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A B S T R A C T   

1. Open-source biodiversity databases contain a large number of species occurrence records but are often 
spatially biased; which affects the reliability of species distribution models based on these records. Sample bias 
correction techniques require data filtering which comes at the cost of record numbers, or require considerable 
additional sampling effort. Since independent data is rarely available, assessment of the correction technique 
often relies solely on performance metrics computed using subsets of the available – biased – data, which may 
prove misleading. 

2. Here, we assess the extent to which an acknowledged sample bias correction technique is likely to improve 
models’ ability to predict species distributions in the absence of independent data. We assessed variation in 
model predictions induced by the aforementioned correction and model stochasticity; the variability between 
model replicates related to a random component (pseudo-absences sets and cross-validation subsets). We present, 
then, an index of the effect of correction relative to model stochasticity; the Relative Overlap Index (ROI). We 
investigated whether the ROI better represented the effect of correction than classic performance metrics (Boyce 
index, cAUC, AUC and TSS) and absolute overlap metrics (Schoener’s D, Pearson’s and Spearman’s correlation 
coefficients) when considering data related to 64 vertebrate species and 21 virtual species with a generated 
sample bias. 

3. When based on absolute overlaps and cross-validation performance metrics, we found that correction 
produced no significant effects. When considering its effect relative to model stochasticity, the effect of 
correction was strong for most species at one of the three sites. The use of virtual species enabled us to verify that 
the correction technique improved both distribution predictions and the biological relevance of the selected 
variables at the specific site, when these were not correlated with sample bias patterns. 

4. In the absence of additional independent data, the assessment of sample bias correction based on subsample 
data may be misleading. We propose to investigate both the biological relevance of environmental variables 
selected, and, the effect of sample bias correction based on its effect relative to model stochasticity.   

1. Introduction 

While there is a growing demand for species data for the production 
of robust statistical models and evidence-based conservation actions, the 
availability of standardised data remains limited. In recent years, the 

extensive development of biodiversity databases has predominantly 
been supported by opportunistic, presence-only data collected by citizen 
science programs and naturalists associations. Despite its limitations, 
opportunistic, non-standardised data still constitute a promising avenue 
for improvement of biodiversity assessments (McKinley et al., 2017). 
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Such data are often limited by the heterogeneity of their sources and 
spatial biases as a result of uneven sampling efforts (Otegui et al., 2013; 
Beck et al., 2014; Bird et al., 2014; Johnston et al., 2020; Botella et al., 
2021). More specifically, sampling efforts may be biased by field 
accessibility such as the number of observations influenced by the 
proximity to urban areas and roads, often leading to spatial autocorre-
lation among observations (Phillips et al., 2009; Stolar and Nielsen, 
2015). This may incur an environmental bias and models tend to over-
estimate/underestimate environmental suitability in zones with higher/ 
lower density of occurrence data. This could prove to be problematic for 
studies that aim to provide guidelines for management (Yackulic et al., 
2013). By accounting for spatial bias in opportunistic data derived from 
heterogeneous sources, (e.g. citizen science, naturalist and expert as-
sociations) not only would increase the prospect of their potential use in 
ecological studies, it would also enable the inclusion of a broader range 
of species in Species Distribution Models (SDMs). SDMs are one of the 
most commonly used tools for testing ecological hypotheses (Anderson 
et al., 2009), assessing alien species invasion risks (Bellard et al., 2013; 
Runquist et al., 2019; Lanner et al., 2022), forecasting the potential ef-
fect of environmental change (Araújo et al., 2005), and supporting 
conservation management efforts (Schwartz, 2012; Leroy et al., 2014; 
Mikolajczak et al., 2015; Dubos et al., 2021). Although presence-only 
biodiversity databases are frequently used in SDMs, the adequacy of 
sample bias correction methods remains ambiguous (Meynard et al., 
2019; Johnston et al., 2020). Spatial sampling bias is a major factor 
affecting the predictive performance of SDMs (Araújo and Guisan, 2006; 
Barbet–Massin et al., 2012; Kramer–Schadt et al., 2013; Meynard et al., 
2019). A number of procedures have been developed to account for 
sampling bias, which include spatial filtering of presence points (Edrén 
et al., 2010; Boria et al., 2014; Matutini et al., 2021), environmental 
filtering (Varela et al., 2014; Gábor et al., 2020), the combination of 
presence-only and standardised presence-absence data (Dorazio, 2014; 
Fithian et al., 2015; Koshkina et al., 2017) and the production of a 
similar sampling bias in non-presence background data/pseudo- 
absences (Phillips et al., 2009). However, presence points and envi-
ronmental filtering consist in the removal of occurrence data, thereby 
inducing a loss of information and statistical power. This is particularly 
problematic when dealing with rare or poorly detected species (Lobo 
and Tognelli, 2011; Kramer–Schadt et al., 2013; Robinson et al., 2018; 
Vollering et al., 2019; Inman et al., 2021).The most widely applicable 
method may therefore be the production of pseudo-absences that share 
the same bias as the presence data. In presence/background or 
presence/pseudo-absence models, a range of pseudo-absence selection 
techniques were recently developed which reduce the effect of sampling 
bias, improving model performance without removing occurrence 
points (e.g. Senay et al. (2013), Fourcade et al. (2014), Hertzog et al. 
(2014), Iturbide et al. (2015)). For instance, pseudo-absence selection 
based on sampling bias reference maps has been acknowledged as an 
efficient method to account for spatially biased occurrence data (Phillips 
et al., 2009; Hertzog et al., 2014). Reference maps, such as the target- 
group (TG) approach and accessibility maps, can be used to represent 
a sampling bias map that is specific to a given study area. This presents a 
promising approach to improvement of the predictive performance of 
SDMs (Ranc et al., 2017; Monsarrat et al., 2019). The TG approach relies 
on the hypothesis that the study species share the same sampling pattern 
as the target group, whereas accessibility maps rely on the hypothesis 
that constraining features are identified (e.g. geographical barriers, so-
cial conflicts, long distances). Although neither mapping approach 
provides explicit information on sampling efforts they may prove 
appropriate when species richness patterns are heterogeneous (Ranc 
et al., 2017) or when treating data from heterogeneous sources with 
different sampling patterns (Monsarrat et al., 2019). Here we focus on a 
single sample bias correction technique (i.e. accessibility maps) to test a 
range of different methods. Accessibility maps do not require to subset 
the occurrence data and are therefore more appropriate for rare species. 
They are also more widely applicable than TG approach since TG 

