
Vol.:(0123456789)1 3

Oecologia (2022) 198:889–904
https://doi.org/10.1007/s00442-022-05150-7

METHODS

Nonlinear spatial and temporal decomposition provides insight 
for climate change effects on sub‑Arctic herbivore populations

Hannah E. Correia1,2   · Torkild Tveraa3 · Audun Stien4 · Nigel Yoccoz3,4

Received: 23 October 2021 / Accepted: 6 March 2022 / Published online: 24 March 2022 
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022, corrected publication 2022

Abstract
Global temperatures are increasing, affecting timing and availability of vegetation along with relationships between plants 
and their consumers. We examined the effect of population density, herd body condition in the previous year, elevation, 
plant productivity and phenology, snow, and winter onset on juvenile body mass in 63 semi-domesticated populations of 
Rangifer tarandus throughout Norway using spatiotemporal generalized additive models (GAMs) and varying coefficient 
models (VCMs). Optimal climate windows were calculated at both the regional and national level using a novel nonlinear 
climate window algorithm optimized for prediction. Spatial and temporal variation in effects of population and environmental 
predictors were considered using a model including covariates decomposed into spatial, temporal, and residual components. 
The performance of this decomposed model was compared to spatiotemporal GAMs and VCMs. The decomposed model 
provided the best fit and lowest prediction errors. A positive effect of herd body condition in the previous year explained most 
of the deviance in calf body mass, followed by a more complex effect of population density. A negative effect of timing of 
spring and positive effect of winter onset on juvenile body mass suggested that a snow free season was positive for juvenile 
body mass growth. Our findings suggest early spring onset and later winter permanent snow cover as reinforcers of early-life 
conditions which support more robust reindeer populations. Our methodological improvements for climate window analyses 
and effect size measures for decomposed variables provide important contributions to account for, measure, and interpret 
nonlinear relationships between climate and animal populations at large scales.

Keywords  Climate window · Decomposed covariates · Generalized additive models · Plant productivity · Reindeer · 
Varying coefficient models

Introduction

Climate change is strongly influencing the environment in 
the twenty first century (Sala et al. 2000), and average tem-
perature increases are presently up to three times higher in 

the Arctic than elsewhere (Masson-Delmotte et al. 2018). 
This warming trend is leading to earlier spring events (Høye 
et al. 2007) and longer growing seasons (Keeling et al. 1996; 
Oberbauer et al. 2013), which can lead to a lack of syn-
chrony between producer (e.g. plants) and consumer (e.g. 
herbivores) biological events. These trophic mismatches 
may negatively impact reproductive success and population 
recruitment in large herbivores (Post and Forchhammer 
2008; Post et al. 2009). However, some herbivore popula-
tions have shown population growth as a result of milder 
weather conditions in the Arctic (Tyler et al. 2008). A clear 
understanding of plant-herbivore interactions under climate 
change is complicated by varied and lagged responses of 
vegetation to climate change. We examined one such rela-
tionship between climate, plant productivity and phenology, 
and a sub-Arctic herbivore in which evidence suggesting 
their success or failure under a changing climate has been 
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heavily mixed: the semi-domesticated reindeer, Rangifer 
tarandus.

Research on the effects of climate change on reindeer 
populations has focused on increased plant productivity and 
earlier phenology, along with winter conditions such as rain-
on-snow events (Helle and Kojola 2008; Stien et al. 2012; 
Tveraa et al. 2013). Earlier onset of spring and low snow 
cover appear to benefit reindeer populations (Callaghan 
et al. 2011; Helle and Kojola 2008; Turunen et al. 2009), but 
increasing frequency of rapid winter warming events which 
create compacted snow and thick ice can limit reindeer’s 
abilities to forage (Albon et al. 2016; Bokhorst et al. 2008; 
Hansen et al. 2011). Rain-on-snow events negatively impact 
reindeer fecundity (Stien et al. 2012) and survival (Hansen 
et al. 2019b). Further, deep snow pack increases energy 
expenditure of reindeer, reducing body condition over win-
ter (Collins and Smith 1991; Helle and Kojola 2008), and 
forcing herds from higher elevation areas, which increases 
their susceptibility to predation (Tablado et al. 2014).

