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Abstract

1. The conservation of seabirds is increasingly important for their role as indicator

species of ocean ecosystems, which are predicted to experience increasing levels

of exploitation this century. Safeguarding these ecosystems will require predictive,

spatial studies of seabird foraging hotspots. Current research on seabird foraging

hotspots has established a significant relationship between probability of pres-

ence and several environmental variables, including Sea Surface Temperature (SST).

However, inter-annual, basin-wide variation has the potential to invalidate these

models, which depend on seasonal mesoscale variability.

2. In this study, we present a novel solution to predict presence from spatially

and temporally variable environmental predictors, while reducing the influence

of large-scale basin-wide variation. We model the Maximum Entropy (MaxENT)

Model-derived relationship between StandardizedMonthly SST (StdSST) andHabi-

tat Suitability using Gaussian curve models, and then apply these models to

independent StdSST data to produce heatmaps of predicted seabird presence.

3. In this study, we demonstrate StdSST to be a functional environmental predictor

of seabird presence, within a Gaussian curve model framework. We demonstrate

accurate predictions of the model’s training data and of independent seabird

presence data to a high degree of accuracy (area under the receiver operator char-

acteristic curve > 0.65) for four species of Auk: Common Guillemots (Uria aalge),

Razorbills (Alca torda), Atlantic Puffins (Fratercula arctica) andBrunnich’s Guillemots

(Uria lomvia).

4. We believe that the methodology we have developed and tested in this study can

be used to guide ecosystem management practices by converting coupled-climate

model predictions into predictions of future presence based on Habitat Suitability

for the species, allowing us to consider the possible effects of climate change and

yearly variation of SST on foraging seabird hotspots in the Barents Sea.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided

the original work is properly cited.
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1 INTRODUCTION

The Barents Sea is an important ecological region for seabirds which

has come under increasing threat from mineral exploitation (Erikstad

et al., 2016;Moreno et al., 2013). Scientists have expressed concerns of

possible oil spills and the long-termdamage this could cause to theBar-

ents Sea ecosystem (Erikstad et al., 2016;Husson et al., 2020; Jakobsen

&Ozhigin, 2011; Skov et al., 2021).

Seabirds are of special interest to marine and coastal conservation

as they are usually k-selected species, with a low reproductive rate

and high mortality at the juvenile stage, when they undergo transi-

tion from parental care to independent foraging (Schreiber & Burger,

2001; Hamer et al., 2001). They also subsist at the upper trophic levels

of the Barents ecosystem, which are the most affected by ecosystem

instability (Thorne, 2010; Cox et al., 2016). This makes their popula-

tions vulnerable to extreme events, both natural (Fayet et al., 2017;

Grémillet et al., 2015) and anthropogenic (Krüger et al., 2017).

Of the seabirds present in the Barents Sea, four species of the

Auk family are particularly vulnerable to an oil spill disaster: Com-

mon Guillemots (Uria aalge), Razorbills (Alca torda), Atlantic Puffins

(Fratercula arctica) and Brunnich’s Guillemots (Uria lomvia) (Figure 1)

(Fauchald et al., 2015; Jakobsen & Ozhigin, 2011). This is because

during the non-breeding season (wintering season), these birds are

foraging at sea while supporting a single, flightless chick (Jakobsen &

Ozhigin, 2011; Harris et al., 2015). They forage during this period for

small fish such as Capelin (Mallotus villosus) and Sandeel (Ammodytes

marinus) by pursuit diving (Anderson et al., 2014;Waggitt et al., 2016).

F IGURE 1 The Auk species used in this study: from left to right,
top to bottom—CommonGuillemot, Razorbill, Puffin and Brunnich’s
Guillemot. These are pelagic diving birds with excellent swimming
skills and limited capacity for flight. They are semi to fully colonial
breeders and lay a single egg per season (Gaston & Jones, 1998).

Oil spill pollution events can cause theirwings to becomeoiled andpre-

vent flight or diving,which leaves individuals unable to forage: resulting

in catastrophic increases in adult and juvenile mortality rate (Riffaut

et al., 2005; Troisi et al., 2006).

Oiling can occur as a result of industrial and shipping accidents, for

example during extraction or transport (Troisi et al., 2006). It would be

useful for future policymakers to be awareof seabird occupancy ranges

when planning mineral exploitation and shipping lanes in order to min-

imize the ecological risks of these activities and support sustainable

use of the Barents Sea ecosystem (Fifield et al., 2017; McGowan et al.,

2013). Spatialmodelling is essential to establish occupancy ranges over

the non-breeding period, as direct observations of seabirds are lim-

ited due to their dispersal over wide ranges and field research at sea

is too infrequent over the winter period (Humphries, 2015; Burger &

Shaffer, 2008). Relying on observational data would result in biased

sampling toward areas with a higher observer count (e.g. coastline,

shipping lanes, oil rigs).

A technique that has beenwidely used in previous studies is to com-

bine remote logging with presence-only modelling (Boyd et al., 2015;

Skov et al., 2016; Phillips &Dudík, 2008). In this method, Geo-Location

Sensors (GLS) are used to record daily seabird positions (Wakefield

et al., 2009; Burger & Shaffer, 2008). After retrieval, these records can

then be combined with ocean conditions obtained from observations,

an oceanmodel or a combination of both to explore covariance of pres-

ence with physical oceanography (de Grissac et al., 2017; Gomez &

Cassini, 2015; Thorne, 2010). This is consistent with the known ecol-

ogy as the spatial distributions of Salinity and Sea Surface Temperature

(SST) have been linked to the formation of plankton concentrations

by previous studies (Sarma et al., 2018; McManus & Woodson, 2012),

which in turn impact species distributions at higher trophic levels

(Thorne, 2010;McGowan et al., 2013).

