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Abstract: The European Space Agency’s Sentinel satellites have laid the foundation for global
land use land cover (LULC) mapping with unprecedented detail at 10 m resolution. We present a
cross-comparison and accuracy assessment of Google’s Dynamic World (DW), ESA’s World Cover
(WC) and Esri’s Land Cover (Esri) products for the first time in order to inform the adoption and
application of these maps going forward. For the year 2020, the three global LULC maps show
strong spatial correspondence (i.e., near-equal area estimates) for water, built area, trees and crop
LULC classes. However, relative to one another, WC is biased towards over-estimating grass cover,
Esri towards shrub and scrub cover and DW towards snow and ice. Using global ground truth
data with a minimum mapping unit of 250 m2, we found that Esri had the highest overall accuracy
(75%) compared to DW (72%) and WC (65%). Across all global maps, water was the most accurately
mapped class (92%), followed by built area (83%), tree cover (81%) and crops (78%), particularly
in biomes characterized by temperate and boreal forests. The classes with the lowest accuracies,
particularly in the tundra biome, included shrub and scrub (47%), grass (34%), bare ground (57%) and
flooded vegetation (53%). When using European ground truth data from LUCAS (Land Use/Cover
Area Frame Survey) with a minimum mapping unit of <100 m2, we found that WC had the highest
accuracy (71%) compared to DW (66%) and Esri (63%), highlighting the ability of WC to resolve
landscape elements with more detail compared to DW and Esri. Although not analyzed in our
study, we discuss the relative advantages of DW due to its frequent and near real-time data delivery
of both categorical predictions and class probability scores. We recommend that the use of global
LULC products should involve critical evaluation of their suitability with respect to the application
purpose, such as aggregate changes in ecosystem accounting versus site-specific change detection
in monitoring, considering trade-offs between thematic resolution, global versus. local accuracy,
class-specific biases and whether change analysis is necessary. We also emphasize the importance of
not estimating areas from pixel-counting alone but adopting best practices in design-based inference
and area estimation that quantify uncertainty for a given study area.

Keywords: accuracy; deep learning; Earth observation; Sentinel-2; validation

1. Introduction

Global land use land cover (LULC) maps provide information necessary to quantify
and understand Earth system processes and anthropogenic pressures, often at multiple
spatial and temporal scales [1–3]. Earth observation and satellite remote sensing have en-
abled mapping LULC in a spatially explicit manner that ultimately informs policy and land
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management decisions aimed at achieving the global sustainable development goals [4].
Global LULC maps are adopted in a vast range of scientific domains and application envi-
ronments. A few examples of LULC map application include: data input into mesoscale
models for operational numerical weather forecasts and climate models for future climate
projections [5,6]; outlining the extent of ecosystems and the change therein, e.g., as the
basis for ecosystem service accounting [7,8]; isolating urban areas from their background
to quantify local climate impacts [9]; informing spatial species distribution models that
can predict and inform biodiversity conservation [10,11]; spatial conservation planning
and environmental impact assessments [12]; monitoring deforestation and reporting to
policy mechanisms, such as reduced emissions from deforestation and forest degradation
(REDD+) [13]. One of the most impactful applications of global LULC maps going forward
may be for ecosystem extent mapping following UN statistical standards for ecosystem
accounting (EA) under the System of Environmental–Economic Accounting (SEEA) [14].

Over the past two decades, the spatial resolution of land cover maps has kept pace with
the resolution of available satellite sensors, including the Moderate Resolution Imaging
Spectroradiometer (MODIS; 250–500 m), PROBA-v (100 m) and Landsat (30 m) satellites.
The most prominent corresponding global LULC maps include the National Aeronautics
and Space Administration (NASA) MCD12Q1 500 m resolution dataset (2001–2018) [15],
the European Space Agency (ESA) Copernicus Global Land Service (CGLS) Land Cover
100 m dataset (2015–2019) [16] and GlobLand30 (2010) [17]. While these products have
been widely adopted, particularly at provincial to regional spatial scales, the medium
spatial resolution prohibits the detection and monitoring of smaller landscape elements,
which are vital to finer-scale Earth system processes and local land use planning. For
instance, the monitoring and evaluation of agri-environmental schemes [18], such as
installing hedge rows or semi-natural vegetation vital to pollinators, is not possible with
the aforementioned LULC maps. Similarly, accounting for intra-urban blue–green space
requires finer resolution data to distinguish street trees, green roofs and pocket parks from
built surfaces [19].

Advancing upon the revolutionary legacy of the open-access Landsat missions [20],
the European Space Agency (ESA) and Copernicus Programme have delivered globally
consistent optical and radar data from the Sentinel satellites (10–20 m resolution) since
2014. Together with the advances in machine learning algorithms and cloud computing
platforms for Earth observation, such as Google Earth Engine (GEE) [21] and openEO [22],
the Sentinel satellites have enabled large-scale mapping of LULC at a 10 m resolution [2].
Since 2021, there have been three global Sentinel-based 10 m LULC maps released, including
Google’s Dynamic World (DW) [23], ESA’s World Cover 2020 (WC) [24] and Esri’s 2020
Land Cover (Esri) [25]. All three products have the vision of being multi-temporal, with
WC and Esri being annually updated, but only DW is operationally delivering near real-
time LULC maps as new Sentinel-2 scenes become available (every 5 days). Esri and DW
were both developed from deep learning models trained on the same reference dataset of
over 5 billion hand-annotated Sentinel-2 pixel patches from 24,000 individual image tiles
(510 × 510 pixels each) distributed over the world [23]. In contrast, WC was produced with
a random forest classification tree algorithm trained on hand-labeled pixels in 100 × 100 m
grids at 141,000 unique locations distributed over the world [24]. WC also included both
Sentinel-1 and Sentinel-2 data as predictors in their model. Furthermore, a noteworthy
difference is that the DW and Esri reference dataset was digitized with a minimum mapping
unit (MMU) of 250 m2, while the WC reference dataset was digitized with an MMU of 100 m2.