Autumn conditions, such as delayed onset of winter with 
later snowfall, and their potential importance to reindeer 
populations have largely been overlooked. Delayed onset of 
winter prompting decreases in autumn snow have the poten-
tial to counteract negative effects of harsher winters on rein-
deer populations (Loe et al. 2020; Movik 2018). However, 
warmer autumns from delayed winter onset can also affect 
herd nutrition via changes in plant phenology, with fitness 
consequences for females around the time of conception that 
influence juvenile mass and survival (Paoli et al. 2019, 2020; 
Veiberg et al. 2017). Juvenile herbivores are particularly sen-
sitive to the effects of changing environmental conditions 
(Bonenfant et al. 2009; Gaillard et al. 1998; Ogutu et al. 
2015; Owen-Smith 1990; Owen-Smith et al. 2005). Juvenile 
mass achieved at the onset of winter is density-dependent 
in many large ungulates, including reindeer (Sæther 1997; 
Skogland 1990), and is a main determining factor for win-
ter survival of temperate and Arctic herbivore juveniles 
(Bonenfant et al. 2009; Gaillard et al. 1997), making it a key 
measure for reindeer population dynamics. We expect that 
insights on the role of autumn and early winter climate on 
reindeer populations through juvenile body mass is therefore 
key to establishing the consequences of climate change on 
Arctic herbivores.

Changes in climate, plant biomass, and phenology over 
time are not consistent across space, precipitating changes 
in herbivore populations that also vary over space (Gordon 
et al. 2004; Zhao et al. 2019). Thus, analyses of large-scale 
plant-herbivore systems require the incorporation of spa-
tial information (Mårell et al. 2006; Ndegwa Mundia and 
Murayama 2009; Serneels and Lambin 2001). Generalized 
additive models (GAMs) and the related varying coefficient 
models (VCMs) are suitable for modelling spatial depend-
ence (Hastie and Tibshirani 1990; Mu et al. 2018; Wood 

2006), and both models have been employed extensively for 
spatial analyses in epidemiology, forestry, and large-scale 
fisheries management (Augustin et al. 2009, 2013; Finley 
2011; Torabi 2014; Woolford et al. 2011). However, typical 
spatiotemporal GAMs and VCMs involve multidimensional 
nonparametric smoothing coefficient functions that are dif-
ficult to interpret. A modified GAM described by Oedek-
oven et al. (2017) used spatial and temporal averaging to 
create a more interpretable model, which has the potential 
to simplify incorporation of spatial and temporal effects. 
The model gives a practical approach for studying problems 
where it is desired to consider the average effects of spatial, 
temporal, and residual components separately. However, this 
model’s prediction performance compared to the usual spa-
tiotemporal GAM structure is unknown, the incorporation 
of interaction terms into the model has not been consid-
ered or explored, and the model’s usability for ecologists 
and wildlife managers is not entirely clear. Nonparametric 
spatiotemporal models that accurately predict population 
responses, measure the spatial and temporal contributions of 
environmental variables to population changes, and capture 
large-scale vegetative transitions would be broadly applica-
ble to ecologists studying the effects of climate change on 
vulnerable populations.

In this study, we extend and combine two statistical 
methods using nonparametric regression to model the rela-
tionship of vegetation and climate on the calf body mass of 
reindeer throughout Norway over three decades. We use this 
model to test our hypothesis that autumn and winter environ-
mental conditions not typically examined in plant-herbivore 
systems, particularly the timing of the onset of winter, will 
have a moderate effect on juvenile reindeer body mass after 
accounting for spatiotemporal effects and density depend-
ence. We accomplish this by (1) determining for specific 
climate variables which part of the year was most predic-
tive of changes in individual juvenile condition of reindeer 
using a nonlinear climate window algorithm focused on pre-
diction rather than model fit; (2) separately examining the 
spatial, temporal, and spatiotemporal associations of climate 
conditions and population characteristics to juvenile condi-
tion using a decomposed GAM with interaction terms; (3) 
assessing the prediction ability of the decomposed GAM 
with more common spatiotemporal GAMs through cross-
validation; and (4) expanding inference for the variable 
decomposition approach by estimating effect sizes of the 
spatial, temporal, and spatiotemportal components for each 
decomposed variable and interaction variables separately, 
providing much-needed measures for interpretation of the 
decomposed model’s results. We conclude by discussing the 
effects of spatial and temporal components of significant 
environmental predictors on juvenile reindeer body mass and 
the implications for relationships of plant productivity and 
phenology on sub-Arctic herbivores under climate change.
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Methods

