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Abstract: Free-living species often receive greater conservation attention than the parasites they
support, with parasite conservation often being hindered by a lack of parasite biodiversity knowl-
edge. This study aimed to determine the current state of knowledge regarding parasites of the
Southern Hemisphere freshwater fish family Galaxiidae, in order to identify knowledge gaps to focus
future research attention. Specifically, we assessed how galaxiid–parasite knowledge differs among
geographic regions in relation to research effort (i.e., number of studies or fish individuals examined,
extent of tissue examination, taxonomic resolution), in addition to ecological traits known to influ-
ence parasite richness. To date, ~50% of galaxiid species have been examined for parasites, though
the majority of studies have focused on single parasite taxa rather than assessing the full diversity
of macro- and microparasites. The highest number of parasites were observed from Argentinean
galaxiids, and studies in all geographic regions were biased towards the highly abundant and most
widely distributed galaxiid species, Galaxias maculatus. Parasite diversity generally increased with
the number of studies and individual fish examined, however studies which examined parasites
from all body tissues could overcome the effects of low study effort. In order to promote further
understanding of galaxiid–parasite biodiversity, we provide a series of recommendations, including
the use of molecular techniques to verify parasite identity, and highlight the future roles both fish
biologists and parasitologists can play.

Keywords: Galaxiidae; Aplochiton; Brachygalaxias; Galaxias; Galaxiella; Lovettia; Neochanna; Paragalax-
ias; infection

1. Introduction

Parasites represent an often neglected, yet numerically and functionally important,
component of global biodiversity [1]. Given the predominantly negative attention parasites
receive, it is unsurprising that free-living species (hosts) have received greater biodiver-
sity conservation attention as opposed to the affiliated parasites they support (e.g., [2]).
However, as parasites are dependent on their hosts for survival, host population declines
and extinctions likely result in parasite co-extinctions, especially for specialist parasites
adapted to single host species [3–5]. Parasite conservation efforts may be further hindered
by considerable disparities in our knowledge of parasite diversity amongst geographic
regions, ecosystem types, host, and parasite groups [6–8].

Understanding which factors drive observed differences in parasite diversity has
long been of interest in parasitology. At the geographic region scale, parasite diversity is
strongly linked to the number of potential host species, which in turn is associated to a
region’s size (e.g., [9,10]), with larger geographical regions supporting a greater number
of both host and parasite species. At the host species scale, parasite diversity is often
linked to a series of host-specific ecological traits (e.g., body size, geographical range, diet),
phylogenetic history (e.g., evolutionary age or distinctness), and environmental factors
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(e.g., latitude [11,12]). In particular, host body size, geographical range size, and population
density have been shown to be consistent drivers of parasite species richness across a wide
range of host groups [13], with a greater variety of parasites likely to be encountered for
those host species which occupy large geographical ranges and/or are large-bodied [14,15].

Research effort also plays a major role in the number of parasites documented in any
host species [16], with fish parasites, for instance, often displaying aggregated distributions,
both across the geographic range of their hosts and amongst individuals from a single
locality [17]. There may also be mismatches between regions of high parasitology research
effort and those with high freshwater fish diversity [18]. Furthermore, the taxonomic
expertise of parasitology researchers may not encompass all macro- and microparasite
groups encountered [19], with such problems even greater for non-parasitologists who may
mistake parasites as ingested food items (Paterson pers. obs.) or morphological features of
the host [20,21]. The use of molecular sequencing, which has become the standard practice
for recently described parasite taxa [22,23], may partially assist in addressing limitations in
morphological taxonomic expertise. Molecular sequencing has also revealed the presence
of multiple genetically distinct cryptic parasite species from previously morphologically
described single species [24].

The current study forms part of a special issue on Galaxiidae fish, a family of diadro-
mous and landlocked freshwater fishes of Gondwanan origin that occur only in the cool
temperate waters of the Southern Hemisphere (Oceania, South America, Africa [25,26]),
and focuses on the diversity of parasites from the seven known galaxiid genera (Aplochi-
ton, Brachygalaxias, Galaxias [Ga], Galaxiella [Gx], Lovettia, Neochanna, Paragalaxias). With
the notable exception of Galaxias maculatus, and to a lesser extent Aplochiton zebra, Galax-
ias platei (Argentina, Chile and Islas Malvinas/Falkland Islands) and Galaxias brevipinnis
(Australia and New Zealand), the majority of galaxiid species have restricted geographic
distributions (e.g., Galaxias globiceps—two Chilean localities [27]). Whilst natural speciation
and geomorphological processes have shaped galaxiid distribution patterns [28,29], the
impacts of anthropogenic stressors (e.g., habitat fragmentation, interactions with exotic
fish [30–32]) have reduced the geographic extent of many galaxiid species, which are now
considered vulnerable or critically endangered [2]. However, previous studies (e.g., [33,34])
suggest that there are many galaxiid species and geographic regions for which a basic
understanding of host–parasite interactions is lacking.