Previous studies have used the presence-only program MaxENT

to analyse presence and environment data to produce landscapes of

Habitat Suitability, which is a transformation of the Relative Occur-

rence Rate (ROR) of an organism across a given domain (Merow et al.,

2013).MaxENThas beenused in previous studies to determine species

ranges in data-deficient regions (Royle et al., 2012; Çoban et al., 2020),

including at sea (Shahparian et al., 2017; Nachtsheim et al., 2017).

MaxENT has been the preferred choice for some studies thanks to its

user-friendly output and low requirements of user scripting knowledge

(Yackulic et al., 2013;Merow et al., 2013).

A particularly noteworthy set of previous studies have proposed a

new type of presence model in order to assess the risks to seabirds

from possible oil spills in the arctic (Skov et al., 2016; Skov et al., 2021)

using a combination of hydrodynamic, dynamic Habitat Suitability and

agent-based modelling. However, we remain concerned around their

use of raw oceanographic variables such as SST inside these models.
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Salinity and SST are environmental predictors that are prone to large

inter-annual variation at the basin scale (Serykh & Kostianoy, 2019).

This effect can mask spatial variability associated with mesoscale

fronts and underwater topography (Warwick-Evans et al., 2016), which

frequently form the basis for Habitat Suitability modelling at sea

(Scales et al., 2014; Thorne, 2010). This is because ocean fronts pro-

mote nutrientmixing and plankton formationwhich attracts organisms

from higher trophic levels, including our study species (Thorne, 2010;

McManus & Woodson, 2012). As climate change progresses, particu-

larly as the Arctic sea ice cover declines, it is likely that inter-annual

change in Salinity and SST will become more pronounced over time

(Long & Perrie, 2017; Oziel et al., 2016; Serykh & Kostianoy, 2019),

potentially invalidating models which do not account for this variation

in their environment data input.

The hypothesis of this study is that Spatially Standardized SST

(StdSST) is a better environment predictor of Habitat Suitability than

raw SST. To test this, we have the following two aims.

The first aim is to explore the prediction capabilities of Habitat

Suitability models, based on response curves generated by Maxi-

mum Entropy Modelling using the MaxENT software and raw SST

and StdSST as the environment predictors and whether spatial stan-

dardization removes the effect of inter-annual variability in the

SST data, improving the performance of the Habitat Suitability

models.

Our second aim is to develop a tool to produce predictive models

from MaxENT-generated response curves that can be used to make

dynamic predictions of monthly seabird presence from independent

SST data. This tool will allow us to test the accuracy ofmodels based on

raw SST or StdSST (code listed in File S1) and generate maps of future

seabird occupancy ranges (code listed in File S2).

2 MATERIALS AND METHODS

2.1 Seabird geolocation data

The species used in this study were Common Guillemots (Uria aalge),

Razorbills (Alca torda), Atlantic Puffins (Fratercula arctica) and Brun-

nich’s Guillemots (Uria lomvia) (Figure 1). All four species are members

of the Auks, a family of pursuit-diving seabirds which spend the major-

ity of their lives at sea (Gaston & Jones, 1998). While these species

are ecologically distinct in prey choice and foraging habitat in the Bar-

ents Sea, all are mutually threatened from ecological stress caused by

human activity, such as oil spills and overfishing (McGowan et al., 2013;

Fifield et al., 2017). We also believe that SST significantly influences

the foraging habitat of all four species, althoughwe recognize the inde-

pendence of their niches in this study by constructing species-specific

models (St. John Glew et al., 2019).

Whilst GLS data could be used from SEATRACK, due to issues of

licensing, wewere only able toworkwith data produced directly by the

Norwegian Institute for Nature Research (NINA; SEAPOP, 2014). Fur-

ther, the analytical experiment needed to be kept as simple as possible

whilewe established our basicmodel structure and dataflow. For these

reasons, the study was restricted to studying data from the Hornøya

colony (70.39N, 31.56E).

The geospatial data for each seabird species (Figure 1) used in this

study were obtained using GLS: these approximately determine posi-

tions using established knowledge of sunrise and sunset (Burger &

Shaffer, 2008; Christensen-Dalsgaard et al., 2018; Wakefield et al.,

2009). GLS are used extensively by organizations undertaking seabird

spatial studies, including NINA, which forms a part of the SEATRACK

program to bring together seabird tracking data sets from across the

northern polar regions (SEAPOP, 2014). A summary of the presence

data used in this study is provided in Table S1, which shows the number

of records by species andmonth.

GLShave advantages overGPS trackers in presence studies because

they are easier to miniaturize and do not consume power as rapidly as

a GPS system (Humphries, 2015; Burger & Shaffer, 2008). This allows

for measurements to be taken over an extended period of time (up to

3 years or more) and can be easily attached and retrieved from indi-

vidual birds, with no significant impairment of their flight or swimming

abilities (Wakefield et al., 2009; Burger & Shaffer, 2008). The draw-

backs of GLS are their reduced accuracy compared to GPS, and they

require manual retrieval of data from the loggers (similar to mark–

recapture studies) (Burger & Shaffer, 2008). The mean and standard

deviation ofGLSerrorwas estimated tobe186±114km (1.66degrees

of Latitude) in a previous study (Phillips et al., 2004). While imprecise

for a fine-scale foraging study, this is thought to be of low impact for

a broad study of spatial Habitat Suitability (Phillips et al., 2004), given

that the analysis is primarily influenced by presence clusters.