Reindeer data

The data on reindeer in Norway were collected from 
annual reports submitted by herders for 78 populations 
covering a majority of the Norwegian reindeer herding 
area (Tveraa et al. 2007), thereby providing consistent, 
long-term observations of ungulate responses to food 
availability across a large region. Reports from 1981–2015 
included the estimated total number of reindeer in winter 
censuses and the average body mass in kilograms (±0.05 
kg) of the slaughtered and skinned juveniles. Culling takes 
place in the first autumn of the calves’ lives, between 
October and December (Marin et al. 2020). Five herds of 
domesticated reindeer in southern Norway were excluded 
(Lom, Vågå, Fram, and Filefjell), as they are managed dif-
ferently from the Sami-managed semi-domesticated herds 
considered in our analyses; one more herd (district 30/31 
Kautokeino vår-høstbeite) was removed for insufficient 
reporting due to reorganization of the herding districts. 
The average body mass of slaughtered calves for each herd 
was used as the response in all models. Two anomalous 
juvenile body mass observations were removed, where 
body mass was recorded as greater than 35 kilograms. 
Reindeer populations were grouped into ten management 
regions as in Tveraa et al. (2014).

Population size affects juvenile body mass, with larger 
populations resulting in lower juvenile body weights 
(Skogland 1990; Tveraa et al. 2013). Population density 
was therefore included as an area-adjusted predictor, cal-
culated as a herd’s population size divided by the area 
of that herd’s summer pasture land in square kilometres. 
Since the mother’s body condition before birth impacts 
her offspring’s mass (Bårdsen and Tveraa 2012; Tveraa 
et al. 2003), we included maternal effects in modelling 
juvenile body mass by using the previous autumn/winter 
average juvenile slaughter weight as a measure of herd 
body condition previous to birth, as per Tveraa et  al. 
(2014). Also, herd body condition in the previous year is 
also density dependent (Ballesteros et al. 2013; Bårdsen 
2017), so an interaction between herd body condition and 
density was included in all models. Many of the study 
herds do not have access to pastures with favourable win-
ter climate, and the relationship between food availability 
and herd condition differ between herds with access to 
favourable winter grazing lands and those without (Tveraa 
et al. 2007). Therefore spatial information and altitude are 
likely to contribute to variability in juvenile body mass. 
Longitude-latitude pairs representing approximate herd 
locations and the respective average elevation of the herd 
locations (obtained from normalized difference vegetation 

index (NDVI) data, see “Plant productivity” section) were 
included as predictors. There were insufficient observa-
tions of calf mass for years 1981–1983, 2014, and 2015, 
and since the previous year’s calf mass was also used as 
a measure of herd body condition, the data used in all 
models were limited to years 1985–2013. Once matched to 
available climate data (see “Plant productivity” and “Cli-
mate and plant phenology” sections), 63 herding districts 
were represented in the analyses.

Plant productivity

Plant productivity was measured by the normalized differ-
ence vegetation index (NDVI) for locations within the herds’ 
summer grazing land, data for which were collected by the 
Advanced Very High Resolution Radiometer (AVHRR) 
instrument deployed on a satellite system and available for 
full years since 1982 (Pinzon and Tucker 2014; Tucker et al. 
2005). NDVI is calculated from visible red and near-infrared 
light reflected by vegetation. NDVI values range from zero 
to one, where NDVI values near zero indicate no visible 
plant productivity, when plant material has either died down 
or is covered by snowfall. We also obtained average altitudes 
of the areas from which NDVI values were taken. NDVI 
values were recorded twice a month, and the average NDVI 
value for all pixels (each pixel is 1 km2 ) within a herd’s sum-
mer pasture was calculated for each time point. In addition 
the average altitude, latitude, and longitude of the summer 
pastures were calculated for each herd using the GRASS GIS 
software (GRASS Development Team 2017).