To date, there have been no systematic evaluations of the three global 10 m LULC
products with reference to one another. Given the importance of global LULC maps
for various applications, and the large differences in the production of the recent 10 m
products, we aimed to compare DW, WC and Esri global LULC maps in terms of their
spatial correspondence with one another and their global and regional accuracy. To quantify
accuracy at the global scale, we used the hand-annotated validation dataset published
alongside DW. We supplemented this with a regional reference dataset of in situ point-based
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survey data on LULC across the European Union. We discuss how spatial correspondence
and accuracy vary across LULC classes, biomes and human settlement types and explore
key limitations and advantages of the three datasets.

2. Materials and Methods
2.1. Land Cover Data Processing

Data pre-processing and extraction took place in GEE [21] and fed into our complete
workflow, as outlined in Figure 1. Data analysis and visualization were performed in R [26].
The WC and Esri global land cover datasets for 2020 are available in the GEE official and
community data catalogs. However, DW is provided as a collection of classified Sentinel-
2 images with less than 35% cloud cover, as defined by the ‘CLOUDY_PIXEL_PERCENTAGE’
scene metadata property. Each image has a ‘label’ band with a discrete classification of
LULC, but also 9 probability bands with class-specific probability scores generated by the
deep learning model on the basis of the pixel’s spatial context. To generate an annual LULC
composite comparable with WC and Esri, we calculated the mode of the predicted LULC
class in the ‘label’ band of all DW images for 2020. We also tested annual compositing by
calculating the mean and median probability scores for all LULC classes during the year
and then classifying by taking the class with the highest probability score per pixel. We
found no difference in overall accuracy using the alternative methods (Figure S1), and,
because the mode composite on the ‘label’ band was more computationally efficient, we
decided to use that global composite for further analysis. The land cover typologies were
identical for DW and Esri; however, we converted the WC typology to match DW and Esri
by aggregating four LULC classes, as outlined in Table 1. The three global 10 m LULC maps
(Figure 2) were used to assess spatial correspondence and accuracy, as outlined below.

Table 1. Classification typology cross-walk between the three global 10 m LULC maps included in
this study.

Dynamic World Esri LULC World Cover

Built Area Built Area Built-up

Clusters of human-made structures or
individual very large human-made structures.
Contained industrial, commercial and private
building and the associated parking lots. A
mixture of residential buildings, streets,
lawns, trees, isolated residential structures or
buildings surrounded by vegetative land
cover. Major road and rail networks outside
of the predominant residential areas. Large
homogeneous impervious surfaces, including
parking structures, large office buildings and
residential housing developments containing
clusters of cul-de-sacs.

Human-made structures; major road
and rail networks; large homogenous
impervious surfaces, including parking
structures, office buildings and
residential housing; examples: houses,
dense villages/towns/cities, paved
roads, asphalt.

Land covered by buildings, roads and
other man-made structures, such as
railroads. Buildings include both
residential and industrial buildings.
Urban green (parks, sport facilities) is not
included in this class. Waste dump
deposits and extraction sites are
considered as bare.

Crops Crops Cropland

Human planted/plotted cereals, grasses
and crops.

Human planted/plotted cereals,
grasses and crops not at tree height;
examples: corn, wheat, soy, fallow plots
of structured land.

Land covered with annual cropland that
is sowed/planted and harvestable at least
once within the 12 months after the
sowing/planting date. The annual
cropland produces a herbaceous cover
and is sometimes combined with some
tree or woody vegetation. Note that
perennial woody crops will be classified
as the appropriate tree cover or shrub
land cover type. Greenhouses are
considered as built-up.
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Table 1. Cont.

Dynamic World Esri LULC World Cover

Bare ground Bare ground Barren/sparse vegetation

Areas of rock or soil containing very sparse
to no vegetation. Large areas of sand and
deserts with no to little vegetation. Large
individual or dense networks of dirt roads.

Areas of rock or soil with very sparse to
no vegetation for the entire year; large
areas of sand and deserts with no to
little vegetation; examples: exposed
rock or soil, desert and sand dunes, dry
salt flats/pans, dried lake beds, mines.

Lands with exposed soil, sand or rocks
and never has more than 10 % vegetated
cover during any time of the year.

Moss and Lichen

Land covered with lichens and/or
mosses. Lichens are composite organisms
formed from the symbiotic association of
fungi and algae. Mosses contain
photo-autotrophic land plants without
true leaves, stems, roots but with leaf-
and stemlike organs.

Grass Grass Grassland

Open areas covered in homogenous grasses
with little to no taller vegetation. Other
homogenous areas of grass-like vegetation
(blade-type leaves) that appear different
from trees and shrubland. Wild cereals and
grasses with no obvious human plotting
(i.e., not a structured field).

