Eastern China.
1006	
1007	Table 21. Effects of nest sites and nest characteristics on cuckoo parasitism on
1008	Oriental reed warblers and reed parrotbills in the Yellow River delta, Eastern China.
1009	
1010	Table 2. Cuckoo chicks survival in naturally and experimentally parasitized nests of
1011	Oriental reed warblers and reed parrotbills.
1012	
1013	Table 3. Basic growth parameters for cuckoo chicks raised by Oriental reed warblers
1014	and reed parrotbills.
1015	Table 3. Fate of cuckoo chicks cross fostered in the nests of Oriental reed warblers
1016	and reed parrotbills in the Yellow River delta, Eastern China.
1017	
1018	

Table 1. Effects of nest sites and nest characteristics on cuckoo parasitism on Oriental reed warblers and reed parrotbills in the Yellow River

Nest sites and nest characteristics	Parasitized warblers	Non-parasitized warblers	Reed parrotbills	Parasitized warblers vs non-parasitized warblers	Parasitized warblers vs parrotbills	Non-parasitized warblers vs parrotbills
Distance to perch (m)	59.31 ± 11.42 (83)	106.39 ± 9.06 (240)	88.58 ± 11.31 (173)	t = 2.80, p = 0.005	t = -1.61, p = 0.108	t =1.10, <i>p</i> = 0.247
Distance to reed edge (m)	5.52 ± 1.23 (39)	6.69 ± 0.75 (118)	$3.36 \pm 0.23 \; (143)$	z = -0.97, p = 0.33	z = -0.56, p = 0.563	z = -2.40, p = 0.017
Nest visibility by observer	3.51 ± 0.19 (40)	3.32 ± 0.11 (162)	$2.92 \pm 0.12 \; (143)$	z = -0.91, p = 0.36	z = -2.44, p = 0.015	z = -2.45, p = 0.014
Height of reed above the nests (m)	1.44 ± 0.04 (39)	1.55 ± 0.09 (120)	$0.65 \pm 0.03 \; (142)$	z = -0.39, p = 0.70	z = -7.26, <i>p</i> < 0.0001	z = -8.25, p < 0.0001
Number of reed stems	27.40 ± 1.93 (40)	$26.17 \pm 0.99 \ (122)$	$15.56 \pm 0.85 \ (143)$	t = -0.60, p = 0.55	t =6.23, <i>p</i> < 0.0001	t =8.18, <i>p</i> < 0.0001
Mean height of reed (m)	2.45 ± 0.10 (40)	2.45 ± 0.06 (122)	$1.89 \pm 0.03 \; (143)$	z = -0.90, p = 0.37	z = -7.70, p < 0.0001	z = -10.35, p < 0.0001
Percentage of dry reed stem	10.37 ± 3.49 (40)	10.24 ± 1.71 (122)	$33.07 \pm 1.34 \ (143)$	z = -0.01, p = 1.00	z = -6.55, <i>p</i> < 0.0001	z = -9.07, <i>p</i> < 0.0001
Height of nest above water or	0.98 ± 0.04 (39)	0.97 ± 0.03 (120)	0.63 ± 0.01 (142)	t = -0.30, p = 0.76	t = 10.08, p < 0.0001	t = 11.61, p < 0.0001
ground (m)					, _P	, <u>r</u>
Volume of nest (cm ³)	$876.53 \pm 50.48 \ (37)$	893.52 ± 27.95 (116)	488.47 ± 20.93 (48)	t = 0.30, p = 0.77	t = 7.72, p < 0.0001	t =8.89, <i>p</i> < 0.0001

1022 delta, Eastern China. Sample sizes (nest number) given in parentheses.

Table 2. Cuckoo chicks survival in naturally and experimentally parasitized nests of Oriental reed warblers and reed parrotbills.