The GLS data were sorted into monthly groups to account for lim-

ited daily data and to reduce the computational complexity in our later

modelling (Figure 2, Data Preparation). The GLS data contained all

months from August to April, excluding September and March, as the

differences in time between sunrise and sunset over latitude is greatly

reduced, causing small errors in the logger’s light detection to create

increasingly larger errors in positioning before and after the equinoxes

(Wakefield et al., 2009; Bindoff et al., 2018).

As the seabird wintering period lasts from August to April (time of

leaving the colony to the timeof return for nesting),we find itmoreuse-

ful to discuss our data and results in terms of ‘Cycles’ instead of years

(e.g. 2011/2012, not 2011 or 2012), tomore accurately reflect the sea-

sonal patterns of the study species. Where single years are noted, it is

only for a specificmonth in the cycle (e.g. August 2013 is the firstmonth

of cycle 2013/2014).

2.2 Environmental data and standardization

The environment data used in this study come from the Hybrid Coor-

dinate Ocean Model (HYCOM) database: HYCOM reanalysis/analysis

data are a homogeneous physical oceanography global data set in

space and time (Dobrynin & Pohlmann, 2015; Wallcraft et al., 2009;

HYCOM, 2022). HYCOM reanalysis/analysis data are produced by

combining inhomogeneous observations with a short-range forecast

from a global ocean model at 1/12 degree horizontal resolution
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F IGURE 2 A flowchart describing our methodology. References to other figures, tables and sections of this paper are included in this figure to
highlight where this stage of the processing chain is relevant. The data used in each stage of the process are wholly reproduced in our data archive
(link included in the DATAAVAILABILITY STATEMENT).
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using data assimilation (Wallcraft et al., 2009). Observations assimi-

lated include surface observations from satellites, XBTs (expendable

bathythermographs), CTDs (conductivity temperature depth), Argo

floats and moored buoys for temperature and salinity (Wallcraft et al.,

2009).

We used both re-analysis and analysis SST and Salinity data on a

0.08-degree uniform interpolated grid from the GLBu0.08 database

(HYCOM, 2022). Re-analysis data were used from the beginning of

2011 to the end of 2012 and after this point only operational analy-

sis datawere available.We used these data to produceASCII rasters of

the monthly averages for each variable to correspond with our seabird

tracking data (Figure 2, Data Preparation). The suitability of both vari-

ables for presence modelling was evaluated during MaxENT model

exploration.

To address the problem of inter-annual basin-wide variation in SST,

in this study we consider Spatially Standardized SST (StdSST) over a

fixed space representing the Barents Sea. This is calculated by sub-

tracting the spatial mean and dividing by the spatial standard deviation

computedover the selecteddomain for eachdata point for eachmonth.

The domain (65N–77N, 10E–60E) was chosen to encompass the Bar-

ents Sea and the majority of the seabird presence data available,

excluding a small number (<20 per species per month) of points that

were outside the domain.

2.3 Application of MaxENT

MaxENT is probabilistic spatial modelling software that is used in eco-

logical studies to determine species occupancy ranges when working

with limited observational data (Morales et al., 2017; Merow et al.,

2013; Royle et al., 2012). It is an input–output program that analy-

ses the covariance of environmental data with species presence data

to produce probability of presence outputs; this is done by compar-

ing points of known presence against a randomly sampled set from the

data (BCCVL, 2019;Merow et al., 2013).

We used MaxENT to produce response curves of the Relative

Occurrence Rate (ROR, Raw output) and Habitat Suitability (ClogLog

output) against SST and StdSST (Figure 2, MaxENT). The ROR func-

tions as an estimate of the probability of a presence record appearing

in a given raster square out of the whole domain, whereas Habitat

Suitability is a complementary log–log transformation of ROR that

approximates the probability of presence independently from the rest

of the domain (Merow et al., 2013).

MaxENT also produces Receiver Operator Characteristic (ROC)

curves and raster plots of Habitat Suitability, which are useful forMax-

ENT model assessment (Figures S1 and S2). These are also useful for

comparison with the corresponding output of the R tool developed in

this study, to check for loss of accuracy. While ROC curves are tradi-

tionally associated with presence–absence data in biological studies

(Lobo et al., 2008), they functionally represent the true positive to false

positive rate of Habitat Suitability predictions, and therefore do not

require absence data (Robin et al., 2011).

Multiple MaxENT runs were performed based on the settings we

have summarized in File S3 (FinalMaxENT settings). The settings were

chosen based on previous studies (Merow et al., 2013; Royle et al.,

2012; Morales et al., 2017) and early findings from our exploration

of model types. MaxENT offers a range of feature classes to model

background–presence response curves. Feature classes aremathemat-

ical transformations of the environment variable prior to MaxENT’s

response curve model fitting, which affect the shape and complexity

of the response curve output (Phillips & Dudík, 2008). MaxENT pro-

vides Linear (L), Quadratic (Q), Product (P), Threshold (T) andHinge (H)

as selectable features, which can be used alone or in any combination

(Phillips & Dudík, 2008; Merow et al., 2013). To decide which combi-

nation of MaxENT features is most appropriate for modelling seabird

presence with SST or StdSST, we performed model runs for all pos-

sible MaxENT feature combinations, using a sample of the 3 months

with the greatest number of seabird presence records per species. We

found that of the possible combinations, Threshold-features-only was

the most frequent best-fit for the model, in terms of area under the

curve (AUC) of the ROC curve (Sonego et al., 2008). The exceptions

where Threshold-features-only was not the best-fit according to AUC

always contained Threshold features as a component and Threshold-

features-only always appeared in the top 10 combinations for every

month sampled (Tables S2 and S3).