requires information on sampling effort throughout an entire taxon. 
The efficiency of a given sample bias correction technique is often 

measured by comparing the performance metrics of corrected and un-
corrected models. In both corrected and uncorrected groups, perfor-
mance metrics quantify the degree to which models built with a subset of 
the original data (i.e. training/calibration dataset) accurately predict the 
remaining data (test/evaluation dataset). This process is commonly 
referred to as “cross-validation” (e.g. Senay et al. (2013), Boria et al. 
(2014)). The most common model performance metrics include the Area 
Under the operating Curve (AUC), the True Skill Statistic (TSS), the 
Boyce index, and Similarity indices. These metrics provide quantitative 
measurements of discrimination ability between models that are built 
with training data and those that utilise the full dataset (Fourcade et al., 
2018). The vast majority of studies test the efficiency of sample bias 
correction by performing internal cross-validation, (see point 3B of the 
Standard for SDMs on data sharing the same bias in Araújo et al. (2019)) 
an approach that has shown strong limitations when SDM is used to 
extrapolate predictions to a different time/region (Araújo et al., 2005; 
Araújo et al., 2019; Beck et al., 2014; Hertzog et al., 2014; Fourcade 
et al., 2018). Ideally, the improvement conferred by a correction tech-
nique should be evaluated with an independent, unbiased dataset 
(Phillips et al., 2009; Hertzog et al., 2014; Norberg et al., 2019; Johnston 
et al., 2020). Field validation (evaluations relative to independent 
standardised datasets) represents the best standard practice to assess 
models’ ability to predict species distribution (Araújo et al., 2019). 
Nevertheless, field validation is labour-intensive and sometimes unfea-
sible (e.g. taxonomically or geographically extensive scale study sites) 
and independent standardised datasets are rarely available (Hao et al., 
2019). When relying on partitioned datasets, one possible method for 
assessing sample bias correction techniques is to select data subsets that 
are subject to different types of bias (e.g. Bean et al. (2012), Matutini 
et al. (2021)). However, this method may also prove highly demanding 
in respect to spatio-temporal coverage and may not be feasible for 
noumerous species (Johnston et al., 2020). A cost-effective method 
proposed by Hijmans (2012) to assess the potential efficiency of sample 
bias correction techniques uses an AUC calibrated with a null 
geographic model. The efficiency of this method may vary through space 
and between species (Hijmans, 2012), calling for the characterisation of 
those sites and species. Virtual species can be used to assess bias 
correction techniques (e.g. Phillips et al. (2009), Fourcade et al. (2014), 
Varela et al. (2014), Ranc et al. (2017)), by simulating a sampling bias 
and producing performance metrics that are relative to a perfectly 
known distribution. The projection of a range of virtual species on 
multiple real regions may represent a cost-effective approach for 
assessing whether a correction technique is likely to improve the accu-
racy of SDMs, provided that virtual and real species are sufficiently 
comparable. Species distribution models can be calibrated with a range 
of model parameters generated with a random component: (e.g. pseudo- 
absence selection, cross-validation subsets) inducing a stochasticity 
among models that are otherwise identical. These model parameters can 
be sources of uncertainty in model projections (Buisson et al., 2010; 
Thibaud et al., 2014). Sample bias correction should induce variation in 
the predicted values and subsequently in species range projections, but 
may prove negligible if the variation is of the same magnitude as the 
sources of uncertainty. Therefore, the effect of sample bias correction 
may be assessed on the basis of its effect between corrected and un-
corrected modalities relative to intra-modality variation. 

We present the Relative Overlap Index, which informs the extent of 
spatial similarity between corrected and uncorrected models relative to 
the variability between model replicates. We hypothesised that sample 
bias correction improves model predictions if its relative effect is 
stronger than that of the remaining model input parameters. We tested 
this assumption using virtual species with a generated sample bias, 
modelled at the same sites and with the same range of model parameters 
as the real species. The aim of this study was (1) to assess the effect of a 
sampling bias correction technique on distribution projections over a 
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range of terrestrial vertebrate species (n  = 64) in three contrasting re-
gions and in the absence of independent data. We measured the effect of 
correction by computing the degree of overlap between uncorrected and 
corrected models. We predicted that the effect of correction on pro-
jections differs between sites and species. We further evaluated (2) 
whether the effect of correction could be assessed with a range of vali-
dation metrics. We also tested whether this effect could be represented 
by an index of overlap between correction modalities relative to intra- 
modality variation. We tested (3) whether sample bias correction actu-
ally improved model predictions by using virtual species with a simu-
lated sample bias. Finally, we provided recommendations for the 
assessment of sample bias correction when independent data are 
unavailable. 