Typically, NDVI values may be summarized over a month 
or season corresponding to ecologically significant grazing 
times for reindeer. The choice of period is highly dependent 
on assumptions about the importance of specific times of the 
year for reindeer, and the significance of these variables may 
depend entirely on how many NDVI values within a year are 
included in the summary statistic. Instead, we preferred to 
select the time of year and the window of time when plant 
productivity most strongly influenced reindeer health, i.e., 
body mass. We devised an improved method based on a 
technique by van de Pol et al. (2016) using flexible, non-
parametric GAMs to determine the optimal window with 
highest prediction power for each environmental variable 
(Staton et al. 2017).

While red and infrared light values to calculate NDVI are 
recorded year-round, NDVI values for the parts of Norway 
located within the Arctic Circle during the winter months 
with polar nights are not meaningful, since satellites are 
unable to obtain accurate visible light readings. The reindeer 
in the Finnmark region of Norway have common winter pas-
tures in the interior (Tveraa et al. 2013, 2014), however the 
populations further south remain in their pasture locations 
year-round. Annual cullings take place between September 
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and March each year, however exact dates for herd cullings 
are not recorded. Therefore, we considered only those NDVI 
values from mid-April (week 15) to mid-October (week 43) 
when reindeer calves were most likely to be occupying the 
summer pastures and NDVI values were expected be greater 
than zero. Suitable NDVI windows for each of 10 herding 
regions as defined in Tveraa et al. (2014) and one window 
for all of Norway were determined by selecting a predictive 
time window for each region, as described below. The same 
approach was used for calculating a national window for 
NDVI.

Since the relationship between NDVI and reindeer body 
mass could be nonlinear and the form of the relationship is 
unknown, a GAM of the form

was used to determine the forecasting performance of vari-
ous windows for NDVI, assuming a Gaussian distribution, 
�0 as the parametric intercept, juvenile body mass as the 
response Y, the mean NDVI calculated for a given window 
as the predictor x, and f as the unknown smooth function 
relating yearly mean NDVI to juvenile body mass. For each 
year, the response of juvenile body mass was averaged over 
space within regions when calculating the regional windows 
and averaged over the entire country for the national win-
dow. Less than one-third of the total Sami herds submitted 
annual reports for years before 1984, and this would skew 
the national average of juvenile body mass for those years. 
Therefore, only NDVI and herd data from 1984 to 2013 
were used for all windows. A mean absolute error (MAE) 
was calculated for each window using a time-series forecast 
cross-validation procedure, with a minimum of 10 years of 
data (from 1984 to 1993) used to train the model (Staton 
et al. 2017). Since the raw NDVI values were summarized 
for every two weeks, we set the minimum window size to 
four weeks to provide at least two NDVI values to be aver-
aged. This prevented late snow melts from creating a mean 
NDVI of zero. Zero values contributed no information for 
the model. We therefore limited the window searches to 
the Julian weeks of 15–42 for the national climate window, 
while the search windows for each region were limited to 
weeks 22–39 (typically the beginning of June to end of Sep-
tember), due to several northern regions having short snow-
free summers. The mean NDVI using the regional window 
(indicated by rNDVI

�,t , where, henceforth, each location of 
a herd’s summer pasture is s∈S where S is the set of loca-
tions with longitude-latitude coordinates u, v, and t is the 
year) was calculated for each year from 1985 through 2013 
at each herd’s location using the optimal window for NDVI 
for that herd’s respective region. The mean NDVI using the 
national window (indicated by nNDVI

�,t ) was also calculated 
for each year at each herd’s location. Regional differences 

�(Y) = �0 + f (x)

in span and the beginning and end points of windows were 
compared to the national window.