Open areas covered in homogenous
grasses with little to no taller vegetation;
wild cereals and grasses with no obvious
human plotting (i.e., not a plotted field);
examples: natural meadows and fields
with sparse to no tree cover, open
savanna with few to no trees, parks/golf
courses/lawns, pastures.

This class includes any geographic area
dominated by natural herbaceous plants
(plants without persistent stem or shoots
above ground and lacking definite firm
structure): (grasslands, prairies, steppes,
savannahs, pastures) with a cover of 10%
or more, irrespective of different human
and/or animal activities, such as: grazing,
selective fire management, etc. Woody
plants (trees and/or shrubs) can be
present assuming their cover is less than
10%. It may also contain uncultivated
cropland areas (without harvest/bare soil
period) in the reference year.

Shrub and scrub Shrub and scrub Shrubland

Mix of small clusters of plants or individual
plants dispersed on a landscape that shows
exposed soil and rock. Scrub-filled
clearings within dense forests that are
clearly not taller than trees. Appear
grayer/browner due to less dense
leaf cover.

Mix of small clusters of plants or single
plants dispersed on a landscape that
shows exposed soil or rock; scrub-filled
clearings within dense forests that are
clearly not taller than trees; examples:
moderate to sparse cover of bushes,
shrubs and tufts of grass, savannas
with very sparse grasses, trees or
other plants.

This class includes any geographic area
dominated by natural shrubs having a
cover of 10% or more. Shrubs are defined
as woody perennial plants with
persistent and woody stems and without
any defined main stem being less than
5 m tall. Trees can be present in scattered
form if their cover is less than 10%.
Herbaceous plants can also be present at
any density. The shrub foliage can be
either evergreen or deciduous.

Trees Trees Trees

Any significant clustering of dense
vegetation, typically with a closed or dense
canopy. Taller and darker than
surrounding vegetation (if surrounded by
other vegetation).

Any significant clustering of tall
(~15 feet or higher) dense vegetation,
typically with a closed or dense canopy;
examples: wooded vegetation, clusters
of dense tall vegetation within
savannas, plantations, swamp or
mangroves (dense/tall vegetation with
ephemeral water or canopy too thick to
detect water underneath).

This class includes any geographic area
dominated by trees with a cover of 10%
or more. Other land cover classes (shrubs
and/or herbs in the understorey, built-up,
permanent water bodies . . . ) can be
present below the canopy, even with a
density higher than trees. Areas planted
with trees for afforestation purposes and
plantations (e.g., oil palm, olive trees) are
included in this class. This class also
includes tree-covered areas seasonally or
permanently flooded with fresh water
except for mangroves.
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Table 1. Cont.

Dynamic World Esri LULC World Cover

Flooded vegetation Flooded vegetation Herbaceous wetland

Areas of any type of vegetation with
obvious intermixing of water. Do not
assume an area is flooded if flooding is
observed in another image. Seasonally
flooded areas that are a mix of
grass/shrub/trees/bare ground.

Areas of any type of vegetation with
obvious intermixing of water
throughout a majority of the year;
seasonally flooded area that is a mix of
grass/shrub/trees/bare ground;
examples: flooded mangroves,
emergent vegetation, rice paddies and
other heavily irrigated and
inundated agriculture.

Land dominated by natural herbaceous
vegetation (cover of 10% or more) that is
permanently or regularly flooded by
fresh, brackish or salt water. It excludes
unvegetated sediment (see 60), swamp
forests (classified as tree cover) and
mangroves see 95).

Mangroves

Taxonomically diverse, salt-tolerant tree
and other plant species, which thrive in
intertidal zones of sheltered tropical
shores, “overwash” islands and estuaries.

Water Water Open water

Water is present in the image. Contains
little to no sparse vegetation, no rock
outcrop and no built-up features, such as
docks. Does not include land that can or
has previously been covered by water.

Areas where water was predominantly
present throughout the year; may not
cover areas with sporadic or ephemeral
water; contains little to no sparse
vegetation, no rock outcrop nor built up
features, such as docks; examples:
rivers, ponds, lakes, oceans, flooded
salt plains.

This class includes any geographic area
covered for most of the year (more than
9 months) by water bodies: lakes,
reservoirs and rivers. Can be either fresh-
or salt-water bodies. In some cases, the
water can be frozen for part of the year
(less than 9 months).

Snow and ice Snow and ice Snow and ice

Large homogenous areas of thick snow or
ice, typically only in mountain areas or
highest latitudes. Large homogenous areas
of snowfall.

Large homogenous areas of permanent
snow or ice, typically only in mountain
areas or highest latitudes; examples:
glaciers, permanent snowpack,
snow fields.

This class includes any geographic area
covered by snow or glaciers persistently.
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Figure 2. Maps of global 10 m resolution land cover maps, including Dynamic World (A), World
Cover (B) and Esri Land Cover (C). Inset maps show a zoomed extent of a landscape in South Africa
and Brazil, indicated with black dots on the world maps to illustrate the spatial grain of the maps at a
local scale. White areas in the Arctic and Antarctic in (A,B), although partly mapped in (C), were not
included in the analysis.