The primary objective of this study was to determine the current state of knowledge
of parasite diversity in fishes of the family Galaxiidae and, as a consequence, identify
knowledge gaps to focus future research attention. Specifically, we aimed to identify which
galaxiid species were most understudied at the geographical region level. To do this, we
assessed the study effort in terms of number of studies, locations, and fish examined, the
extent of tissue examination, and taxonomic resolution of the described parasite assem-
blages. Furthermore, we evaluated whether ecological traits known to influence parasite
richness were important drivers of observed differences in parasite assemblages among
galaxiid species.

2. Materials and Methods
2.1. Data Collection

Studies investigating parasite taxa in fishes of the family Galaxiidae were obtained
from literature databases (Web of Science, Google Scholar), the Google search engine, and
fish-parasite species checklists (e.g., [34]) for 53 galaxiid species recognized in FishBase (pre-
March 2020, [35]). The following search terms in English and Spanish were used to obtain
studies: (“Aplochiton” OR “Brachygalaxias” OR “Galaxias” OR “Galaxiella” OR “Lovettia”
OR “Neochanna” OR “Paragalaxias” OR “galaxiid”) AND (“parasit*” OR “infect*” OR
“disease*”), in addition to individual searches for each galaxiid species in each geographic
region. To evaluate the full extent of study efforts related to galaxiid parasite research, our
database also included records obtained from technical reports (e.g., [36]) and unpublished
theses (e.g., [37–39]). All possible efforts were made to obtain original publications through
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direct contact with authors and inter-library requests, however parasite records were
included from secondary data sources in instances where original publications were not
available (e.g., [40,41]).

Our database includes both macro- (i.e., acanthocephalans, cestodes, copepods, mol-
luscs, monogeneans, nematodes, trematodes, leeches) and microparasite species (e.g.,
myxozoans, ciliates). However, we acknowledge that there is likely a research attention
bias towards macroparasite species [8,42], in addition to standard preservation techniques
(e.g., freezing; formalin or ethanol fixing) being more suited for macroparasites.

We considered Argentina (AR), Australia (AU; including Lord Howe Island), Chile
(CL), Islas Malvinas/Falkland Islands (M/F), New Caledonia (NC), New Zealand (NZ;
including Auckland, Campbell, Chatham, and Stewart Island/s), and South Africa (SA) as
separate geographic regions. From each study, we obtained the study location (waterbody
name) and the number of individual fish sampled to quantify the study effort for each
galaxiid species. Examination effort (full body, focal tissues, single species, or incidental)
for each study was classified based on whether parasite assemblages were assessed from
all body tissues, examination of focal tissues (e.g., alimentary tract [43], brain [44]), a single
target parasite species (e.g., Acanthocephalus galaxii [45], Philureter trigoniopsis [46]), or were
incidentally observed from a non-parasitology study (e.g., diet analysis [47]). We also
determined the level of taxonomic resolution for each reported parasite taxa (species to
phylum), in addition to whether the taxa were verified by molecular sequencing in addition
to morphological identification.

To reflect changes in both valid taxonomy and taxonomic description level for each
recorded parasite, the following parasite taxa were standardized between studies: Coitocae-
cum anaspidis (e.g., [48]) to Coitocaecum parvum [49]; Stephanostomum sp. [50] to Acanthos-
tomoides apophalliformis [51,52]; Diphyllobothium (e.g., [53,54]) to Dibothriocephalus [55,56],
Nippotaenia sp. [57,58] to Ailinella mirabilis (ex Ga. maculatus [59]) and Galaxitaenia toloi
(ex Ga. platei [60]), Echinocasmus sp. [57] to Stephanoprora uruguayense [61], and Diplosto-
mum minutum [62] to Diplostomum sp. [57]. We also standardized “nematode sp.” and
“nematodes” to unidentified nematode (e.g., [63,64]); “adult cestodes” and “cestodes” to
unidentified cestode (e.g., [65,66]); “encysted larval trematodes” to unidentified trematode
(e.g., [67]). Furthermore, “cyst parasites”, “unidentified cysts”, or “species not specified”
were standardized to unidentified parasite (e.g., [68,69]) to account for multiple parasite
families known to encyst in intermediate or paratenic fish hosts. A full checklist of all para-
site taxa described from each galaxiid species is provided in Table S1. In terms of galaxiid
hosts, Galaxias scriba [70] and Galaxias o’connori [71] were standardized to Ga. maculatus and
Ga. olidus, respectively, to reflect current taxonomy. We also recognize that Argentinean
Aplochiton taeniatus populations studied by Ortubay et al. [57] are now considered to be
A. zebra [72]. Records from unknown Galaxias sp. (e.g., [73]) and hybrids (e.g., Galaxias
depressiceps x Galaxias sp. [68]) were excluded from the database.