	Fate of cuckoo chicks (%)					
Treatment	Successfully fledged	Predated	Nest failure due to bad weather			
Warblers – natural parasitism (n = 18)	44	33	22			
Warblers – cross-fostered $(n = 8)$	38	63	0			
Parrotbills – cross-fostered ($n = 6$)	33	50	17			

Measures	Growth parameters	NW (n = 6)	CW (n = 2)	CP (n = 4)	Statistic values
Body mass	Α	56.28 ± 3.42	61.51 ± 2.00	59.82 ± 5.39	$F_{2,11}\ =0.35, p=0.72$
	Κ	0.37 ± 0.03	0.33 ± 0.02	0.39 ± 0.05	$F_{2,11} = 0.36, p = 0.71$
	ti	7.89 ± 0.69	8.35 ± 0.16	7.79 ± 0.80	$F_{2,11}\ =0.07, p=0.93$
Tarsus length	Α	25.52 ± 0.62	26.64 ± 0.22	$24.53 \pm 1.36*$	$F_{2,10} = 0.95, p = 0.43$
	Κ	0.30 ± 0.02	0.26 ± 0.01	$0.30\pm0.02*$	$F_{2,10} = 0.48, p = 0.64$
	ti	4.11 ± 0.78	3.75 ± 0.23	$3.53\pm0.55*$	$F_{2,10} = 0.15, p = 0.87$

1031 **Table 3.** Basic growth parameters for cuckoo chicks raised by Oriental reed warblers and reed parrotbills.

1030

1033 Notes: The growth parameters were estimated using nonlinear regression to fit the body measures (mass and tarsus length) to logistic function:

1034 $W(t) = A/(1 + e^{(-K(t-ti))})$

1035 where W(t) is body measure at age t, A is the asymptotic body measures, K is a measure of growth rate, and t_i is the inflection point on the growth

1036 curve (Starck and Ricklefs 1998). The logistic growth curves were fitted for each individual nestling that survived for at least 14 days post-hatch

1037 (hatching day = 0). Differences tested with ANOVAs (Kruskal-Wallis tests led to same conclusions). Values are means \pm SE. NW natural

1038 parasitized warblers, CW cross-foster warblers, CP cross-foster parrotbills. * the sample size is 3.

Reply to comments (EVEC-D-15-00179)

Dear Prof. Endler,

Thank you very much for kindly giving us the chance to revise our manuscript (EVEC-D-15-00179). We have read the comments carefully and have revised the paper as suggested by you, the Associate Editor, Sara Helms Cahan, and the two reviewers. This has resulted in a more balanced and focused paper, and we hope that you agree with this assessment. Please find explained with blue bold font below how we have addressed these points.

Thank you very much in advance for your editorial assistance.

Yours sincerely, on behalf of the authors,

Wei Liang

Dear Dr. Liang,

I have received the reviews of your manuscript, "Explaining variation in brood parasitism rates between potential host species with similar habitat requirements", submitted to Evolutionary Ecology. The comments are found after this letter, below.

As you will see, although the body of the paper was good, the discussion was seriously flawed, even self-contradictory in places. You need to totally rethink the organisation and presentation/interpretation of the results to make them consistent with the data and with the entire data set.

Please fix these problems, and I expect to be able to accept the manuscript when you have corrected them. Please submit a cover letter with the revision saying what you did; and if you did not follow suggestions, say why.

If you need more time than automatically assigned by the Editorial Manager, please let me know. I would rather wait longer for a better paper.

Please submit your revised manuscript online by using the Editorial Manager system which can be accessed at: <u>http://evec.edmgr.com/</u>

Revised manuscripts that are accepted for publication will be checked by our copyeditors for spelling and formal style; however, this may not be sufficient if English is not your native language, and substantial editing might be required. In that case, you may want to have your manuscript edited by a native speaker prior to submitting the revised version.

The revised and accepted manuscript will become the final version of record, and it is

the author's responsibility to ensure that this version is free of any kinds of errors. Do not assume that we do detailed copy-editing. Assume that what you send in will be published essentially as is.

Please make sure to submit your editable source files (i. e. Word, TeX); we can NOT use PDF files.