2. Materials and methods 

2.1. Study sites and accessibility 

We focused on three regions located in the vicinity of Thau (southern 
France), Grote Nete (northern Belgium) and Trondheim (central Nor-
way). These sites were characterised by contrasting distributions of 
roads and cities. While there was an altogether homogeneous distribu-
tion of roads and towns in Thau and Grote Nete, there was a strong 
gradient in road and town density in Trondheim. We produced acces-
sibility maps for each site (Fig. 1) by computing an Accessibility Index 
(AI). Accessibility Indices represent the degree to which a geographic 
point is easily reached by an observer and is context specific (Monsarrat 
et al., 2019). In this instance, we have used occurrence data from het-
erogeneous sources. For that reason, we assumed that accessibility was – 
for the most part – dependent upon distance from cities and roads (e.g. 
Sicacha–Parada et al. (2020)). The Accessibility Index was computed as 
follows: 

AIi =
1
2

⎛

⎝e
− 1

2

(
distC
σC

)2

+ e
− 1

2

(
distR
σR

)2 ⎞

⎠ (1)  

where AIi is the accessibility index at pixel i, distC is the Euclidean dis-
tance from the closest city centre (⩾200 inhabitants), distR is the 
Euclidean distance from the closest primary and secondary road. σC and 
σR are the standard deviations of the distances distributions to the 
nearest city and road, respectively. 

2.2. Environmental data 

We used land use variables retrieved from Corine Land Cover habitat 
classes, a European biophysical dataset derived from remote sensing. At 
the local scale, land use variables are more relevant to species distri-
bution models than climatic predictors at the local scale (Soberón and 
Nakamura, 2009; Ficetola et al., 2014). For each 200 × 200m2 pixel, we 
measured the distance from the nearest habitat features using 8 habitat 
classes: artificial surface, forest edge, intensive farmland, non-intensive 
farmland, scrubland/herbaceous areas, coastal areas, water courses, 
water bodies. We also computed the proportion of a given habitat type 
within a range of buffer zones around occurrence points (200, 500 and 
1,000 meters). This corresponded to species habitat use at the landscape 
scale in accordance to previous studies (e.g. in reptiles, amphibians and 
bats; Jeliazkov et al. (2014), Azam et al. (2016)). In birds, the landscape 
may be influential at larger scales (e.g. 5,000 meters; Dubos et al. 
(2018)). Given the scale of our study sites, the use of larger buffer zones 
would result in a lack of variability in environmental conditions at 
occurrence points, so we limited the extent of our buffer zones to 1,000 
meters. 

2.3. Occurrence records 

At each of the three sites, we used occurrence records obtained from 
biodiversity databases (Ligue pour la Protection des Oiseaux1, the Art-
sobservasjoner2 and Natuurpunt Studie Association3) for 79 terrestrial 
vertebrate species (58 birds, 10 mammals, 6 amphibians and 5 reptiles). 
We selected one occurrence point per 200 × 200m2 pixel (i.e. data 
thinning/resampling at the resolution of our environmental variables). 
Whilst this process is used as a rule of thumb to limit sampling bias 
driven by multiple observations within the pixel, but it does not account 
for sampling bias driven by aggregated observations in the surrounding 
pixels and at larger scales. After data thinning species with fewer than 10 
occurrence points per site were discarded (n  = 15). The level of sample 
bias can be estimated using the Boyce index, which is usually used as an 
evaluation metric for presence-only data to assess the extent to which a 
spatial layer correctly predicts presence points. More details about the 
species name, sample size (after thinning/resampling) and sample bias 
are available in Table S1 in Supporting Information. 

In our case, the spatial layer pertains to the accessibility map (Fig. 1). 
As observed in Fig. 2, the spatial bias due to accessibility in occurrence 
data was negative in Grote Nete (average Boyce index = − 0.75), slightly 
positive in Thau (average Boyce index  = 0.16) and positive in Trond-
heim (average Boyce index  = 0.59). 

2.4. Distribution modelling 

We built species distribution models using the biomod2 R package 
(Thuiller et al., 2009) and an ensemble of eight modelling techniques: 
generalised linear modelling (GLM), generalised boosting modelling 
(GBM), classification tree analysis (CTA), artificial neural network 
(ANN), surface range envelop (SRE), flexible discriminant analysis 
(FDA), general additive modelling (GAM) and random forest (RF). The 
modelling procedure included (1) a method for pseudo-absence selec-
tion, (2) an environmental variable selection process, (3) a final model 
calibration, and (4) a model evaluation process as summarised in Fig. 3. 

Pseudo-absence selection. For each group, (uncorrected and cor-
rected groups as defined below) we included 10 different sets of 
generated pseudo-absences equal in number to that of presence points 
(Meynard et al., 2019). For models which did not account for field 
accessibility, (and subsequent sampling bias) hereafter referred as the 
“uncorrected group”, we randomly and evenly selected a number of 
pseudo-absences in the study area equal to the number of occurrence 
data within the background (Barbet–Massin et al., 2012; Liu et al., 
2019). For models which accounted for sampling bias, we randomly 
selected pseudo-absences with a sampling probability weighted by AIs 
after excluding presence pixels. This enabled pseudo-absences to share 
the same bias as presence points in accordance with the original concept 
proposed in Phillips et al. (2009). Thus for species that were negatively 
biased by accessibility, i.e. more commonly found in inaccessible areas, 
we weighted sampling probability using negative AIs. 