MaxENT can also produce models using multiple environment pre-

dictors, and in the beginning of the study we considered using models

based on Salinity and SST; however, Salinity was found to only play a

significant role in foraging zone selection when SST was a poor predic-

tor. This was established through jackknife tests in MaxENT using the

same sampling method we used in feature testing (Figure S3) (Gomez

& Cassini, 2015; Baldwin, 2009). Salinity-dominant models were also

found to be infrequent in these tests, so we decided to focus the study

on a comparison of StdSST and SSTmodels.

2.4 Gaussian modelling of habitat suitability

2.4.1 Hindcast and forecast modelling

The MaxENT model outputs are suitable for assessing species occu-

pancy ranges if we assume that the spatial patterns of the environ-

mental predictors are stable over time; however, the variation of SST

is highly dynamic (Wege et al., 2021; Kowalczyk et al., 2015; Pendleton

et al., 2020). This means that MaxENT models can only provide reli-

able estimates of occupancy in the same period as their training data.

However, the relationship between the environmental predictor and

Habitat Suitability remains relevant if a consistent pattern over time

can be found. The response curve data can then be extracted from the

model output and used to determineHabitat Suitability in independent

environment data.

We created an R tool to produce models of the response curve data

(Files S1 and S2), by computing fits to a Gaussian function which can

then be used to produce Habitat Suitability rasters from independent
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SST or StdSST data (Figure 2, Gaussian Modelling). The function can

thenbeusedwith environmental datawhere seabird presence data are

unavailable to make predictions of species occupancy ranges (File S2).

We decided from a visual inspection of the response curve shapes to

use a Gaussianmodel for our R tool (Figure S4).

We explored two principle approaches for how to apply the mod-

elling technique: monthly groups (e.g. all Augusts) and cycle groups

(e.g. all August to April periods). Cycle groups appeared to have

low coherence in the location of their response curves in terms of

SST/StdSST; however, monthly groups showed good coherence across

cycles (Figure S5) and are therefore easier to model. This also suited

the aims of the study to explore spatial variability of Habitat Suitabil-

ity over inter-annual periods. We tested this tool on single-response

curves first. However, we found through statistical analysis, that is

Analysis of Covariance (ANCOVA), that the resulting predictions could

be sensitive to our choice of response curve to produce the model

(ANCOVA, StdSST p = 0.055 and SST p = 0.005); thus, we decided to

group response curve data by month and to produce a single best-fit

response curve.

Hindcasting used monthly groups of response curve data to solve

for the Gaussian model coefficients and then used the resulting

model to predict the original seabird presence data used in Max-

ENT model training. This was done by generating a Habitat Suitability

landscape using the R model and then comparing against records of

seabird presence. The model output contained a Habitat Suitability

raster plot with seabird presence data overlaid, an ROC based on the

raster and an AUC value that summarizes the ROC curve, which are

used to evaluate the performance of the model (Figures S1 and S2).

These were produced for each month contributing a response curve.

Model AUCs were tabulated and given a colour grade according to

value.

Forecasting then followed on from the hindcast evaluation to test

the model prediction capability using independent environment and

species presence data; these were sourced from future cycles to those

used in the model construction. The methods were otherwise sim-

ilar to those used in hindcasting, with ROC curves and AUCs used

as the main assessment statistic for model prediction accuracy. We

were unable to test all species presence data in forecasting mode due

to the aforementioned limited availability of seabird presence data

for some species (no access to SEATRACK). For this reason, Common

Guillemots and Razorbills were the only two species that have been

tested in forecasting mode. We also conducted a series of statisti-

cal tests to assess any significant difference in AUC values between

models produced using SST and StdSST, and the possible correlation

of AUCs with several key model parameters, including Prediction Lag

(length of time to time of prediction), Number of Model Response

Curves used to train the model, Species and the Monthly Group.

These were tested using paired T-tests (after an F-test to confirm

homoscedasticity) andANCOVA, respectively. Fligner–Killeen tests for

homoscedasticity between non-parametric groups were used to test

specifically for variability in AUC results, which would indicate that

differences in model accuracy were linked to one or more dependent

variable.

2.4.2 R tool ‘GaussNpROC’

The R tool (Files S1 and S2) was written in R 4.0.5 with packages

ggplot, pROC and sp (Wickham, 2009; R Core Team, 2019; Robin et al.,

2011; Bivand et al., 2013). The tool fits a Gaussian model curve to a

given monthly group of MaxENT response curves using the following

equation:

f(x) = a × exp

(
−
(x − b)

2

2c2

)
.

The above equation represents a standard function for a Gaussian

curve or normal distribution. There are three coefficients: a (maximum

value of f(x)), b (the mean and median of x, f(b) = a) and c (standard

deviation, controls the shape of the curve).