2.2. Predictors of Parasite Diversity

We obtained information on the dominant traits recognized to influence parasite
diversity in a host species (see [13]). For each fish species, host length (maximum stan-
dard length, mm) was obtained from FishBase [35], whereas the geographical range
size was estimated for each geographic region as the distance (km) between the mini-
mum and maximum reported latitude for each fish species (where 1◦ of latitude equals
111.19 km [26,35,74–78]). Population density was not consistently available across galaxiid
species and was, therefore, not included in this study.

2.3. Statistical Analysis

All statistical analyses were conducted in R version 3.6.1 [79]. Islas Malvinas/Falkland
Islands were excluded from all analyses due to small sample sizes but are included in
figures for illustrative purposes. Continuous variables were centered on the mean and
scaled by two standard deviations prior to analysis [80]. In all instances, parasite taxa
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refer to the lowest taxonomic level reported for each documented parasite. The combined
effects of geographic region, study effort, host length, and geographic range size on the
number of parasite taxa reported in each galaxiid species were tested using a generalized
linear model (glm) fitted with a quasipoisson distribution to account for over-dispersed
count data. Study effort was modelled in two separate analyses as (i) the number of studies
per galaxiid species where parasites were reported or (ii) the number of individual fish
examined for parasites per galaxiid species, with the latter representing a reduced dataset,
since the number of fish examined was not reported in all data sources (e.g., [34,81,82]).
Post hoc pairwise comparisons for interactions between categorical (i.e., geographic region)
and continuous (i.e., study effort, host length, geographic range size) variables were made
by calculating estimated marginal means using emmeans::lsmeans, whereas estimated
marginal means of linear trends were calculated for interactions between two continuous
variables (emmeans::emtrends [83]). Differences in the number of study locations per
galaxiid species between geographic regions were tested using a generalized linear model
fitted with a quasipoisson distribution to account for overdispersion, with significant
differences between geographic regions tested with estimated marginal means. Separate
glms fitted with a binomial distribution were used to test whether (i) the proportion
of parasite taxa described to species level or (ii) the portion of macroparasites out of
the total number of parasite taxa described for each galaxiid species differed amongst
geographic regions.

3. Results

Parasite taxa were reported from half of all 53 galaxiid species (Argentina (3/3),
Australia (12/24), Chile (5/8), Islas Malvinas/Falkland Islands (2/3), and New Zealand
(13/22 species; Table 1)). No parasite records were found for the single galaxiid species
of South Africa (Galaxias zebratus) or New Caledonia (Galaxias neocaledonicus), the four
Australian Paragalaxias species, nor for galaxiid species occurring on Australian or New
Zealand offshore islands. The most widely distributed galaxiid species, Ga. maculatus,
was also the most commonly studied species in terms of each geographic region, the total
number of studies (92/143 studies) and the number of individuals examined (28,931/37,730
individuals; Table 1).

The number of parasite taxa recognized from galaxiid species was influenced by
two-way interactions between the number of studies, geographic region, and latitudinal
range size (all p < 0.02; Table 2). Whilst a greater number of parasite taxa were docu-
mented from Argentinean galaxiids overall (Figure 1a), pairwise comparisons of slope
estimates demonstrated that the number of parasites reported from Argentinean galaxiids
showed the least variation from the least to the most studied galaxiid species (n stud-
ies/n parasite taxa: A. zebra 3/18; Ga. maculatus 48/37) compared to all other geographic
regions (Tables A1 and A2). In contrast, an increasing number of studies had the strongest
influence on the number of parasite taxa reported from Chilean galaxiids, ranging from a
single A. taeniatus study reporting one parasite to 23 parasite taxa recognized from 14 Ga.
maculatus studies. An increasing number of studies had intermediate effects on the number
of parasite taxa reported from Australian and New Zealand galaxiids, which did not differ
from one another. Whilst an interaction between latitudinal range size and geographic
region on the number of parasite taxa reported was also detected (Table 2, Figure 1b), post
hoc comparisons suggest this relationship is weak (Tables A1 and A2). The positive effect
of latitudinal range size on the number of parasite taxa reported was shown to decrease
with increasing study effort (n studies), with latitudinal range size of galaxiids having
little influence on the number of parasite taxa reported when the study effort approached
15 studies per fish host species (Figure 2). Standard length did not influence the number of
parasites reported across all studies.
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Table 1. Summary of parasitology studies from Galaxiidae fishes.