Variable selection. For both correction modalities, we selected one 
variable per group of inter-correlated variables to avoid collinearity, 
treating each site separately (Pearson’s r ⩾0.7). For each individual 
species, (Hawkins et al., 2017) we assessed the relative importance of 
each variable (calculated as the Pearson’s coefficient between initial 
model predictions and model predictions made when the assessed var-
iable is randomly permuted) with 10 permutations. The final set of 
variables included in the final models were those with a relative 
importance of ⩾0.05 across at least 50% of model runs (Bellard et al., 
2016). 

1 https://www.lpo.fr, last accessed 17/02/2021  
2 https://www.artsobservasjoner.no, last accessed 14/06/2018  
3 https://www.natuurpunt.be/afdelingen/natuurpunt-studie, last accessed 

17/02/2021 
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Final models. We used the eight aforementioned modelling tech-
niques with 10 sets of pseudo absence, and 3 runs of calibration over 
80% of the data (20% for evaluation). 

2.5. Effect of sample bias correction 

Effect on model predictions. We measured the “absolute” effect of 
sample bias correction using indices of similarity and correlation co-
efficients between uncorrected and corrected predictions. We computed 
the Schoener’s D as a measure of projection overlap (computed with the 
ENMTool R package (Warren et al., 2010; Rödder and Engler, 2011)), the 
Pearson’s correlation coefficient (Li and Guo, 2013) and the Spearman’s 
rank coefficient (Phillips et al., 2009). Schoener’s D was computed as 
follows: 

D

(

px, py

)

= 1 −
1
2
∑

i

⃒
⃒pxi − pyi

⃒
⃒ (2)  

For each species, modelling technique, cross-validation run, and pseudo- 
absence run individually, pxi and pyi are the normalised suitability scores 
for uncorrected x and corrected y prediction in grid cell i. This corre-
sponds to the comparison of 30 corrected projections and 30 uncorrec-
ted projections (10 pseudo-absence datasets and 3 cross-validation 
subsets). This therefore represents 8⋅(3⋅10)2

= 7,200 values for each 
species and overlap metrics. It is important to note that some predictions 
failed, particularly for the GBM modelling technique, and were therefore 
not included in the computation of the overlap metrics. See Tables S2 

and S3 in Supporting Information for more details. 
For comparison, we also assessed model performance using four 

classical evaluation metrics based on cross-validation data subsets, 
namely: the Boyce index (computed with the ecospat R package (Cola 
et al., 2017)), the true skill statistic (TSS), the area under the relative 
operating characteristic curve (AUC), and a calibrated AUC (cAUC). The 
cAUC was computed following Hijmans (2012) and calibrated on the 
AUC of a null geographic model. The null geographic model was 
computed with the geoDist function of the dismo R package (Hijmans 
et al., 2015). The Boyce index, a reliability metric, indicates the extent to 
which a spatial layer correctly predicts presence points. The TSS, AUC 
and cAUC are discrimination metrics that indicate the ability to distin-
guish between occupied and unoccupied sites. We also used a one-sided 
Student t-test in order to evaluate whether or not the mean corrected 
performance was significantly greater than the mean uncorrected per-
formance for a given performance metric, species, and modelling tech-
nique. The p-value was computed with the rquery.t.test function of the 
ContDataQC R package (Leppo, 2021). 

Effect relative to model stochasticity. For each species and 
modelling technique, we assessed the extent to which the correction 
technique affected predictions relative to the sources of stochastic 
variation between models of the corrected group (i.e. cross-validation 
runs and pseudo-absence set runs for each modelling technique). 
Model stochasticity was quantified using the aforementioned overlap 
metrics (Schoener’s D, Pearson’s and Spearman’s coefficient) between 
all pairwise combinations of model projections for the each of the 64 
species individually (10 pseudo-absence datasets, 3 cross validation 

Fig. 1. Location of the three study sites in Europe and accessibility maps for each site. The accessibility index is inversely proportional to the Euclidean distance 
between cities and roads and represents the degree to which a geographic point is easily reached by an observer. Black dots represent occurrence records of all species 
pooled together (n  = 46, 11 and 7 species in Trondheim, Grote Nete and Thau, respectively). 
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subsets and 8 modelling techniques, resulting in 8⋅(3⋅10)2 − (3⋅10)
2 = 3,480 

values for each species and overlap metric). We present the Relative 
Overlap Index (ROI), an index of mean overlap between predictions of 
the uncorrected and the corrected groups, relative to the average over-
lap between pairwise model projections of the corrected group. The two 
overlap components of the ROI can be assessed either with similarity 
metrics or correlation coefficients. When based on Schoener’s D, the ROI 
was computed as follows. 

ROI =
D0 − D

D0
(3)  

Where D0 is the mean overlap between model runs of the corrected 
group, D is the mean overlap between runs of the uncorrected and the 
corrected groups. It is important to note that the ROI is always computed 
for a given species and modelling technique, where D0 is based on 
(3⋅10)2 − (3⋅10)

2 = 435 overlaps between model runs, and D is based on 
(3⋅10)2

= 900 overlaps between corrected and uncorrected models runs. 
A value close to 0 represents a perfect match between predictions, i.e. no 
effect of sample bias correction. The overlaps between uncorrected and 
corrected groups tend to be significantly smaller than the overlaps be-
tween runs when the ROI approaches 1 (i.e. strong effect of sample bias 
correction). A negative value can sometimes be obtained when the 
sample size is small, meaning that model stochasticity is of higher 
magnitude than the sample bias correction. In this case, we can thereby 
conclude that there is no effect of sample bias correction. The formula is 
similar when based on Pearson’s and Spearman’s rank coefficient, but 
values were transformed in order to range between 0 and 1 by adding 1 
and dividing by 2. 