Climate and plant phenology

Since maximum increase in vegetation is positively associated 
with high quality forage (Hamel et al. 2009), availability of 
high-quality forage for reindeer was measured by the day of the 
year (DOY) when the maximum NDVI value first occurred for 
each herd’s location and each year. Spring onset for each year 
and each herd’s location was considered as the DOY when 
NDVI first reached 50% of its yearly maximum. This was for-
mally defined as the first DOY when the value of NDVI was 
equal to [max(NDVI) −min(NDVI)]∕2 , where max(NDVI) 
was the maximum NDVI value for a given herd’s location in a 
given year and min(NDVI) was the minimum NDVI value for 
the same location in the same year (Tveraa et al. 2013). Since 
red and infrared light from vegetation are very low in winter 
months due to significant snow cover, even in areas without 
polar nights, min(NDVI) is almost always equal to 0. The date 
at which NDVI values reached 50% of their yearly maximum 
is a good approximation of peak vegetative green-up and maxi-
mum nitrogen concentration in forage plants in Arctic regions 
(Doiron et al. 2013; Hogrefe et al. 2017). Both the DOY when 
maximum NDVI occurred and spring onset were calculated 
from the AVHRR data (Pinzon and Tucker 2014; Tucker et al. 
2005). Daily snow depth (mm) for each of the herding districts 
from 1984 to 2013 were obtained from the Norwegian Mete-
orological Institute (Lussana et al. 2018; MET Norway 2018). 
The area under the spline curve (AUC) of ground snow depth 
was calculated for each year at the summer grazing pastures 
using daily snow depth values from September to September. 
To capture the beginning of continuous snow cover for the 
winter season of a given year, the onset of winter for a given 
year was defined as the first DOY which had at least two con-
secutive weeks of snow on the ground (snow depth > 0 mm). 
These two variables captured the severity and duration of the 
snow cover season, since increased snow depth and snow cover 
duration can reduce the physical condition of reindeer, affect 
soil moisture and nutrient levels, and change plant phenology 
(Helle and Kojola 2008; Tomaszewska et al. 2020).

GAMs and VCMs

To model juvenile reindeer body mass, we considered a gen-
eralized additive model with interaction (Coull et al. 2001). 
In order to include spatiotemporal information appropriately, 
we used the model

where

(1)�(Y) = F
�,t + f5(NDVI�,t) + GG

�,t
,
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Here, elev
�
 was the average elevation of the herd’s summer 

grazing lands, B
�,t−1 was herd body condition in the previous 

year, N
�,t was population density of the herd, (B

�,t−1, N�,t) 
was the tensor product interaction of herd condition in the 
previous year with herd population density in the observed 
year, NDVI

�,t was the mean NDVI of the predetermined win-
dow (one of rNDVI or nNDVI ), peakNDVIdoy

�,t was the 
DOY when peak NDVI occurred, SOdoy

�,t was spring onset, 
snow

�,t was the AUC of snow, and WPGSdoy
�,t was the onset 

of winter. The spatiotemporal component was accommo-
dated via a three-dimensional tensor smoothing function z0 , 
while f1,… , f8 represent one-dimensional smoothers. The 
response �(Y) is average juvenile body mass assuming a 
scaled Student’s t distribution, (Y − �)∕� ∼ t� , where � and 
� are estimated alongside the smoothing parameters (Wood 
et al. 2016). The Student’s t distribution was preferred, since 
the average juvenile body mass was a heavy-tailed response 
variable. To ensure the effects of latitude on elevation were 
removed, elevation was categorized into three groups by 
latitude in kilometres from 0 ◦ latitude: south (<7200 km), 
mid (7200–7600 km), and north (>7600 km). The term 
fvcat(elev�) generated a different smooth for each latitudinal 
category of elevation, where vcat is the latitude categories 
south, mid, and north. The R (version 4.0.3) package mgcv 
was again used to fit the GAM using the regional climate 
windows for NDVI,

henceforth labeled as GAMr, and the GAM using the 
national climate window for NDVI,

henceforth GAMn, and estimate their parameters (R Core 
Team 2020; Wood 2017).

VCMs, which are related to GAMs, were also consid-
ered in our analyses for their ability to include covariate 
spatiotemporal effects in the model. Herd body condition 
in the previous year and population density are likely to be 
spatially-dependent, as northern herds are on average denser 
than southern herds in Norway (Tveraa et al. 2013). NDVI 
and snow depth are also spatially-dependent, with north-
ern and inland locations generally having shorter growing 
season, lower NDVI values, and more snow than southern 
and coastal locations (Pettorelli et al. 2005; Hogda et al. 
2001; Dyrrdal et al. 2013). Tensor product smooths have 
been used with success in fisheries and ecology research to 

F
�,t =z0(�, t) + fvcat(elev�) + f1(peakNDVIdoy�,t)

+ f2(SOdoy�,t) + f3(WPGSdoy
�,t) + f4(B�,t−1, N�,t)

and

GG
�,t
= f6(B�,t−1) + f7(N�,t) + f8(snow�,t) .