I am looking forward to receiving your revised manuscript before 29 May 2016.

With kind regards,

John A Endler Editor in Chief Evolutionary Ecology

COMMENTS FOR THE AUTHOR:

Associate Editor's comments: this study is a comprehensive comparison of two sympatric potential avian host species whose realized parasitism rates differ significantly. The number of factors analyzed was impressive, and overall I found the manuscript clear and easy to read. The big exception to this, however, was the discussion, which flipped back and forth among different preferred hypotheses and at times appeared to contradict claims made elsewhere in the manuscript (e.g., the role of egg rejection). A revision would require a re-evaluation of the structure and content of the discussion to make clear what the results do and do not show, and how different mechanisms interact with one another over the course of host specialization (ie did breeding asynchrony/low density lead to evolutionary shifts toward matching the eggs of the more available warbler, further reducing parrotbill acceptance, or is warbler egg matching the ancestral condition, such that egg rejection has been consistently the predominant factor maintaining differential host use?). It may be the case that the comparative data presented here cannot really tease this apart, but if so, this should be made clear.

Both reviewers make some useful suggestions regarding analysis of existing data and literature on other systems that should be utilized, which I would encourage the authors to consider.

Sincerely, Sara Helms Cahan

Reply:

Thank you very much for your helpful comments. We have made major changes to the structure and content of the discussion following your suggestions. Please see the revised Discussion (Lines 465-699).

Reviewer #1: Here the authors present an exhaustive set of experiments and correlative observations to determine the cause(s) for cuckoo host choice between two sympatric host species. The manuscript is well-written and presents one of the most comprehensive studies of host selection to date. This study will surely be influential to future research; not only setting the example of what needs to be evaluated to attempt to answer this complicated question, but also providing inference on the evolution of host selectivity.

Reply:

Thank you very much for your kind words.

My main concern is that the discussion seemed to partially disregard the importance of egg rejection by parrotbills in host choice decisions by cuckoos. Granted, the abstract and conclusion state that cuckoo eggs were mostly accepted by warblers, but rejected by parrotbills. Yet the discussion in its current form dispels many alternative hypotheses (habitat imprinting, host seasonality, host aggression, etc.) and then appears to point mostly to the density of hosts as an influential factor for host selectivity. While the density hypothesis is intriguing, I find it unconvincing given the experimental design. To explore this idea as well as the other hypotheses tested, I would expect a kernel estimate of density (rather than nests/total area) and a temporal aspect where the density was measured during the cuckoo's breeding season.

Reply:

As for alternative hypotheses: we agree with you and we completely rephrased the whole Discussion. We now stress that no single parameter fully explains host selection in our study system; see, e.g., that "not only one but rather several mechanisms may additively and interactively render parrotbills less suitable to cuckoos than warblers".

As for density estimates: we acknowledge there are various ways how to estimate breeding density. We followed the straightforward method used by, e.g., Samaš et al. 2013, which is reliable because it directly takes into account all simultaneously active nests that are available to cuckoos in the peak part of the season. Thus, "temporal aspect" noted by you has been taken into account. We added this explanation to the revised ms.

This idea could also be compared amongst warblers; does the variation in warbler density predict cuckoo parasitism? Furthermore, we must assume that an equal proportion of nests were found between each host species, therefore a point-count estimate of density would also be helpful to test this hypothesis. Looking at Area A (Fig. S1), it appears that the densities of each species are nearly equal, yet parasitism rates are still very different. While the density hypothesis is indeed possible, I suggest that a more nuanced view should be presented in the discussion, with more focus on the relationship of reproductive success/fitness influencing host choice decisions. This leads to interesting implications--Do individual cuckoos learn which hosts are more

likely to accept through trial-and-error, or do young cuckoos imprint on their hosts that ultimately leads to differential parasitism through population differences?

Reply:

The question about "trial-and-error" and "imprinting" is fascinating but far beyond the scope of our study. In fact, despite hundreds of studies published on the common cuckoos in recent years, the mechanism of host choice (at the level you refer to) remains enigmatic.