We also used a one-sided Student t-test to evaluate whether or not D0 

Fig. 2. Boxplots of measured sample bias in the spatial distribution of the 64 
real species according to the case study site. The bias is assessed with Boyce 
indices measuring how accurately occurrence data are predicted by the 
Accessibility Index. Each boxplot is composed of the first decile, the first 
quartile, the median, the third quartile and the ninth decile. 

Fig. 3. Steps of the methodology developed to study the effect of sample bias correction applied on the species distribution modelling of 64 real and 21 vir-
tual species. 
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was significantly greater than D for a given overlap metric, species, and 
modelling technique. The p-value was computed with the rquery.t.test 
function of the ContDataQC R package (Leppo, 2021). 

Effect on variable selection. We estimated the degree of similarity 
in the selected variables between the uncorrected and corrected groups. 

We used the Jaccard index (Jaccard, 1912) only when considering 
whether or not the variable was selected. We also computed the Bray- 
Curtis index (Bray and Curtis, 1957) when accounting for variable 
importance. 

Table 1 
Variables and response functions used to generate virtual species, and variables selected during the modelling process for the uncorrected and the cor-
rected group.a  

Variable used for 
generation 

Response function Site Uncorrected group Selected 
variable 

Variable 
importance 

Corrected group Selected 
variable 

Variable 
importance 

Distance from non- 
intensive agriculture 

Logistic (beta = − 500, 
alpha = − 5000) 

Grote Nete Proportion of non-intensive 
agriculture within 500 m 

0.579 Proportion of non-intensive 
agriculture within 500 m 

0.592   

Trondheim Distance from non-intensive 
agriculture 

0.781 Distance from non-intensive 
agriculture 

0.804   

Thau NDVI 0.478 NDVI 0.453    
Grassland Index 0.127 Grassland Index 0.143    
Distance from forest edges 0.149 Distance from forest edges 0.158    
Distance from intensive 
agriculture 

0.124 Distance from intensive 
agriculture 

0.141      

Distance from water courses 0.117  

Distance from intensive 
agriculture 

Logistic (beta  = 500, 
alpha = − 5000) 

Grote Nete Distance from intensive 
agriculture 

0.792 Distance from intensive 
agriculture 

0.809   

Trondheim Distance from intensive 
agriculture 

0.751 Distance from intensive 
agriculture 

0.754    

Distance from forest edges 0.097 Distance from forest edges 0.113   
Thau Distance from intensive 

agriculture 
0.851 Distance from intensive 

agriculture 
0.892    

NDVI 0.049   
Distance from water 

courses 
Gaussian (mean  = 100, 
SD  = 100) 

Grote Nete Distance from water courses 0.871 Distance from water courses 0.897   

Trondheim Distance from water courses 0.818 Distance from water courses 0.880    
Distance from coastal areas 0.066     

Thau Distance from water courses 0.932 Distance from water courses 0.937 
Distance from water 

courses 
Gaussian (mean  = 100, 
SD  = 500) 

Grote Nete Distance from water courses 0.647 Distance from water courses 0.770    

Distance from non-intensive 
agriculture 

0.110     

Trondheim Distance from water courses 0.594 Distance from water courses 0.747    
Distance from coastal areas 0.066     

Thau Distance from water courses 0.891 Distance from water courses 0.902 
Grassland Index Logistic (beta = − 1000, 

alpha = − 50) 
Grote Nete Grassland Index 0.568 Grassland Index 0.575    

Proportion of non-intensive 
agriculture within 200m 

0.074     

Trondheim Grassland Index 0.802 Grassland Index 0.834   
Thau Grassland Index 0.864 Grassland Index 0.879 

Distance from open 
natural areas 

Logistic (beta = − 500, 
alpha = − 5000) 

Grote Nete Proportion of open natural 
areas within 200 m 

0.495 Proportion of open natural 
areas within 200 m 

0.393    

Distance from open natural 
areas 

0.315 Distance from open natural 
areas 

0.42   

Trondheim Distance from open natural 
areas 

0.367 Distance from open natural 
areas 

0.391    

Proportion of open natural areas 
within 200 m 

0.394 Proportion of open natural 
areas within 200 m 

0.439    

Distance from forest edges 0.117     
Thau Proportion of non-intensive 

agriculture within 500m 
0.297 Proportion of non-intensive 

agriculture within 500m 
0.298    

NDVI 0.313 NDVI 0.326    
Distance from forest edges 0.184 Distance from forest edges 0.176 

Distance from open 
natural areas 

Logistic (beta = − 500, 
alpha = − 2000) 

Grote Nete Distance from open natural 
areas 

0.786 Distance from open natural 
areas 

0.808   

Trondheim Distance from open natural 
areas 

0.496 Distance from open natural 
areas 

0.609    

Distance from intensive 
agriculture 

0.197     

Thau Distance from forest edges 0.55 Distance from forest edges 0.617    
Distance from intensive 
agriculture within 200m 

0.234 Distance from intensive 
agriculture within 200m 

0.12    

Distance from water courses 0.108    

a We have provided the distribution family and the parameters of the response function. The variables used to generate the species for which the relative 
importance increased after correction, and variables which were not used for which the relative importance decreased are shown in bold. 
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2.6. Testing whether changes correspond to actual improvements using 
virtual species 

For each of the three study sites, we generated a set of 7 virtual 
species, with different ecological niches, generated at each site (21 
species in total) using the Virtualspecies R package (Leroy et al., 2016). 
The probability of their presence was generated according to a rela-
tionship with a single environmental variable (parameters and shape of 
the relationships are provided in Table 1). We produced presence- 
absence maps using a probability threshold of 0.6 and sampled 300 
presence points. For species associated with the grassland index and the 
proportion of herbaceous areas within 500 meters, for which there were 
fewer than 300 pixels, we respectively selected 100 and 80 presence 
points. We then produced a spatially biased sample for the 21 virtual 
species by weighting the probability of selection using the Accessibility 
Index. More details about the species name, sample size, and sample bias 
are available in Table S4 in Supporting Information. 