Geographic
Region Galaxiidae Species N Studies N Fish a N Locations

Max. Standard
Length (cm)

Latitudinal Range
Size (km)

N Taxa
(Macro/Micro)

Taxonomic Resolution
N Molecular e

Examination f

Species Genus Family Order Class Phylum Full Body Focal Tissue Single Species Incidental

Argentina Aplochiton zebra 3 254 5 27.8 1581.4 18 (15/3) 11 7 0 0 0 0 0 3 0 0 0
Galaxias maculatus 48 22,073 63 19.0 1742.9 37 (30/6) c 24 10 3 0 0 0 1 9 5 33 1

Galaxias platei 13 239 22 30.9 1737.1 22 (22/0) 8 6 6 1 0 0 0 3 0 10 0

Australia Galaxias auratus 3 59 2 24.0 25.8 4 (4/0) 3 1 0 0 0 0 0 0 1 1 1
Galaxias brevipinnis 1 unknown 1 28.0 1475.8 2 (1/1) 0 1 1 0 0 0 0 0 1 0 0

Galaxias fontanus - - - 13.5 71.0 - - - - - - - - - - - -
Galaxias fuscus 1 unknown 1 12.3 63.3 1 (1/0) 0 0 0 0 1 0 0 0 0 0 1

Galaxias johnstoni 1 unknown 1 14.0 111.2 1 (1/0) 0 0 1 0 0 0 0 0 1 0 0
Galaxias maculatus 12 4517 16 19.0 1792.8 12 (11/1) 7 4 1 0 0 0 1 0 2 10 0

Galaxias niger - - - 10.5 1.11 - - - - - - - - - - - -
Galaxias occidentalis 6 1773 16 19.0 600.4 8 (8/0) 2 4 1 0 1 0 2 1 0 5 0

Galaxias olidus 8 3066 7 15.0 1591.8 9 (7/2) 7 1 0 0 1 0 0 0 0 7 0 d

Galaxias parvus - - - 10.0 31.7 - - - - - - - - - - - -
Galaxias pedderensis - - - 16.0 43.7 - - - - - - - - - - - -

Galaxias rostratus 1 1 2 12.0 861.7 2 (1/0) c 0 0 0 0 1 0 0 0 0 0 1
Galaxias

tanycephalus - - - 14.5 17.8 - - - - - - - - - - - -

Galaxias truttaceus 2 653 2 20.0 1083.0 4 (4/0) 1 0 0 0 3 0 0 1 0 1 0
Galaxiella munda - - - 6.0 389.2 - - - - - - - - - - - -

Galaxiella
nigrostriata b 1 2266 4 5.0 177.9 0 - - - - - - - - - - -

Galaxiella pusilla 1 38 2 4.8 527.7 1 (1/0) 1 0 0 0 0 0 1 0 1 0 0
Galaxiella

toourtkoourt 1 120 4 3.1 245.8 1 (1/0) 1 0 0 0 0 0 1 0 1 0 0

Lovettia sealii 1 12 1 7.2 540.7 1 (1/0) 1 0 0 0 0 0 0 0 0 1 0
Neochanna cleaveri - - - 12.5 719.4 - - - - - - - - - - - -

Paragalaxias
dissimilis - - - 7.5 39.6 - - - - - - - - - - - -

Paragalaxias
eleotroides - - - 5.9 113.4 - - - - - - - - - - - -

Paragalaxias
julianus - - - 10.0 61.2 - - - - - - - - - - - -

Paragalaxias mesotes - - - 8.0 40.5 - - - - - - - - - - - -

Chile Aplochiton marinus - - - unknown <1 - - - - - - - - - - - -
Aplochiton taeniatus 1 3 1 33.4 1738.3 1 (1/0) 1 0 0 0 0 0 0 0 0 1 0

Aplochiton zebra 2 4 3 27.8 1780.9 2 (2/0) 2 0 0 0 0 0 0 0 0 2 0
Brachygalaxias

bullocki 3 60 3 5.5 643.0 9 (4/5) 4 4 1 0 0 0 0 1 0 2 0

Brachygalaxias
gothei - - - unknown <1 - - - - - - - - - - - -

Galaxias globiceps - - - 10.7 137.1 - - - - - - - - - - - -
Galaxias maculatus 14 1346 26 19.0 2496.2 23 (20/3) 11 9 2 1 0 0 0 2 3 9 0

Galaxias platei 4 81 5 30.9 1847.6 5 (5/0) 3 2 0 0 0 0 0 0 0 4 0

Islas Malvinas/ Aplochiton zebra 1 30 1 27.8 68.9 1 (1/0) 0 0 0 0 0 1 0 0 0 0 1
Falkland Islands Galaxias maculatus 1 6 1 19.0 93.4 1 (0/1) 1 0 0 0 0 0 0 0 1 0 0

Galaxias platei - - - unknown unknown - - - - - - - - - - - -

New Caledonia Galaxias
neocaledonicus - - - 16.6 1.8 - - - - - - - - - - - -
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Table 1. Cont.