2.2. Spatial Correspondence Assessment

To assess how strongly the global LULC products corresponded to one another over
space, we quantified and compared class-wise LULC area sums that were aggregated to an
equal-area hexagonal grid (70,000 km2), which covered the globe. The size of the grid was
chosen based on a trade-off between computation time and precision of area aggregation.
Pixels were aggregated over mutually overlapping extents and image masks across the
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three LULC products. To quantify correspondence between products, for each LULC class
and unique hexagonal grid cell, we calculate the proportional share of each product’s
area estimation. Perfect correspondence resulted in a proportional ratio of 0.33:0.33:0.33
or 33% proportional share for each product. We defined strong correspondence when no
single product’s proportional share of the LULC class area exceeded 40% in a grid cell.
Therefore, weak correspondence was when the maximum difference between the product
with the biggest and smallest proportional share was greater than 20%. We visualized
these proportional shares for each hexagon over the globe by assigning a color code along
a tri-color gradient using the tricolore (v1.2.2.) package in R. The relative abundance of
the given LULC class (average of the three products’ area estimates) was mapped to the
opacity of each hexagon grid so that areas where the LULC is abundant appear opaque
and those where the LULC is less abundant are transparent.

2.3. Accuracy Assessment

To quantify the accuracy of the three LULC products, we used two sources of open-
access reference data (Figure 3). The first source was from the ground truth validation
dataset produced by the Dynamic World team, which included a group of annotators
(manual labeling of LULC types using visual interpretation of high-resolution reference
imagery) supported by the National Geographic Society in partnership with Google
and the World Resources Institute [23]. This team consisted of 25 expert and 45 non-
expert annotators who together annotated approximately 24,000 individual image tiles of
510 × 510 pixels from Sentinel-2 imagery from random dates in 2019. Annotators followed
the typology definitions outlined in the first column of Table 1 and were instructed to
consider an MMU of 250 m2, which, by definition, included mosaics of distinct landscape
elements within; for example, buildings, trees and grass within a 250 m2 area might be
labeled as “built area”. From the annotated dataset, a stratified random subsample of
409 Sentinel-2 tiles were withheld from the training of the DW deep learning model and
used for validation. The validation tiles included expert consensus labels where all three
experts agreed, or where two experts agreed and the third had no opinion or where
one expert had an opinion and the other two did not. We used this dataset constituting
72 million distinct 10 × 10 m pixels for global accuracy assessment of the three LULC
products (Figure 3A). WC used a completely different reference dataset for training and
validation of their model, which is not open-access, and, thus, we could not use it in the
present analysis. Esri used the same reference dataset as DW to train and validate their
LULC model; however, the sub-set of tiles they used for validating their map was not
open-access, and, therefore, we cannot be sure that the 409 validation tiles we use here
were in fact independent from the dataset used to train the Esri LULC model.

Figure 3. Distribution of the global (A) and regional (B) reference data locations. Locations in (A)
represent Sentinel-2 image tiles of 510 × 510 pixels, which were manually annotated ex situ. Locations
in (B) are grid points sampled in situ in the LUCAS area survey. Inset bar plot shows the number of
reference samples per LULC class.



Remote Sens. 2022, 14, 4101 8 of 19

The second source of reference data was a regional dataset from the Land Use/Cover
Area Frame Survey (LUCAS) over the European Union (Figure 3B). LUCAS is a systematic
grid of 337,845 points that are visited triennially for the collection of in situ land cover and
land use data [27]. In contrast to the DW ground truth dataset described above, LUCAS
surveyors are instructed to record the land cover within a 1.5 m circle at each point in
the grid, and, therefore, when applied to Earth observation, it consists of a significantly
smaller MMU. We used the 2018 LUCAS dataset with the first-level classification with the
exception of removing “G50: glaciers and permanent snow” from the water category into
its own category to match the “snow and ice” category in the global LULC maps (Table 2).

Table 2. Classification typology of the LUCAS data used for regional (European) validation of global
LULC maps in this study.

LULC Class LUCAS Classes Used and Descriptions

Built area

Artificial land (A00): Areas characterized by an artificial and often
impervious cover of constructions and pavement. Includes roofed
built-up areas and non-built-up area features, such as parking lots and
yards. Excludes non-built-up linear features, such as roads, and other
artificial areas, such as bridges and viaducts, mobile homes, solar
panels, power plants, electrical substations, pipelines, water sewage
plants and open dump sites.

Cropland

Cropland (B00): Areas where seasonal or perennial crops are planted
and cultivated, including cereals, root crops, non-permanent industrial
crops, dry pulses, vegetables, flowers, fodder crops, fruit trees and
other permanent crops. Excludes temporary grasslands, which are
artificial pastures that may only be planted for one year.

Bare ground

Bare land and lichens/moss (F00): Areas with no dominant vegetation
cover on at least 90% of the area or areas covered by lichens/moss.
Excludes other bare soil, which includes bare arable land, temporarily
unstocked areas within forests, burnt areas, secondary land cover for
tracks and parking areas/yards.

Grass

Grassland (E00): Land predominantly covered by communities of
grassland, grass-like plants and forbs. This class includes permanent
grassland and permanent pasture that is not part of a crop rotation
(normally for 5 years or more). It may include sparsely occurring trees
within a limit of a canopy below 10% and shrubs within a total limit of
cover (including trees) of 20%. May include: dry grasslands, dry
edaphic meadows, steppes with gramineae and artemisia, plain and
mountainous grassland, wet grasslands, alpine and subalpine
grasslands, saline grasslands, arctic meadows, set aside land within
agricultural areas (including unused land where revegetation is
occurring) and clear cuts within previously existing forests. Excludes
spontaneously re-vegetated surfaces consisting of agricultural land that
has not been cultivated this year or the years before, clear-cut forest
areas, industrial “brownfields” and storage land.