For the generated species, we used the same distribution modelling 
framework and metrics to assess the effect of sample bias correction as 
those used for the real species. It is again worth noting that some pre-
dictions failed (particularly for the GBM modelling technique) and were 
therefore excluded from the computation of the overlap metrics (see 
Tables S5 and S6 in Supporting Information for more details). 

Did the correction effect correspond to an improvement? The 
virtual species generated with simulated sample bias enabled us to test 
whether the correction technique actually improved the models’ ability 
to predict the “true” distribution (Meynard and Kaplan, 2012). Using the 
Schoener’s D overlap, the Pearson’s correlation coefficient and the root- 
mean-square error (RMSE) to quantify the degree to which model pre-
dictions were improved by the correction technique, we compared the 
predicted probability of occurrence of the corrected and uncorrected 
groups with the “true” probability of occurrence. 

We relied on a one-sided Student t-test to evaluate whether or not the 
overlap with the “true” distribution was significantly greater for the 
corrected group than the uncorrected group for a given overlap metric, 
species, and modelling technique. The p-value was computed with the 
rquery.t.test function of the ContDataQC R package (Leppo, 2021). 

We used the following procedure to assess Schoener’s D and classic 
performance metrics’ (Boyce, cAUC, AUC and TSS) ability to assess the 
effect of correction. We took the overlap with the “true” distribution as 
reference for dividing each species and modelling technique into two 
groups (effect/no effect). This was based upon the value of the signifi-
cance threshold δ determined by the one-sided Student t-test p-value 
(lower than δ/higher than δ)., We followed the same process with the 
Schoener’D overlap (p-value associated with the comparison between 
D0 and D), the Boyce, cAUC, AUC and TSS (p-values associated with the 
comparison of performance metrics for the corrected and uncorrected 
projections). We then built five tables of confusion to see how the five 
metrics classified the species for each modelling technique when 
compared with the reference for a given significance threshold δ. To 
measure the proportion of species and modelling techniques classified 
into the same category (effect and no effect) we computed “accuracy” for 
a given significance threshold δ. 

Did the correction improve the biological relevance of variable 
selection? We determined whether variable selection was relevant by 
comparing the variables used to generate the virtual species with those 
selected before and after correction. 

3. Results 

3.1. Effect of sample bias correction 

Effect on model predictions. The effect of correction was largely 
consistent between sites as shown by the overlap between projections 
built from uncorrected and corrected pseudo-absences, plotted in 

Fig. 4a. Model projections shared about 80% of information (Schoener’s 
D) common to uncorrected and corrected models. Maps of the projection 
are available in Supporting Information (Figures S1 to S17). Generally, 
there were no significant differences between Boyce, AUC, and TSS 
indices between groups (Fig. 4c). Only the cAUC showed a significant 
effect of correction for a majority of species and modelling techniques 
over the three sites, as indicated by the low median p-value (Fig. 4c). 

Effect on variable selection. At Thau and Trondheim, we found 
important differences in variable selection (Jaccard indices) and vari-
able importance (Bray-Curtis indices) between corrected and uncorrec-
ted models (Fig. 4b). 

3.2. Relative effect of correction 

The effect of correction was high compared to model stochasticity in 
Trondheim, and to a lesser extent in Thau. This is shown by the lower 
overlaps between treatments (i.e. corrected and uncorrected groups) 
compared to overlaps between model replicates (Fig. 5). At the 
remaining site, the effect of correction was of similar magnitude to that 
of model replicates. This result remained consistent when using Pear-
son’s and Spearman’s coefficients as a measure of overlap (Fig. S28 in 
Supporting Information). 

A direct relationship exists between the ROI and the one-sided Stu-
dent t-test p-value used to evaluate whether the overlap between runs 
(D0) was significantly greater than the overlap between corrected and 
uncorrected projections (D). Indeed, we can show that all the p-values 
associated with ROI strictly higher than 0.02 are strictly lower than 0.05 
(Fig. S29 in Supporting Information). The majority of ROI values in Thau 
and Trondheim were higher than 0.02 (as shown in the inset of Fig. 5). 

3.3. Did the correction actually improve predictions? 

The correction remarkably improved distribution predictions in 
Trondheim and Grote Nete for the vast majority of species and modelling 
techniques (Fig. 6a). The results were less impressive in Thau with less 
than 42% of the species and modelling techniques showing an 
improvement. Maps of the projection are available in Supporting In-
formation (Figs. S18 to S23). 

In terms of “accuracy” with regards to the classification of species 
and modelling techniques into two groups (effect/no effect), the results 
obtained using Schoener’s D (p-value associated with the comparison 
between D0 and D) are more in line with the classification (considering 
the “true” distribution) than those obtained using the classic perfor-
mance metrics (Boyce, cAUC, AUC and TSS). This may be observed in 
Fig. 6b. 