The three coefficients were calculated as follows: ‘a’ was taken from

the maximum of each response curve for Habitat Suitability and ‘b’

from the corresponding values of SST/StdSST, both were then aver-

aged. ‘c’ was then calculated using a least squares approach to fit

the model curve to the monthly group of response curves. Using this

method with our monthly groups, we were able to generate models

that described the relationship of SST or StdSST to Habitat Suitabil-

ity for each month in the non-breeding season for each of our four

species. We made the following assumptions when calculating model

coefficients:

1. TheMaxENT response curves all approximate a Gaussian function.

2. The MaxENT response curves in each monthly group are simi-

lar in height and width; that is there is no significant variation in

coefficients between cycles for a particular month.

3. The mean of each MaxENT response curve is not significantly

different to themedian (minimal skew).

If the first assumption is violated, we would expect the model to be

a poor fit to the true shape of the response curves and hencewewould

expect the prediction accuracy to be near random. This is the most

serious assumption that might be violated, but the likelihood of this

happening in biological response curves is low, unless a sampling inten-

sity problem is present (Coudun & Gégout, 2006; Peppler-Lisbach,

2008). An exception to this is when the response curve is multimodal,

which we discuss in Section 4. Violation of the second assumption can

produce a similar effect, due to the model fit having large residuals,

resulting in poor prediction quality (see Figure S4, SST). While this is

not as serious a violation as the first assumption, it ismore frequent and

large violations were often responsible for poor model performance.

The third assumption is equivalent to assuming that skew is insignifi-

cant. While it is theoretically possible to accommodate skew into the

model, this has not been done at this stage and is left for future work.

Skew can produce a noticeable impact in least squares fitting by caus-

ing under- and overshoot of the model on either side of the maxima.

In practice, this produces similar results to a violation of the second

assumption when considering residuals. However, the effects of skew

were found to be limited in this study. Large differences between skew
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HODGES ET AL. 7 of 16

in the monthly response curves would produce an impact, but this is

more related to a violation of the second assumption. Ecological data

are likely to produce some limited violations of these assumptions;

however, as long as these violations remain small, we consider this to

be tolerable.

2.5 Model assessment using ROC curves and
AUCs

To quantify the accuracy of MaxENT and the Gaussian models devel-

oped using the R tool, we have used ROC curves and their AUC values

throughout this study (Phillips & Dudík, 2008; Sonego et al., 2008).

The quality of the models was assessed in the hindcast phase using

the following thresholds: AUC < 0.65 is considered to indicate near-

random association between predicted Habitat Suitability and seabird

presence data, AUC > 0.80 is considered to indicate that they are

highly correlated and0.65<AUC<0.80 indicates an imperfect but still

correlative association. These AUC values were tabulated and colour

coded corresponding to their threshold group in Table 1. We also used

this framework to inform our interpretation of the forecasting results,

though this part of the analysis was more focused on exploring cor-

relations between AUC and the dependent variables of the model

predictions defined earlier.

To make the ROC curves using the R tool, we paired the pre-

dictedHabitat Suitabilitywith aBoolean variable that indicates species

presence (Robin et al., 2011). The ROC curves are then produced by

varying the discrimination threshold, or the minimumHabitat Suitabil-

ity required for a positive identification of seabird presence (Robin

et al., 2011). This is then compared with the Boolean of confirmed

presences to produce the ratio of true positive to false positive iden-

tification for a single threshold, which corresponds to a single point

on the ROC curve (Robin et al., 2011). The true positive rate corre-

sponds to the Sensitivity axis on a ROC curve and the false positive

rate corresponds to 1 – Specificity (Robin et al., 2011). The lat-

ter would theoretically require the true negative rate; however, it

can be calculated empirically from the observed false positive rate

(Robin et al., 2011).

The AUCs are calculated from the resulting ROC curve using trape-

zoids, and approximate the probability of finding a true positive event

associatedwith higher values of Habitat Suitability (Robin et al., 2011).

While AUCs have been traditionally employed in bioinformatics to

assess model performance (Sonego et al., 2008; Hanczar et al., 2010),

they must be interpreted with care, as the AUC value represents an

integral of all possible discrimination thresholds (Lobo et al., 2008),

but a single threshold will likely be used to interpret the model out-

put (Lobo et al., 2008). However, we argue that this does not make

AUCs unusable as suggested by some (Lobo et al., 2008), instead we

suggest interpreting AUC as the prediction efficiency of the model.

Higher efficiency is indicated by the appearance of high true positive

to false positive rate under the lower end of the range of discrimination

threshold values.

3 RESULTS

3.1 Standardization of SSTs and the effects on
basin-wide inter-annual variation of cycle data

In comparison to SST, StdSST shows a reduced inter-annual variabil-

ity, which we later show impacts this variable’s ability to predict AUC

values, especiallywhen introducing time lags into themodel for predic-

tion (see Section 3.3). This is shown in Figure 3 where the StdSST can

be seen to reduce the impact of inter-annual variability on cycle dis-

similarity compared to SST by centring values associated with seabird

presence within a consistent range between cycles.

3.2 Hindcasting and model testing

Our initial hypothesis that seabird occurrence is better explained by

a regionally standardized form of SST is highlighted by our results

shown in Figures 4–6, which shows the difference in Habitat Suitabil-

ity between StdSST and SST for August 2013 overlaid with presence

for our four species. This shows that presence records are more likely

to be found in regions of high Habitat Suitability produced by models

using StdSST (Figure 4), whereas models using SST omit a large quan-

tity of the records (Figure S6). This appears to be due to inter-annual

variability caused by abnormal warming of the Barents Sea, which in

raw SST models causes a poleward shift in predicted Habitat Suitabil-

ity that is not reflected by the spatial distribution of the presence data

(Figure 5).