Shrub and scrub

Shrubland (D00): Areas dominated (at least 10% of the surface) by
shrubs and low woody plants normally not able to reach >5 m of
height. It may include sparsely occurring trees with a canopy below
10%. Excludes berries, vineyards and orchards.

Trees

Woodland (C00): Areas with a tree canopy cover of at least 10%,
including woody hedges and palm trees. Includes a range of coniferous
and deciduous forest types. Excludes forest tree nurseries, young
plantations or natural stands (<10% canopy cover) dominated by
shrubs or grass.

Flooded vegetation
Wetlands (H00): Wetlands located inland and having fresh water and
wetlands located on marine coasts or having salty or brackish water as
well as areas of a marine origin.
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Table 2. Cont.

LULC Class LUCAS Classes Used and Descriptions

Water
Water areas (G10 to G40): Inland or coastal areas without vegetation
and covered by water and flooded surfaces, or likely to be so over a
large part of the year.

Snow and ice
Glaciers, permanent snow (G50): Areas covered by glaciers (generally
measured at the time of their greatest expansion in the season) or
permanent snow.

The 2020 LULC predictions for each global product were sampled over the annotated
image pixels (global validation set) and survey locations (regional validation set). Accuracy
was quantified globally/regionally, but also stratified by biome, settlement type (urban,
rural and uninhabited) and continent. Biomes were defined using the RESOLVE biore-
gions dataset [28], while human settlement type was derived from the Global Human
Settlement Layers, Settlement Grid [29]. We constructed confusion matrices for each LULC
product to calculate class-specific user’s/precision and producer’s/recall accuracy and
overall accuracies.

2.4. Implementation Details

Data were summarized and/or extracted from GEE using the JavaScript API. The data
were summarized by a global grid created using the dgggridR (v2.0.3) package. The figures
were all created in R (v4.2.1) using the tricolore (v1.2.2.), ggplot2 (v3.3.5), ggmap (v3.0.0), sf
(v1.0.9) and raster (v3.5) packages.

3. Results
3.1. Spatial Correspondence

The area estimates for built area, crops, trees and water showed strong correspondence
between the three global LULC products, particularly in areas with the greatest relative
abundance of the given LULC class (i.e., gray areas with bordered grid cells in Figure 4).
However, for some regions, there were discrepancies between products; for example, DW
over-estimated the crop cover in the western USA, Kazakhstan and Mongolia relative to
the other LULC products.

The LULC classes with the lowest correspondence between global products were bare
ground, grass, scrub and shrub (Figure 4). DW estimated higher proportions of bare ground
in mid- to lower latitudes, whereas WC estimated more bare ground in higher latitudes
(Figure 4C). WC consistently estimated greater grass cover than DW and Esri across most
of the world, except for over the taiga in Russia (Figure 4D). Conversely, the Esri product
estimated greater shrub and scrub cover across the world except for a small section in
Canada and the savanna-forest ecotone in central Africa (Figure 4E).

The LULC classes flooded vegetation, and snow and ice exhibited notable disagree-
ments between products for the northern latitudes (Figure 4G,I). Esri estimated the highest
proportions of flooded vegetation over North America, whereas WC estimated the high-
est proportions over Russia. DW estimated significantly more snow and ice cover than
both WC and Esri over the whole of the Northern Hemisphere, apart from areas that are
permanently snow-covered (e.g., Greenland) or snow-free (e.g., Sahara desert) (Figure 4I).

3.2. Accuracy

Using the global ground truth dataset with a minimum mapping unit of 250 m2, we
found that Esri had the highest overall accuracy (75%) compared to DW (72%) and WC
(65%; Table 3; Figure 5). Across all the LULC products, water was consistently the most
accurately mapped class (balanced accuracy 92%; mean of precision and recall Figure 5),
followed by built area (83%), trees (81%) and crops (78%). In contrast, bare ground (57%),
grass (34%), shrub and scrub (47%) and flooded vegetation (53%) were mapped with the
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lowest accuracies (Figure 5). The accuracies across all the LULC products were generally
lowest in the tundra biome, where grass, bare ground, shrub and scrub and crops were
mis-classified and had the lowest recall and precision accuracies. The accuracies were
the highest in temperate and boreal forests, where crops, trees and built area had the
highest accuracies. There was very little difference in overall accuracy between urban,
rural and uninhabited areas, with the exception that trees had lower precision in urban
areas compared to rural and uninhabited areas, particularly for WC (40% lower) and DW
(20% lower). Differences in accuracy between the continents were small; however, when
averaged across LULC products, the accuracies were highest in North America and lowest
in Africa (Figure 6).

Figure 4. Spatial correspondence between global 10 m land cover maps for each of 9 land cover
classes. The proportion of land cover within each hexagonal grid cell is calculated for each LULC
product and then visualized along a tri-color gradient illustrating the proportional share of areas
estimated by each LULC product. Gray areas indicate strong correspondence, whereas colored areas
reflect dominance of one LULC product. Gric cells outlined in black indicate strong correspondence,
defined as cases where no single LULC product has more than 40% share of the combined area within
the grid cell. The opacity of the grid cells indicates the absolute percentage abundance of each LULC
class averaged over the three LULC classes. Opaque areas have near-maximum percentage cover for
that LULC class, whereas transparent areas have very low percentage cover.

Table 3. Summary of overall accuracies quantified at the global and regional scale.