Again, I am amazed by this study and found it a pleasure to read! I hope my comments have helped in some way.

Reply:

Thank very much for your positive words and very helpful comments. We have revised the discussion with more focus on the relationship of reproductive success/fitness influencing host choice decisions, and also put more emphasis on alternative hypotheses explaining host selection by cuckoos as you suggested. Please see Lines 465-699.

Minor comments:

Line 328: warblers that were parasitized were more like to place their nests...

Reply:

Thanks for this suggestion. After having re-read the whole sentence, we found it to be a bit awkwardly presented on our behalf leading to confusion. We have therefore changed wording. Regarding distance to reed edge: From table 1 it is apparent that warblers in general tended to breed further away from reed edge, but only significantly so when comparing non-parasitized warblers versus parrotbills. Please see Lines 350-354.

Reviewer #2: This manuscript examines host choice by cuckoos. The authors examine life history traits of two sympatric species, the Reed Parrotbill and Oriental Reed Warbler, in an attempt to explain the differential parasitism frequencies. While the authors suggest such comprehensive studies have not been done on cuckoo hosts, there are at least two similar studies that have been done on cowbird hosts (Peer and Bollinger 1997, Condor 99:151-161; Ortega and Cruz Auk 108:16-24). The authors found that density, high rejection frequency, and non-overlapping breeding seasons all may contribute to the lower parasitism on Parrotbills. I have relatively few comments listed below.

Reply: Thank you very much for your helpful comments. We have added citation to the two studies following your suggestions (please see Lines 65-72).

Specific Comments:

103: It's unclear what you mean by "full reality". Please re-phrase.

Reply:

Thank you. We have re-phrased this sentence. Please see Lines 105-109.

156: You should justify using this system based on the methodological suggestions of Sealy et al. (1998; Pp.194-211 in Parasitic birds and their hosts: studies in coevolution [S.I. Rothstein and S. K. Robinson]).

Reply:

Thanks. Revised. And we moved insertion above because Sealy et al. (1998) used different scales, not ordinal ones. Please see Line 150 and Lines 163-170, 174-179.

165-172: Because you are interested in nest features, it would have also been interesting to collect data on reflectance of the nest linings of the two species.

Reply: Thanks. We agree in that this would be very interesting indeed. Unfortunately, we do not at present possess such data, but this should surely be the scope for future study.

401-402: Please clarify if it is the birds' physical inability to reject the eggs or their inability to recognize them that resulted in acceptance.

Reply:

Thank you. We did not video-record responses to introduced eggs, but the data strongly suggest that parrotbills were able to recognize both cuckoo and model eggs. Hence, these two types were rejected at approx. the same rates, but with highly different outcome as explained in the text. Oriental reed warblers and reed parrotbills have distinctly different bill morphology (Xiong & Lu 2013, added to References). Due to their short and blunt bills, parrotbills are most probably not able to grasp eject eggs and therefore have to rely on puncture ejection (or desertion). This seemed to work fine on real cuckoo eggs, but they faced problems when trying to get rid of the thicker-shelled model eggs. Warblers, on the other hand, should be able to grasp eject eggs (see e.g. Antonov et al. 2006 for video recordings of ejection in great reed warblers and three smaller Acrocephalus warblers, added to references), or puncture and remove even hard-shelled model eggs (see Honza & Moskat 2008, added to references). These results taken together strongly suggest that the "forced acceptance" of model eggs by parrotbills were simply due to their inability to remove such eggs (even though they were pecked, i.e. we observed pecking marks on the surface of the eggs). We have revised the text in order to explain this. Please see Lines 424-426 and 436-446.

443: This is very similar to the situation with Brown-headed Cowbirds and Common Grackles (mentioned above). Grackles breed very early, and it may contribute to the lack of parasitism on them, but isn't the sole or primary reason for the lack of parasitism.

Reply:

Thank you very much for your interesting information. We have added a citation here. Please see Lines 517-518.