Hindcasts using Gaussian models based on StdSST response curves

produce significantly higher AUC values than models based on SST

(one-way paired t-test, p = 0.007; F-test, p = 0.540). The mean differ-

ence between SST- and StdSST-produced AUCs is approximately 0.01;

however, differences between the paired AUCs ranged up to 0.27 in

favour of StdSST (see Table S4). The case for StdSST is further sup-

ported through comparison of ROC curves generated by StdSST and

SST models during anomalous years (Figure 6), which show that mod-

els based on StdSST have a higher true positive to false positive rate for

lower discrimination thresholds.

Of the AUC values produced, neither SST or StdSST was commonly

found to drop below the near-random threshold (AUC < 0.65) that we

set except for Brunnich’s Guillemot models (Table 1). In several cases,

higher AUC values were obtained (AUC > 0.80) indicating a strong

relationship between predicted Habitat Suitability and seabird pres-

ence (Table 1). This confirms that temperature is a critical component

of species prediction.

Of the four species studied, the Common Guillemot and Razorbill

spatial distributions seem to work best with our modelling technique

(Table 1), Puffin models perform less well but are still useful and

Brunnich’s Guillemotmodels frequently produce poor AUCs. Although

Razorbillmodels performwell, their response curveswereoccasionally

found to be multi-modal, which possibly indicates that these species

split into a number of foraging sub-groups that select for different
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8 of 16 HODGES ET AL.

TABLE 1 AUC evaluation values (model accuracy) of ROC curves for hindcast Habitat Suitability from our response curvemodels compared
against seabird presence

Note: Blue shaded cells indicate models that made particularly accurate predictions, whereas red shaded cells indicate near-random association between

Habitat Suitability and seabird presence, as indicated by the legend. Organized by model type, species, predicted cycle and the month of that cycle.
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HODGES ET AL. 9 of 16

F IGURE 3 The effects of Spatially Standardizing Sea Surface Temperature (StdSST) data associated with CommonGuillemot presence;
blue-dashed bars represent mean upper and lower quartiles for Sea Surface Temperature (SST)/StdSST at locations where CommonGuillemots
are present during August. Left panel for SSTs and right panel for StdSSTs. The effect of standardization is to reduce inter-annual variability in SST
between cycles, which increases the weight of spatial variability in response curvemodelling.

regionswith different temperature characteristics (seeHestem, 2019).

Brunnich’sGuillemot response curves contained a large degree of skew

and some multimodality, probably due to the spread of their presence

data; we believe that this violation of the first and third assumptions of

our modelling is the cause of their low AUC values.

Due to these characteristics in response curve shape and pres-

ence clustering between species (Figures 4–6), this would indicate

ecologically that Common Guillemots and Puffins are specialized for-

agers, repeatedly selecting regions with similar ecological and physical

features to forage in. On the other hand, Brunnich’s Guillemots and

Razorbills behave opportunistically as evidenced by prevalence of

multi-modality and skew (this behaviour was later verified for Razor-

bills by Hestem, 2019); however; this has a limited impact on Razorbill

models owing to their coastal distribution, which is localized to the

Norwegian Coastal Current.

3.3 Forecasting

The AUC values from forecasting are high for all of StdSST (98.8%

AUCs> 0.65) and amajority of SSTmodels (81.0%AUCs> 0.65) (Table

S5); therefore, the response curve model we are using is also capable

of predicting future distributions of seabird presence. Forecast AUC

values were also found to be significantly different between StdSST

and SST models (one-way paired t-test, p < 0.001; F-test, p = 0.33),

with a greater mean difference compared to hindcasts (0.10 vs. 0.01 in

favour of StdSST; Figure 7). Our analysis of covariance between AUCs

and the dependent variables used in model construction (see Sec-

tion 2) found no significant difference between Common Guillemots

and Razorbills in StdSST forecasts (ANCOVA, p= 0.423); however, sig-

nificant difference did appear between these species for SST forecasts

(ANCOVA, p < 0.001). It was also found that the number of Model

Cycles (MaxENT response curves) used did not produce any significant

difference inAUCoutput in SSTmodels (ANCOVA,p=0.435), although

for StdSST models AUC difference was found to be close to significant

(ANCOVA, p= 0.093).

Time to Prediction (forecast lag) did not produce significant differ-

ence in median AUC values for StdSST models (ANCOVA, p = 0.693);

however, models based on SST experienced a significant loss inmedian

AUC over time (ANCOVA, p = 0.040) (Figure 7). There appeared to

be a significant effect on the variance of StdSST AUCs due to quartile

expansionwith increasing Time to Prediction (Figure 7); however, both

a variance test (Fligner–Killeen, p = 0.233) and linear models of the

upper and lower quartiles returned inconclusive results (LinearModel,

Q1 p = 0.100 and Q3 p = 0.213). This indicates that the average qual-

ity of the predictions is preserved over time in StdSST models, while
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10 of 16 HODGES ET AL.