Geographic
Region Galaxiidae Species N Studies N Fish a N Locations

Max. Standard
Length (cm)

Latitudinal Range
Size (km)

N Taxa
(Macro/Micro)

Taxonomic Resolution
N Molecular e

Examination f

Species Genus Family Order Class Phylum Full Body Focal Tissue Single Species Incidental

New Zealand Galaxias anomalus 4 743 6 6.1 111.7 7 (7/0) 6 1 0 0 0 0 0 1 0 3 0
Galaxias argenteus 2 114 2 34.0 173.4 4 (4/0) 3 0 0 0 1 0 0 0 1 0 1

Galaxias brevipinnis 12 36 10 28.0 1319.9 13 (11/2) 7 4 0 1 1 0 0 0 4 4 0 d

Galaxias cobitinis - - - 7.0 142.3 - - - - - - - - - - - -
Galaxias depressiceps 1 51 4 7.3 129.5 2 (2/0) 2 0 0 0 0 0 0 0 1 0 0

Galaxias divergens 2 unknown 2 6.0 542.4 4 (4/0) 3 1 0 0 0 0 0 0 0 1 0 d

Galaxias eldoni - - - 7.5 47.8 - - - - - - - - - - - -
Galaxias fasciatus 1 unknown 1 21.5 1423.9 1 (1/0) 1 0 0 0 0 0 0 0 0 0 0 d

Galaxias gollumoides 1 7 1 17.2 249.1 2 (2/0) 2 0 0 0 0 0 0 0 1 0 0
Galaxias gracilis - - - 6.2 80.3 - - - - - - - - - - - -

Galaxias macronasus - - - 7.0 99.3 - - - - - - - - - - - -
Galaxias maculatus 20 989 11 19.0 1424.5 18 (17/1) 9 4 0 3 2 0 1 1 4 12 1 d

Galaxias
paucispondylus - - - 8.8 468.7 - - - - - - - - - - - -

Galaxias postvectis 1 unknown 1 26.0 1229.1 1 (1/0) 1 0 0 0 0 0 0 0 0 0 0 d

Galaxias prognathus - - - 8.0 213.5 - - - - - - - - - - - -
Galaxias pullus - - - 13.1 50 - - - - - - - - - - - -

Galaxias vulgaris 4 52 4 8.9 374.7 3 (2/0) c 1 0 0 0 0 1 0 1 1 1 0 d

Neochanna apoda 4 312 8 9.6 450.8 8 (6/1) c 3 1 2 0 0 1 1 0 1 1 0
Neochanna
burrowsius 1 1091 4 13.3 218.9 4 (0/2) c 1 1 0 0 0 0 0 0 1 0 0

Neochanna diversus 1 unknown 1 12.2 434.9 1 (1/0) 0 0 0 0 0 1 0 0 0 0 0 d

Neochanna heleios - - - 10.5 28.4 - - - - - - - - - - - -
Neochanna rekohua - - - 6.6 4.7 - - - - - - - - - - - -

South Africa Galaxias zebratus - - - 6.8 444.8 - - - - - - - - - - - -

Notes: Geographic regions—Australia (including Lord Howe Island), New Zealand (including Auckland, Campbell, Chatham, and Stewart Island/s). a Number of fish examined from studies reporting study
effort, b Tritt [37] reported no parasite taxa from examined fish, c unidentified parasites, d examination effort unknown or partially known among studies, e number of parasite taxa identified by molecular
methods, f extent of tissues examined.
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Table 2. Influence of study effort (number of studies or fish), geographical region, fish length (standard), and latitudinal
range size (km) on the number of parasite taxa reported from galaxiid fish. Statistically significant differences in parameters
(α = 0.05) are in bold.

Df Deviance Residual Df Residual Deviance F p

NULL 32 251.20
N studies 1 134.32 31 116.88 423.59 <0.001

Region 3 20.95 28 95.93 22.03 <0.001
Fish length 1 1.44 27 94.49 4.54 0.050
Range size 1 21.79 26 72.70 68.73 <0.001

N studies × Region 3 49.95 23 22.75 52.51 <0.001
N studies × Fish length 1 0.47 22 22.28 1.47 0.245
N studies × Range size 1 9.49 21 12.79 29.93 <0.001

Region × Fish length 3 2.61 18 10.18 2.74 0.080
Region × Range size 2 3.81 16 6.37 6.01 0.012

Fish length × Range size 1 1.39 15 4.98 4.39 0.054

NULL 24 172.76 NA NA
N fish 1 67.68 23 105.07 40.21 <0.001

Region 3 40.13 20 64.94 7.95 0.012
Fish length 1 3.79 19 61.15 2.25 0.177
Range size 1 20.98 18 40.17 12.46 0.010

N fish × Region 3 18.44 15 21.73 3.65 0.072
N fish × Fish length 1 0.56 14 21.17 0.33 0.582
N fish × Range size 1 3.11 13 18.06 1.85 0.216

Region × Fish length 3 0.67 10 17.39 0.13 0.938
Region × Range size 2 3.79 8 13.60 1.13 0.376

Fish length × Range size 1 1.91 7 11.69 1.14 0.322
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of parasite taxa reported in galaxiid fishes.