Accuracy Dynamic World Esri World Cover

Global validation 72% 75% 65%
Regional validation (European) 66% 63% 71%

Using the regional ground truth dataset (LUCAS) across Europe with an MMU of
<100 m2, we found that the order of product accuracies was reversed compared to the
global validation (Table 3; Figure 7). WC exhibited the highest accuracy (71%) compared
to DW (66%) and Esri (63%). WC was particularly more accurate relative to DW and Esri
in temporal and boreal forests and savanna biomes. Similar to the result from the global
validation, the differences in accuracy between human settlement types were minimal.
Furthermore, the relative differences in accuracy between LULC products were consistent
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across human settlement types. It should be noted that, for the European validation data,
there were very few data points for the bare ground and snow and ice LULC classes, which
may bias accuracy estimates significantly.
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hand-annotated image tiles with MMU unit of 50 × 50 m. Circles show users, producers and overall
accuracy. Accuracy is expressed as precision/user’s, recall/producer’s and overall accuracy based on
a confusion matrix, with sample sizes indicated in millions (MM) in parentheses on the y-axis.
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Figure 7. Accuracy of global 10 m land cover maps over Europe using point-based ground truth
data from the LUCAS survey. Accuracy is stratified by LULC class, ecoregion and human settlement
type. Accuracy is expressed as precision/user’s, recall/producer’s and overall accuracy based on a
confusion matrix, with sample sizes indicated in thousands (K) in parentheses on the y-axis.

4. Discussion
4.1. Explaining the Differences between Global LULC Products

The production of global LULC maps is inherently difficult due to the extensive
biogeographical variations within and across biomes that lead to diverse spectral signatures
within a single LULC class [30]. In this sense, it is not surprising that three global LULC
maps produced by three independent groups have large differences in accuracy and spatial
correspondence. Below, we attempt to explain some of the main differences as presented in
our results.

4.1.1. Minimum Mapping Unit

The global LULC maps had contrasting accuracies when validated against the global
versus regional reference datasets (Figure 5 versus Figure 7). While Esri and DW were
most accurate at the global scale, WC was most accurate at the European scale. Apart from
the spatial extent, the most important difference between the reference datasets used to
validate the LULC maps is the MMU used to collect ground truth information. The global
validation dataset was digitized ex situ (i.e., based on visual interpretation of satellite
imagery) using an MMU of 250 m2 (i.e., 50 × 50 m square), whereas the regional validation
dataset (LUCAS) was collected in situ for point circles with a radius of 1.5 m (MMU <100 m).
We suspect that the main reason Esri and DW had higher accuracies than WC at the global
scale was because Esri and DW were produced from models trained on reference data
with an MMU unit of 250 m2, while WC was trained on data with an MMU of 100 m2. We
also posit that this difference in MMU is partially responsible for the difference in LULC
classification granularity at the landscape scale. For instance, the inset maps in Figure 2
reveal how Esri and DW predictions are more clustered and generalized compared to WC,
which exhibits more of the ‘salt and pepper’ characteristic of pixel-based classification
techniques. Urban gardens and trees are incorporated into the “built area” cluster of pixels
in DW and Esri maps, while they are labeled as “grass” or “trees” in WC. This illustrates
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why WC is 10% more accurate than Esri and DW when classifying built areas across Europe
using the point-based LUCAS dataset as a reference (Figure 7).

4.1.2. Classification Typology

Another factor leading to differences between global LULC products is the classifica-
tion typology used. For the purposes of cross-comparison, we harmonized all three LULC
products to a nine-class typology (Table 1). Even though this is a much simpler typology
than other regional LULC datasets (e.g., CORINE land cover [31]), there remain significant
challenges in distinguishing spectrally similar classes, such as bare ground, grass, shrub
and scrub, a finding often echoed in the literature [16,32,33]. These classes are not only
difficult for satellite-based machine learning models to distinguish but also for human
annotators using aerial or satellite imagery for visual interpretation. For instance, there
was large disagreement between expert and non-expert labelers involved in developing the
training dataset for DW and Esri [23]. A pixel-based comparison of expert and non-expert
annotations revealed a recall rate (producer’s accuracy) as low as 22% for grass and 31% for
bare ground. Although WC did not publish a similar uncertainty assessment of its annota-
tion team, it is reasonable to assume their reference dataset suffered from the same error.
It is known that, even with in situ LULC labeling (i.e., field-based ground truth), similar
errors due to sampler bias may exist. For instance, the European Environment Agency
discovered that CORINE-2000 accuracy was boosted by 6.4% following post-screening and
cleaning of erroneous LULC labels in the LUCAS dataset [34]. This partly explains why
the spatial correspondence between global LULC products and class-level accuracy was
generally poorest for bare ground, grass and shrub and scrub cover (Figures 4 and 5).

Another source of discrepancy between LULC products is the slight difference in
LULC definitions for certain classes (see descriptions in Table 1). For instance, the flooded
vegetation class in DW and Esri includes rice paddies and irrigated/inundated agricul-
ture. In WC, this type of cropland is included in the cropland class. Furthermore, the
DW reference dataset defines the shrub and scrub class relatively broadly as clusters of
plants that are dispersed over an area without any specification of cover percentage (“ . . .
moderate to sparse cover of bushes, shrubs, and tufts of grass”) [23]. This is different to the
WC typology, where grass, bare ground and shrub/scrub are defined using specific cover
percentages (“ . . . shrubs having a cover of 10% or more. Shrubs are defined as woody
perennial plants with persistent and woody stems and without any defined main stem
being less than 5 m tall”) [24].