F IGURE 4 Heatmaps of hindcast Habitat Suitability using independently generated Spatially Standardizing Sea Surface Temperature (StdSST)
models for each of the four study species. Influx of warmwater from the North Atlantic Current appears to be themost important determinant of
Habitat Suitability, closely followed by the Norwegian Coastal Current. The predictedmonth is August 2013, part of an anomalous cycle
(2013/2014) of SST data. Dots represent Geo-Location Sensors (GLS) data for each species.

F IGURE 5 Difference of Habitat Suitability between using Spatially Standardizing Sea Surface Temperature (StdSST) and Sea Surface
Temperature (SST) (StdSST Cloglog – SST Cloglog). The StdSSTmodels place greater importance on the southern regions of the Barents Sea, which
tend to contain the centres of seabird Geo-Location Sensors (GLS) distributions. PredictedMonth is August 2013, part of an anomalous cycle
(2013/2014) of SST data. Dots represent GLS data for each species.
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HODGES ET AL. 11 of 16

F IGURE 6 Receiver Operator Characteristic (ROC) curves corresponding to the heatmaps shown in Figures 6–7.While both ROC curves
based on using Spatially Standardizing Sea Surface Temperature (StdSST) (red lines) and Sea Surface Temperature (SST) (blue lines) response curve
models indicate sufficient non-randomness for all species except Brunnich’s Guillemots in this example, the StdSST curve performs better in all
cases as it shows a greater rate of Sensitivity to 1 – Specificity at multiple positions on the graphs.

prediction quality in SSTmodels decays significantly with every year of

forecast lag.

We also discovered that the prediction capability increases rapidly

toward the end of the wintering season in our forecast models

(ANCOVA, StdSST and SST p < 0.001). This is due to the birds migrat-

ing back to the colony to end their wintering season, which causes

their presence distribution to be more clustered around the Hornøya

colony. The quartiles of AUCs in StdSST forecasting models are wider

in October and November (Figure S7) as this is during the middle of

the wintering season, where presence clusters are most spread out

across the Barents Sea. We observe an increase in median AUC over

time in a cycle due to gradual localization and contraction of the GLS

clusters to the immediate vicinity of Hornøya (see Data Availability

Statement). Unequal variancewas confirmed using the Fligner–Killeen

test for homoscedasticity across all the monthly groups of AUC in our

forecasting (Fligner–Killeen, p< 0.001).

4 DISCUSSION

This study has shown that spatially standardized SST is a stronger

environmental predictor than raw SST in predicting species presence

for three of the four Auk species in our novel analytical framework,

confirming our hypothesis. The study has produced response curve

models for both StdSST and SST, for each individual species, and has

demonstrated that StdSST is a better environmental predictor than

SST (except for Brunnich’s Guillemots). We believe that the main

reason for the better performance of the StdSST models is their

reduced susceptibility to inter-annual variability compared to raw SST
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12 of 16 HODGES ET AL.

F IGURE 7 The role of prediction lag in area under the curve (AUC) variability for Sea Surface Temperature (SST) (left) and Spatially
Standardizing Sea Surface Temperature (StdSST) (right) models. Prediction lag is equivalent to the time in years from the last year used for model
training to the year of themodel prediction.We observe a stable trend in AUC for StdSSTmodels and a decay in the quality of SSTmodels. Dashed
and dotted lines represent linear models of the quartiles andmedian of the AUC boxplots over time.

models. Inter-annual variability can affect the quality of predictions

in models that do not account for it, as large temporal variability in

the environmental training data can invalidate the response curves

and impact the predictive power for anomalous months (Trevail et al.,

2019; Kowalczyk et al., 2015; El-Gabbas et al., 2021). Inter-annual

basin wide variability is particularly noticeable for cycles 2013/2014

and 2016/2017, which we identify as anomalous. This finding is con-

firmed by an oceanographic study of the region during spring 2014

which found that inflow from the North Atlantic Current was charac-

terized by warmer and more saline conditions compared to historical

observations (Dobrynin & Pohlmann, 2015). However, our generalized

response curves are species dependent and in some cases showmulti-

modality, causing a drop in AUC value. This is particularly common

for Brunnich’s Guillemots, rarely in Razorbills and occasionally for the

other two species. It is possible that there is a better choice of func-

tion that can account for multi-modality and response curve skew, for

examplemixed gaussianmodels or b-splines.

The SST–Habitat Suitability models in our study show northward

shifts under heightened SSTs (Figure S6). This might be in accor-

dance with long-term expectations for changing species ranges under

climate change (Husson et al., 2020); however, the northward shift

is poorly reflected in contemporary GLS distributions, which clus-

ter around lower Latitudes, with the possible exception of Brunnich’s

Guillemots. This might indicate a decoupling or delayed response of

species distributions to shifting climate zones.

Whilst we have usedMaxENT to derive our response curves, it must

be stressed that MaxENT itself does not make predictions (Merow

et al., 2013; Guillera-Arroita et al., 2014). In fact, the use of SST or

StdSST with MaxENT does not affect the shape of the generatedMax-

ENT response curves, but does affect their location on a shared scale,

and hence the Gaussian fitting of a generalized response curve (Figure

S4). Standardization also does not generally affect the MaxENT AUC

values, because there is no comparison of data across months, so

inter-annual basin-wide variation does not appear in theMaxENT pro-

cess, and standardization only affects the scale of the environment

variable. Once predictions take place, in hindcasting or forecasting,

standardization can have a noticeable effect by reducing the impact

of inter-annual variation. Using StdSST for modelling and prediction
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HODGES ET AL. 13 of 16

using these response curves results in better predictive power than an

SST range taken directly from MaxENT due to the reduced influence

of inter-annual variability. It should also be stressed that in presence-

only models, a low Habitat Suitability value does not imply an absence

of species presence, just a low probability-of-presence/preference.