The number of fish examined was reported from 66.4% of studies (n = 40 Argentina,
18 Australia, 16 Chile, 2 Malvinas/Falklands, 19 New Zealand). The number of parasite
taxa was positively correlated with both the number of fish examined and latitudinal range
size (Table 2, Figure 3) and also differed between geographic regions, with significantly
more parasite taxa reported in Argentina than other geographic regions (Tukey HSD post
hoc test: all p < 0.05). Standard length did not influence the number of parasite taxa per
host species among studies where the number of fish examined was reported.

The number of locations from which parasites were studied differed among geo-
graphic regions (GLMCOUNTRY: F3,29 = 6.49, p = 0.002; Table 1), with a greater number of
localities per galaxiid species studied in Argentina compared to New Zealand and Aus-
tralia (pairwise comparisons, p < 0.001; Table A3), where parasites were frequently assessed
from one or two locations only. Thirty or more individual fish were examined from all
study locations for three galaxiid species, Galaxiella toourtkoourt (Australia, n locations = 4),
A. zebra (Malvinas/Falklands, n = 1), Neochanna burrowsius (New Zealand, n = 4), with
parasite assemblages observed from fewer than 30 individual fish per location for most
other galaxiid species (Table 1).

Parasites from Argentinean and Chilean galaxiids were most commonly recorded
from single species studies, whereas parasites from Australian and New Zealand galaxiids
were observed from both studies focusing on single parasite species and examinations
of focal tissues (Table 1). Aplochiton zebra from Argentina was the only galaxiid species
for which all studies (n = 3) in a single geographic region involved full examinations of
all body tissues. Incidental observations of parasites observed during non-parasitology
studies contributed a total of seven studies across all galaxiid species. We also note that
no parasite taxon was detected from the single parasitological study assessing Australian
Galaxiella nigrostriata (n = 779 fish [37]), however this study focused on the detection of a
single parasite species.
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Approximately 60% of parasite taxa described from Galaxiidae were described to
species level using morphological taxonomy, with no observed difference in the proportion
of parasites described to species-level between regions (GLMREGION: χ2 = 0.99, df = 3,
p = 0.805; Figure 4). Of these parasites, identification was verified with molecular sequenc-
ing for one new (host–parasite (country): Ga. maculatus—Ortholinea lauquen (AR) [84]) and
three previously described species (Galaxiella pusilla, Gx. toourtkoourt—Apatemon gracilis
(AU) [85], Galaxias occidentalis—Lernaea cyprinacea (AU) [86], Ga. maculatus—H. spinigera
(NZ) [87]). Molecular tools were also used to describe a further two new parasite taxa to
family level (Ga. maculatus, Ga. occidentalis—Diplostomoidea (AU) [37]) and subfamily
levels (Neochanna apoda—Capillariinae (NZ) [88]). Furthermore, all geographic regions con-
sistently reported more macroparasite taxa (mean 86.5%) than microparasites from studied
galaxiids with no differences among regions (GLMREGION: χ2 = 1.09, df = 3, p = 0.779; Table 1).
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4. Discussion and Conclusions

Our study demonstrates a number of knowledge gaps in relation to the current
understanding of galaxiid–parasite diversity, including the absence of parasitological
studies from 26 out of 53 recognized galaxiid species. This suggests that the diversity of
parasites supported by this fish family is only partially understood. However, in the global
context of the >34,000 recognized fish species, previous studies (e.g., [89,90]) suggest that
most of the other 579 fish families are likely to have parasites described from less than half
of their recognized species. It is, however, important to note that whilst galaxiids may in fact
represent one of the better-known fish families in terms of parasitological investigations, it
does not necessary imply that research efforts have been distributed evenly across member
species. Our study demonstrates that Ga. maculatus has been extensively studied in most
regions, though relatively limited parasitological knowledge is available for other galaxiid
species. We also note that almost 20 years after McDowall [33] highlighted the absence of
parasitological studies from Australian and New Zealand offshore islands, South Africa,
New Caledonia, and Islas Malvinas/Falkland Islands, progress towards characterizing the
galaxiid–parasite assemblages has only been made in the latter island group [47,91].