4.1.3. Modeling and Validation Methods

At the global scale, the accuracies of DW, WC and Esri were different to one another
(Figure 5) and also different to the independent accuracies reported by the data providers
themselves: DW 72% versus reported 74%; WC 65% versus reported 74%; Esri 75% versus
85%. The discrepancy for DW is likely due to the fact that we aggregated LULC predictions
to an annual composite for 2020 (using the mode of the ‘label’ band), whereas the DW
validation report used scene-level model predictions for Sentinel-2 tiles in 2019. The WC
dataset was produced and validated with a completely different reference dataset with a
different MMU to the DW validation tiles used here. The metadata published with the Esri
dataset is incomplete, and, thus, we do not know which reference data were withheld from
model training and whether the 409 validation tiles used here were indeed independent
from the Esri training dataset. If it is the case that the validation data used here had been
part of the data used to train the Esri deep learning model, then it is possible that our
estimates of the Esri map accuracy are overly optimistic.

The DW and Esri maps were produced using a deep learning model, whereas WC
was produced using a random forest classification. This difference in modeling framework
likely explains some of the difference in accuracy between LULC products. Deep learning
models, such as the fully convolutional neural network employed in DW, take the pixel
context into account when making inferences, whereas random forest does not. This,
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together with the difference in MMU, explains why the DW and Esri maps are clustered
and generalized at a landscape scale (inset maps Figure 2).

Finally, we acknowledge that we are using reference data from 2019 (global) and 2018
(European) that do not align with the year of the LULC maps (2020) and that this may lead
to discrepancies between the validation set and the reality on the ground in 2020. However,
we suspect these changes to be minimal, and any bias introduced should be consistent
across global LULC products. Furthermore, even the WC reference dataset, which is not
open-access, faces the same limitation as it was collected for the year 2015 and used to
create and validate the WC map for the year 2020.

4.2. Recommendations for Users

The cross-comparison results presented here indicate that there is no “one-size-fits-all”
when it comes to global LULC maps and their potential application. We find differences in
accuracy across spatial scales (global versus regional), LULC classes, continents, biomes
and urban settlement types. Therefore, an overall recommendation is to carefully evaluate
the global LULC products with respect to the aforementioned factors and how they relate
to the application requirements. We note that it is also possible to use all three LULC
products in combination by creating some form of majority vote or weighted average.
Nevertheless, we make some general recommendations for users of either DW, Esri or WC
or a combination thereof:

• Regardless of LULC product, users should implement design-based inference when
calculating LULC areas or changes and avoid drawing conclusions from simple ‘pixel-
counting’, which leads to biased area estimates [35]. Design-based inference involves
generating a post-classification reference (validation or “ground truth”) sample that is
implemented with a probability sampling design (e.g., simple random or stratified
random), which can be used to quantify unbiased area and accuracy estimates.

• In general, users can rely on water, built area, trees and crops being mapped with the
highest accuracy, while shrub and scrub, grass, bare ground and flooded vegetation
have the lowest accuracies. With this in mind, it may be beneficial to simplify the
LULC typology by merging classes with low accuracies into aggregate classes if your
use-case allows it.

• Users should be aware of the biases in global LULC products (reported relative to
one another). Specifically, WC is biased toward estimating greater grass cover, Esri
towards shrub and scrub cover and DW towards snow and ice.

• LULC classification accuracy varies by biome, continent and urban settlement type,
and, therefore, users may consult Figures 4–6 here to gather information on what to
expect given the local context of their work.

• WC is most appropriate when considering an MMU of <100 m2 or when a user wants
to resolve smaller landscape elements. For example, WC is advantageous in urban
areas and complex agricultural landscapes with small or thin vegetation structures,
such as trees or hedge rows.

• Based on our supplementary analysis of the DW compositing method (Figure S1), we
find that the type of temporal aggregation of DW predictions has very little effect on
global and regional accuracy. However, we note that changing the seasonal extent of
temporal aggregation (e.g., growing-season composite) may have significant effects
on accuracy (although we did not test this here).

• The delivery format of DW in near real-time, covering the entire Sentinel-2 image
collection and including LULC class-specific probability scores, is qualitatively unique
from Esri and WC, which only produce annual LULC maps without probability scores.
We encourage users to take advantage of this unique aspect to DW by exploring novel
possibilities discussed in the section below.
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4.3. Potential for Future Research

Although our analysis provides important information about global model accuracies,
it remains to be seen which LULC product provides area change estimates with the least
amount of error as measured using design-based inference for area estimation [35,36].
Quantifying confidence intervals around area estimates or area change estimates is nec-
essary for the adoption of LULC products in policy mechanisms, such as the REDD+ [13]
reporting on deforestation or the SEEA ecosystem accounting [14]. It is, therefore, of interest
to test DW, Esri and WC (as well as other multi-temporal medium resolution maps (e.g.,
Friedl et al., 2022 [37]) in terms of how accurately they estimate changes in LULC at various
spatial and temporal scales. However, design-based inference can be time-consuming and
costly. A requirement for design-based inference is an explicitly specified population, and,
in the context of evaluating map accuracy, this population often refers to a population of
pixels included in a map and given different class labels. This population varies spatially
and temporally depending on the project scope, and, therefore, a probability-based sample
needs to be generated for making an inference each time the project scope changes. The
probability scores provided by DW may allow for more efficient alternatives to design-
based inference. Sales et al., 2021 [38] have shown that averaging class probability scores
from a random forest model can give area estimates that are substantially less biased than
‘pixel-counting’ and almost as precise as design-based methods. The same might be true of
DW class probability scores. Furthermore, there is also scope to use DW probability scores
to estimate per-pixel classification accuracy [39,40].