3.4. Did the correction improve the biological relevance of the selected 
variables? 

Sample bias correction improved the biological relevance for 17 
virtual species (Table 1). The improvement was characterised by an 
increase in relative importance for the relevant variable (i.e. used to 
generate the species; n  = 9), or by an increase in the importance of the 
relevant variable and a decrease the importance of irrelevant variables 
(n  = 8). For two such instances, the improvement was mitigated by an 
increase in the relative importance of irrelevant variables. 

4. Discussion 

The efficiency of sample bias correction based on accessibility varies 
between sites and species. The effect of correction depends upon the 
landscape complexity at each site, and on the degree of spatial bias in the 
occurrence data and predictor variables. In absence of independent data, 
the effect of the correction cannot be assessed with classic evaluation 
metrics (difference in performance, or absolute overlap between 
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corrected and uncorrected projections). The sample generated bias in 
virtual species enabled us to verify that the Relative Overlap Index 
represented better the effect of correction than alternative approaches. 

4.1. Effect of sample bias correction 

In this study, we found that the impact of sample bias correction 
primarily depended upon the study site and, to a lesser extent, on spe-
cies. Sample bias correction primarily affected species distribution 
predictions in Trondheim and, to a lesser extent, in Thau. The fact that 
the impact of correction between sites differed may be explained by 
variations in the spatial scale and landscape complexity between sites. 

The accessibility index was based upon site-specific characteristics and 
reflects a relative measure of distance. The less accessible zones were 
geographically closer to the more accessible ones at smaller spatial 
scales, and the absolute distance may prove unproblematic in terms of 
accessibility. This suggests that sampling bias correction, when based on 
accessibility, is less necessary when studying areas with homogeneous 
distributions of roads and towns at smaller spatial scales. 

Additionally, accessibility maps may not reflect sample bias equally 
for all species and sites. Accessibility maps can be built on the basis of 
topography, land use, and property, to better represent species or site- 
specific sample bias. In any case, the comparisons with the “true”prob-
ability of occurrence of virtual species suggested that the correction was 
likely to improve model predictions at each site for a high number of 
species and modelling techniques (Fig. 6a). 

We also investigated whether the effect of correction differed be-
tween sites and according to the sample bias, sample size and the 
modelling technique. Methodological details, results and related dis-
cussion are available in Supporting Information. The effect of correction 
on predictions was greater when sample bias was positive but remained 
highly heterogeneous, even among species with strong sample biases. 
Variation in ROI value tends to decrease with increasing sample size. 
Species with low sample sizes (fewer than 100 occurrences after thin-
ning/resampling) cover a very wide range of ROI values from negative 
value (close to − 0.1) to very high ROI value (up to 0.6). This is pre-
sumably because the model stochasticity may be higher as a result of 
lower accuracy (Stockwell and Peterson, 2002). More details are avail-
able in Supporting information. 

4.2. Biological relevance of variable selection 

Variable selection differed the most after correction at Trondheim, 
where correction was most effective and accessibility gradients were 
clearest. For the most part, models of the uncorrected group selected 
additional variables that were not biologically meaningful, presumably 
because they were locally correlated with the accessibility index 
(intensive agriculture, water courses and distance to the coast in 
Trondheim; Figs. S1 to S17 in Supporting Information). In Trondheim, 
models tended to explain the absence of occurrence data in the inac-
cessible area by the environmental variable which was most represented 
there. Virtual species indicated that the correction increased the relative 
importance of biologically meaningful variables, since they were often 
used to generate species distribution. This result is supported by the 
virtual species analysis, wherein the effect of correction decreased when 

Fig. 4. Site-specific variation in the effect of sample bias correction. (a) Boxplots of the three overlap measures between corrected and uncorrected predictions. 
Each boxplot is composed of the average overlap between 30 corrected and 30 uncorrected projections obtained for each species and each modelling technique. (b) 
Boxplots of the variable selection similarity (one value per species). (c) Boxplots of the p-value of a one-sided Student t-test to evaluate whether the mean per-
formance of corrected group is greater than the mean performance of corrected group. The grey horizontal line represents the 0.05 significance threshold. Each 
boxplot is composed of the first decile, the first quartile, the median, the third quartile and the ninth decile. 

Fig. 5. Site-specific variation in the relative effect of sample bias correc-
tion. Relationship between the effect of sample bias correction (Schoener’s D 
overlap between uncorrected and corrected predictions D) and the effect of 
model stochasticity (Schoener’s D overlap between model runs D0). Points 
located below the y  = x line represent models for which the relative effect of 
sample bias correction exceeds that of model stochasticity. The inset shows the 
boxplots of the Relative Overlap Index (ROI) according to the case study site. 
The horizontal grey line represents the ROI threshold value 0.02 associated 
with the one-sided Student t-test significance threshold 0.05 (see Fig. S29 in 
Supporting Information for more details). Each boxplot is composed of the first 
decile, the lower hinge, the median, the upper hinge and the ninth decile. 
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the species habitat variable was correlated with accessibility (e.g. dis-
tance from intensive agriculture in Trondheim correlated with the AI, 
Pearson’s r  = 0.80). This result underlines that the biological relevance 
of the variable selected before and after correction needs to be carefully 
investigated, in accordance with the recommendations given in Hijmans 
(2012) and Fourcade et al. (2018). 