Although the prediction models performed well, uncertainty is

introduced through both the environmental data and the seabird

geo-location in both the model training of MaxENT and the R tool

models. The uncertainty in the environment variables comes from the

HYCOMreanalysis/analysis, which provides our best four-dimensional

view of the ocean state over a recent historical time period (Poli

et al., 2017; Dobrynin & Pohlmann, 2015). The quality of the reanaly-

sis is strongly influenced by how observations from multiple sources

are distributed in space and time, as well as the ocean model and

data assimilation which combines the observations with the model

(Wallcraft et al., 2009; Dobrynin & Pohlmann, 2015). Limited sampling

and geo-location error also contribute to uncertainty in our seabird

data: geo-location errors can result from aberrant light-level record-

ings, and small variations in light level can translate to large deviations

in position, especially around the time of the equinoxes, which is why

March and September have been excluded from the analysis (Phillips

et al., 2004; Bindoff et al., 2018). Uncertainty in our modelling is also

related to minor violations of the three assumptions used in this study

andmost frequently appears as an imbalance in the residuals produced

by the least-squares fitting.

This methodology has been applied solely to Auk species using the

Barents Sea as a closed domain; however, it could also be applied to

other species and other regions, including vulnerable marinemammals

such as BaleenWhales, Ross Seals (Ommatophoca rossi) and dolphins in

the Southern Ocean: several previous studies have demonstrated the

importance of ocean thermal conditions to these species when seek-

ing prey at depth by using MaxENT to model their occupancy ranges

(El-Gabbas et al., 2021; Pendleton et al., 2020; Wege et al., 2021).

These studies also benefit from the use of multiple environment vari-

ables which is not the case for this study (see Skov et al. [2021] and

Krüger et al. [2017] for further examples of multiple environment

variables in MaxENT model training). However, these studies do not

consider the impact of inter-annual variability or long-term changes

in the environment variables. Future work will also explore the use

of salinity and temperature profiles in the type of model presented in

this study, since these have been implicated in the distribution of fish

shoals and plankton concentrations (de Grissac et al., 2017; Thorne,

2010; Cox et al., 2016), which directly impact the birds’ foraging

habits.

The potential for incorporating MaxENT output into further ana-

lytical stages has been made clear by another notable study (Krüger

et al., 2017). While also oriented toward conservation study, the aims

of the Krüger et al. (2017) study are divergent from our own, leading to

clear differences in post-processing of MaxENT output. In particular,

their study does not consider the impact of inter-annual variability on

their models or conduct forecasts and instead focuses on moderating

the value of Habitat Suitability with respect to the spatial variability of

anthropogenic impacts across a wide range of species.

Our study confirms several reported characteristics of seabird win-

tering movements from past studies, including reliable repetition of

monthly spatial patterns, species-specific site selection and gradual

clustering of the population as the wintering season comes to an end

(Scales et al., 2014; Cox et al., 2016; McGowan et al., 2013; Fauchald

et al., 2015). It is unfortunate that there remains a large amount of

variance in forecast model prediction capability during October and

November, during the height of the wintering season and when the

birds are ecologically most vulnerable (St. John Glew et al., 2019;

Fauchald et al., 2015). This is likely due to their more dispersed dis-

tribution (Figure S7) and opportunistic foraging and avoidance of

competition during these periods (Hestem, 2019).

We aim to reduce this problem in future work by refining our R tool

with more complex modelling techniques to account for non-normal

behaviour of the response curves, as described above. Addition of fur-

ther seabird presence records to create a larger data range is also

desirable to further explore the effect of more extended forecast lags

on models based on raw SST and StdSST. We could also use the R tool

developed in this study to look at a wider array of environment vari-

ables that are commonly used inmodellingHabitat Suitability for upper

trophic levels, such as sea ice extent and salinity, which have been used

in marine mammal studies (El-Gabbas et al., 2021; Pendleton et al.,

2020;Wege et al., 2021).

Past events have demonstrated the severe ecological impacts of oil

spills from rigs and tankers on seabird populations (Fauchald et al.,

2015; Fifield et al., 2017). The tool that has been developed in this

study and evaluated for Auk species in the Barents Sea can also be

used to informmarine protected area planning to protect such vulner-

able species against the possibility of industrial disasters (Krüger et al.,

2017; Fifield et al., 2017).
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SUPPORTING INFORMATION

Additional supporting information can be found online in the Support-

ing Information section at the end of this article.

Figure S1: An example of MaxEnt’s output; a geographical represen-

tation of Habitat Suitability as predicted by the model, with heat map

colouring for probable location and white squares representing the

GLS coordinates fed into the program

Figure S2: An example of our output fromMaxEnt

Figure S3: Comparison of MaxENT Jackknife tests for August 2012

(top, a typical year) with August 2013 (bottom, an anomalous year)

Figure S4: A visual demonstration of how the Gaussian modelling

works

Figure S5: Assembled plots of MaxENT response curves for Habitat

Suitability to Standardized Sea Surface Temperature

Figure S6: Heatmaps of hindcast Habitat Suitability using SST

models.

Figure S7: Forecast AUC variability across the non-breeding cycle

Table S1: Sample size of GLS logger data, sorted by Species, Month and

Cycle.
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