The probability scores available in the DW product provide scope for several other
avenues of further research and tailored LULC classification. Firstly, they can be aggregated
over time frames relevant to the application task. For example, annual composites might
be appropriate for some tasks, while summer or winter mosaics might be appropriate for
others. Secondly, users can apply custom thresholds or more complex decision frameworks
to the predicted probabilities in order to derive continuous or discrete LULC outputs
(Figure 8C). For example, this type of thresholding can be used to generate surface water
extent data much more frequently than the global surface water (GSW) dataset without
any update lags (currently up to 18 months). Thirdly, users can train their own local
machine learning models using DW probability scores and custom reference data as the
input (Figure 8D). This may allow for changing the LULC typology or resolving finer-scale
landscape elements that are not present in the default DW ‘label’ band. Users that explore
custom models, such as DNN architectures, may also try different loss functions that result
in predictions that are less clustered and able to resolve finer details. For example, Lang
et al., 2022 [41] use GEDI reference data at 25 m but produce a tree canopy height model at a
10 m resolution. Fourthly, frequency and near real-time availability of the class probability
scores allow for application of advanced time series analysis, such as LandTrendr (Landsat-
based detection of trends in disturbance and recovery) and CCDC (continuous change
detection and classification) [42].

There are several spheres of application for which 10 m LULC maps are particularly
well-suited. Urban ecology and climate science is one such area because landscape compo-
sition and structure often manifest at scales of 10 m or less. In an increasingly urbanizing
planet, it is important to accurately monitor global and regional urban extent for planning
purposes. How these newer-generation datasets compare to existing estimates across re-
gions is still largely unknown [43]. There is also potential for using DW to quantify seasonal
land cover dynamics (e.g., including urban vegetation phenology [44]) within cities, which
is not possible with static annual LULC maps. The spatial compositions of LULC and LULC
changes are important for modeling landscape connectivity and biodiversity community
dynamics [45]. Urban ecology may, therefore, benefit from comparing the landscape metrics
that result from global 10 m LULC maps.
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Figure 8. Example of the flexibility inherent in the Dynamic World data format, which includes
multi-temporal class probability estimates. An urban landscape in Prague, Czechia (A) along with
an annual mode composite from Dynamic World (B). Dynamic World class probabilities for the tree
class are rescaled to highlight intra-urban tree cover (C). The predictions from a random forest model
trained on LUCAS reference data and Dynamic World class probabilities are shown in (D), illustrating
the possibility of resolving smaller landscape elements.

Ecosystem accounting is another application where multi-temporal 10 m LULC maps
may prove particularly useful. Many have highlighted the need for remote-sensing-based
approaches to implement ecosystem extent-condition accounting in ecosystem services
mapping for ecosystem accounts [46]. A challenge for ecosystem accounting has been
that biophysical mapping of ecosystem services at a national level has relied on discrete
categories of land cover types typical of traditional LULC maps. Therefore, ecosystem
service models have not been sensitive to transitional or successional changes from one
LULC type to another typical of ecological gradients or continuums [47]. It is possible
that DW probability scores can detect continuous gradients in ecosystem accounting and
that LULC probability can be thought of as a higher-level structural composition indicator
within the ecosystem condition typology. Area-weighted probabilities have been computed
for biodiversity indices but typically at much coarser spatial levels [48]. It is possible that
LULC class probabilities could be applied to some standard ecosystem services (required
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by EUROSTAT) in decreasing order of accuracy, including (i) biomass, carbon storage and
sequestration, air filtration, run-off control; (ii) somewhat less for local climate regulation
and landscape aesthetics/greenview exposure and (iii) even less for crop pollination and
recreation potential. Therefore, class probability scores could allow a merging of the extent-
condition account for the purpose of more accurate ecosystem service computation (i.e.,
reducing the information loss in using threshold levels for classifying LULC types for the
extent account on its own—moving from Figure 8C to Figure 8D).

5. Conclusions

LULC mapping at global extents has been revolutionized by the plethora of medium-
resolution satellite data available from programs such as Landsat and Sentinel. In our
cross-comparison of global 10 m resolution LULC maps, we found large inaccuracies and
spatial and thematic biases in each product that vary across biomes, continents and human
settlement types. Our overarching recommendation is to critically evaluate each LULC
product with reference to the application purpose. We highlight the novelty of DW as a
global near real-time LULC product with class probability scores. LULC types, regardless
of definition and type system, share with ecosystems the property that their composition,
structure and processes often vary in a gradual, continuous manner over space and time.
We suggest that the DW probability scores offer a fundamental shift in land cover mapping
from categorical to continuum concepts.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs14164101/s1, Figure S1: Accuracy of three types of annual
compositing of Dynamic World land cover maps at the global and regional extent. Compositing
methods include a model reducer on the label band, and a mean and median reducer on the class
probabilities, followed by a highest probability vote classification. Global validation is based on hand-
annotated image tiles with a minimum mapping unit of 50 × 50 m. European validation is based on
point-based ground truth data from the LUCAS survey. Accuracy is expressed as precision/user’s,
recall/producer’s and overall accuracy based on a confusion matrix with sample sizes indicated in
thousands (K) in parenthesis on the y-axis.
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