When the geographic sampling bias translates into a bias in the 
environmental predictors, the benefit conferred by sample bias correc-
tion with accessibility maps may be limited – as is consistent with the 
target-group approach (Ranc et al., 2017). In other terms, when the 
distribution of environmental variables matches that of accessibility, 
issues related to sample biases cannot be corrected with accessibility 
maps. In our study regions, this may be the case for species that are most 
impacted by urbanisation (Geslin et al., 2013) and intensive agriculture 
(Jeliazkov et al., 2016; Olivier et al., 2020). 

4.3. Correction effect relative to model stochasticity 

In the absence of independent, standardised data, the performance of 
SDMs and correction methods cannot be properly assessed. Here, we 
propose to measure the effect of correction relative to the within-model 
stochasticity (between runs of varying input parameters, individually, 
for each modelling technique) to inform the potential benefit conferred 
by correction. We show that the Relative Overlap Index was in better 
agreement than the classic cross-validation performance metrics when 
concerning changes between corrected and uncorrected predictions of 
virtual species. The ROI also yielded better results with regards to 
changes in variable selection and the relative importance across sites 
and species. The use of this index may be generalisable to species for 
which habitat is not restricted to the same section of the accessibility 
gradient. This metric can be used to indicate whether species distribu-
tion models are likely to be improved by sample bias correction. 

4.4. Cross-validation metrics 

The performance metrics based on cross-validation failed to detect 
an improvement in species range predictions, even for cAUC. This differs 
from the findings of Hertzog et al. (2014), which assessed the perfor-
mance of a variety of bias correction techniques based on the model’s 

ability to predict the range of a dung beetle (Coprophagous Scar-
abaeidae). This study found a striking difference between the evaluation 
of partitioned datasets and field validation. In their study, cAUC was in 
agreement with field validation. In our case, the cAUC showed an effect 
of correction on real species but not virtual ones with perfectly known 
distribution and generated bias. This calls into question the reliability of 
cAUC to properly identify a change after correction. As specified by 
Hijmans (2012), a null geographic model may not be relevant when a 
species occurs in a single continuous range. Perhaps this may explain 
why no improvement of correction was detected in some cases. Another 
recently developed evaluation method considers the accumulation curve 
of occurrences within the area predicted as suitable as well as the 
amount of uninformative niche space predicted (Jiménez and Soberón, 
2020). This method is appropriate when absence data are unavailable 
and is similar to our approach in that the evaluation is relative to a 
random component. It is recommended that multiple metrics describing 
various aspects of model performance be reported, so as to improve the 
understanding and transparency of SDMs (Araújo et al., 2019). Our re-
sults suggest that the performance of sample bias correction should be 
assessed using the Relative Overlap Index, and that alternative metrics 
may be misleading. The ROI is to be interpreted as the degree of change 
in spatial predictions whilst accounting for variation between model 
replicates. 

4.5. Generalisation and limitations 

Our analyses included a wide range of species (n  = 64) of various 
taxa (four classes of vertebrates) with varying responses to environ-
mental predictors. We generated a set of virtual species with contrasting 
ecological preferences (e.g. dependence on water courses or open, nat-
ural areas) and varying degrees of specialisation commonly found in 
amphibians, bats, and birds (Godet et al., 2015; Jeliazkov et al., 2014; 
Dubos et al., 2021). We also attempted to represent the diversity of 
species sensitivity to anthropogenic disturbance by including species 
with a negative response to intensive agriculture (Chiron et al., 2014). 
However, our study does not encompass the entirety of species’ distri-
bution, nor does it account for climatic predictors, which may reduce the 
scope of our conclusions. The correction method best improved our 
predictions at the largest site which suggests, that our correction 

Fig. 6. Comparison with the “true” probability of occurrence for the uncorrected and the corrected groups at three sites (virtual species). (a) Boxplots of 
the p-value obtained from a one-sided Student t-test evaluating whether the overlap between Schoener’s D and the “true” distribution is significantly greater for the 
corrected group than the uncorrected group, for a given species and modelling technique. Similar plots obtained with the Pearson’s coefficient and the RMSE are 
available in Fig. S30 in Supporting Information. (b) Evolution of the accuracy values as a function of the significance threshold δ. The five tables of confusion 
pertaining to accuracy values obtained within a significance threshold δ = 0.05 are available in Table S7 in Supporting Information. 
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method, based on accessibility, may prove efficient at larger geographic 
scales where terrain accessibility is a clear issue. Aside from terrain 
accessibility, the efficiency of a correction technique may also differ 
depending upon the type of bias. Further studies should be designed at 
broader taxonomic and geographic scales and should assess potential 
differences between various correction techniques. 

4.6. Increasing the potential use of biodiversity databases 

The limited availability of high-quality data is still a major hindrance 
to effective decision-making, despite the increasing availability of open- 
source, publicly available data and EU policies to promote open access 
and data sharing. Accounting for sample bias is challenging, especially 
for rare species and those for which the distribution range is small with 
subsequently fewer occurrence points. Pseudo-absence selection, 
weighted by accessibility maps, enables us to account for sample bias 
without the use of filtering techniques that reduce the amount of data 
available. Sample bias correction is also viable for when concerning 
broadly distributed species in the event that occurrence data are 
spatially biased – provided that the effect of correction is assessed 
(Hertzog et al., 2014). When standardised data are unavailable, effec-
tively assessing the efficiency of sample bias correction techniques re-
mains challenging. However, the relative measure of its effect and the 
use of virtual species could prove to be critical for the increased inclu-
sion of large, heterogeneous, biased datasets in species distribution 
models and biodiversity assessments. 
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