In general, study effort, in terms of the number of studies or the number of fish
examined per galaxiid species, was a strong predictor of the number of parasite taxa
reported; however, examination effort has the potential to overcome the effects of low
study effort in some instances. Whilst the majority of Argentinean studies were focused on
single parasite taxa, all three studies (n = 254 fish) investigating the parasites of A. zebra
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consisted of full examinations of all host tissues. This resulted in a greater number of
parasite taxa documented from this fish species relative to study effort in terms of either the
number of studies or fish examined and the least discrepancy in the number of parasite taxa
reported with regard to study effort for Argentinean galaxiids. Differences in study effort
among geographic regions may result from a combination of local researcher interests and
the diversity of freshwater fish assemblages in each geographic region. The eight known
galaxiid species of South America, distributed across the icthyogeographic Patagonian
province and the south of the Chilean Province [92,93], occupy a region of relatively low
freshwater fish diversity (29 fish species [26]). In contrast, galaxiids comprise 22 out of New
Zealand’s 62 freshwater fish species, with even greater freshwater fish diversity occurring
in South Africa (1 galaxiid/180 freshwater fish species), and the majority of Australian
states where galaxiids are distributed (e.g., New South Wales: 4/81, Queensland: 2/191,
Western Australia: 5/134 [35]). Bearing in mind the recent expansion in galaxiid taxonomic
resolution (e.g., [94–96]), the number of recognized galaxiid species with undescribed
parasite assemblages is set to grow.

Surprisingly, fish length was not found to influence the number of parasite taxa
reported in galaxiids, despite larger, long-lived hosts, with associated ontogenetic diet
changes often resulting in encounters with a wide range of parasites [97–99]. The absence
of such patterns may be attributed to the majority of studies focusing on Ga. maculatus,
a relatively small (<110 mm), short-lived species (maximum age class 3+ years [100]).
The close proximity of research laboratories to this highly abundant, widely distributed
galaxiid, combined with an ever-increasing list of described parasite taxa, has ensured that
Ga. maculatus has remained highly attractive to fish parasitologists (e.g., [101,102]). If body
size and age do in fact influence parasite diversity within the Galaxiidae family, then a
considerable number of parasite species may currently be undiscovered, especially from
the large, long-lived species such as Ga. platei (max. age = 18 years [103]) and Galaxias
argenteus (20 years [104]). Positive correlations between latitudinal range size and the
number of parasites also suggest that widely distributed species such as the Chilean A.
zebra and A. taeniatus or Australian Ga. brevipinnis (range size >1500 km) have the potential
to support a greater diversity of parasite taxa than the New Caledonian Ga. neocaledonicus
or New Zealand’s Neochanna rekohua (range size <5 km), however our results display that
the effects of latitudinal range size may diminish with increasing study effort.

Our study demonstrated that with the exception of recent taxonomic studies, there
has been limited use of molecular techniques to confirm the identity of galaxiid parasites.
For example, the trematode responsible for black spot disease in the muscles of Australian
galaxiids has now been reclassified (from Diplostomum galaxiae to “Dip01” aligned with
Posthodiplostomum spp., and family Strigeidae [37]). However, the majority of parasite taxa
reported from galaxiid hosts rely on morphological descriptions only, of which many para-
site taxa were first described in other freshwater fish in the same geographic region. Whilst
galaxiids may share generalist parasite species capable of infecting fish species from other
families (e.g., Acanthocephalus tumescens in Atherinopsidae, Galaxiidae, Diplomystidae,
Percichthyidae, and Salmonidae [58]), the increasing recognition of cryptic parasite species
suggests that galaxiids may be host to their own unique parasites. For instance, molecular
approaches demonstrate that the trematode Stegodexamene anguillae and the acanthocepha-
lan A. galaxii, which are common parasites of New Zealand galaxiid fishes, may consist of
multiple cryptic species, each very host-specific (Hernandez-Orts unpublished, [105]).

Our study also suggests that although the current understanding of macroparasite
diversity in galaxiids may be patchy, our knowledge of microparasite diversity is even
more limited, with a greater proportion of species reported being macroparasite taxa rather
than microparasites, from both single parasite studies and full assessments of parasite
assemblages (i.e., parasite component population and community [106]). Although the
majority of microparasite species have been reported from galaxiids originating from
Argentina (e.g., [84,107–109]), this may be evidence of study bias towards the research
interests of local parasitologists [18], rather than the absence of microparasites from other
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regions. Reporting bias is also likely to occur with macroparasite taxa, though to a lesser
degree, where single target parasite studies are unlikely to report the presence of other
encountered parasite taxa [110].

Many galaxiid species for which parasites have not been described represent species
that have either been recently described, are of conservation concern, and/or are from
remote localities, thus obtaining specimens from which to evaluate parasite diversity may
be logistically difficult. Ethical constraints must also be taken into consideration given
that, with the exception of some ectoparasites, current practices for assessing parasite
diversity in fishes usually involve lethal sampling, though the development of non-lethal
methods for detecting fish endoparasites offers a promising solution [111,112]. Whilst
our study suggests that incidentally reported parasites in non-parasitology studies have
made only minor contributions to knowledge of parasite diversity in galaxiids, greater
communication between fish biologists and parasitologists could ensure that full biological
information is obtained (i.e., host taxonomy, age structure, diet, and their parasites [113]),
provided that collected material is preserved in a way that is useful to parasitologists [114].
Parasitologists must also play their part by sampling all parasites from collected fishes,
especially when conservation or ethical considerations are involved [18]. However, there
may be some fish species for which parasite diversity must remain unknown or only
partially evaluated, since gaining knowledge about parasite diversity should not come at
the expense of sampling either a parasite or its host to extinction.

Access to parasite specimens will only partially address galaxiid–parasite knowledge
gaps, since the number of taxonomically skilled parasitology researchers and availability
of funding to support taxonomic research in a geographical region may be limited. Here,
collaborations with research institutes with the necessary morphological and molecular
parasite taxonomy expertise is vital and may also help to address the lack of attention
directed towards microparasite species. Existing collaborations between Argentinean and
Chilean researchers have aided the description of new parasites from Ga. maculatus [115]
and B. bullocki [116], with such collaborations largely stemming from a strong history of
joint parasitology meetings between these regions. However, additional effort is required
to address the gaps in parasite taxonomy expertise, and thus we encourage measures that
enable taxonomic experts based outside the geographic range of galaxiids to access samples.
We support Poulin et al.’s [18] suggestion of an online database of parasite specimens,
which not only documents the host species and geographic localities surveyed for parasites,
but also facilitates greater international collaboration among parasitologists. Furthermore,
we strongly encourage the deposition of voucher specimens into museum collections,
especially from host species that have received little parasitological attention.

Improving our understanding of galaxiid–parasite associations has the potential
to shift general attitudes concerning parasites in the conservation and management of
galaxiid populations. However, there remains much progress to be made until parasites
are no longer regarded as simply threats to galaxiid survival that need to be minimized
or eliminated in management efforts [67,117,118]. The recognition that the unique and
potentially co-endangered parasite assemblages supported by galaxiid hosts are themselves
important in biodiversity conservation [119] will contribute to efforts to co-manage hosts
and parasites and ensure the retention of parasites and the ecosystem functions they
provide in conservation programs.
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Appendix A

Table A1. Slope average estimates describing the effect of study effort (number of studies) and latitudinal range size on the
number of parasite taxa reported from galaxiid fishes from each geographical region.

Base Variable Country Slope Estimate SE 95% Confidence Interval (Lower, Upper)

N studies Argentina 18.94 1.10 16.68, 21.19
Australia 6.18 0.51 5.13, 7.22

Chile 9.08 0.66 7.71, 10.44
New Zealand 6.23 0.42 5.37, 7.09

Latitudinal range size Argentina −31.44 31.80 −96.93, 34.06
Australia 4.57 1.63 1.22, 7.93

Chile 3.78 3.95 −4.35, 11.92
New Zealand 6.42 1.75 2.82, 10.02

Latitudinal Range Size N Studies Trend Estimate SE Asymptotic 95% Confidence Interval
(Lower, Upper)

1 0.0008 0.0002 0.0003, 0.001
5 0.0006 0.0002 0.0002, 0.001

10 0.0003 0.0003 −0.0003, 0.0001
15 <0.0001 0.0005 −0.001, 0.001

Table A2. Tukey pairwise comparisons investigating the effect of geographic region on the number of reported parasite
taxa per galaxiid species in relation to number of studies. Statistically significant estimates (α = 0.05) are in bold.

Base Variable Contrast Estimate SE t Ratio p

N studies Argentina–Australia 12.76 1.21 10.56 <0.001
Argentina–Chile 9.86 1.28 7.70 <0.001

Argentina–New Zealand 12.70 1.17 10.83 <0.001
Australia–Chile −2.90 0.83 −3.47 <0.001

Australia–New Zealand −0.05 0.66 −0.08 1.000
Chile–New Zealand 2.84 0.78 3.63 0.007

Latitudinal range size Argentina–Australia −36.01 31.84 −1.13 0.674
Argentina–Chile −35.22 32.04 −1.10 0.693

Argentina–New Zealand −37.85 31.85 −1.19 0.640
Australia–Chile 0.79 4.27 0.19 0.998

Australia–New Zealand −1.84 2.39 −0.77 0.866
Chile–New Zealand −2.63 4.32 −0.61 0.928



Diversity 2021, 13, 27 14 of 18

Table A3. Post host comparisons between geographic regions on the total number of locations from which galaxiid–parasite
associations have been studied. Statistically significant estimates (α = 0.05) are in bold.

Contrast Estimate SE z Ratio p

Argentina–Australia 1.88 0.48 3.93 <0.001
Argentina–Chile 1.37 0.54 2.54 0.054

Argentina–New Zealand 1.96 0.48 4.10 <0.001
Australia–Chile −0.51 0.59 −0.86 0.826

Australia–New-Zealand 0.08 0.53 0.15 0.999
Chile–New-Zealand 0.59 0.59 0.99 0.753
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