�(Y) = F
�,t + f5(rNDVI�,t) + GG

�,t
,

�(Y) = F
�,t + f5(nNDVI�,t) + GG

�,t
,

handle environmental covariates where the effect is expected 
to change over space and time (Augustin et al. 2013; Finley 
2011; Phillips et al. 2014). We employ a partial VCM given 
as

where xk are predictors that are not considered spatially 
dependent, fk are unknown smooth functions, wj are spa-
tially-varying predictors for specific locations and time 
points, and z0, zj are unknown tensor product smooths con-
structed using three-dimensional spatiotemporal basis func-
tions that account for the differing units of measure in space 
and time. The partial VCM structure allows for functional 
coefficients of four predictor variables (herd body condition, 
population density, NDVI, and snow depth) to vary over 
space and time. We can rewrite (2) in the explicit notation 
of (1) as

and F
�,t is as defined previously. The partial VCM denoted 

VCMr that includes the regional NDVI window, defined as

and the VCM denoted VCMn with the national NDVI win-
dow, given as

were also fit using the mgcv package in R version 4.0.3 
(Hastie and Tibshirani 1993; Wood 2017).

Decomposed interactions model

We wished to examine spatial and temporal components 
for eight of the variables in (1): herd body condition in the 
previous year, population density, the interaction of herd 
condition in the previous year with population density, mean 
NDVI, peak NDVI DOY, spring onset, AUC of snow depth, 
and onset of winter. We employed a technique where each 
variable was decomposed into spatial, temporal, and residual 
components by averaging over time and over space (Oede-
koven et al. 2017). Specifically, given a variable Q

�,t with a 
value at each location � ∈ S where S is a collection of loca-
tions represented as longitude-latitude pairs u, v and time 
t = 1,… , T  , the spatial component of variable Q is repre-
sented by the average of Q over time for each location, and 
the temporal component of Q is the average of Q over space 
for each time point,

(2)�(Y) = z0(�, t) +

p
∑

k=1

fk(xk) +

q
∑

j=1

zj(�, t) ⋅ wj ,

�(Y) =F
�,t + f5(NDVI�,t) + GV

�,t
, where

GV
�,t
=z1(�, t) ⋅ B�,t−1 + z2(�, t) ⋅ N�,t

+ z3(�, t) ⋅ NDVI�,t + z4(�, t) ⋅ snow�,t ,

�(Y) = F
�,t + f5(rNDVI�,t) + GV

�,t
,

�(Y) = F
�,t + f5(nNDVI�,t) + GV

�,t
,
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respectively, where NT is the number of time points for each 
location and NS is the number of spatial points or locations 
for each time point. The residual component is calculated 
by subtracting from the original value of Q

�,t the spatial and 
temporal components, Qr = Q

�,t − Q
�
− Qt.

The decomposed model we chose to compare to the 
GAMs and partial VCMs given in the “GAMs and VCMs” 
section was

where all variables are decomposed versions of those given 
in (1) and nNDVI being the mean of NDVI for the country-
wide window selected in the “Plant productivity” section. 
The national window for NDVI was essential to enable 
spatial and temporal decomposition of the effect of mean 
NDVI calculated from a standardized, country-level win-
dow. While the covariate smoothers discussed in the “GAMs 
and VCMs” section attempt to account for spatial and spa-
tiotemporal effects by smoothing the variable over space-
time, decomposing the variables into spatial, temporal, and 
residual components allows us to consider their average 
effects separately. A significant extension of the Oedekoven 
et al. (2017) decomposition in this study is the inclusion of 
decomposed interaction terms f7(B�

, N
�
) , f8(Bt−1, Nt) , and 

f9(Br, Nr) into the decomposed model, which has not been 
considered previously. These terms specifically allow us to 
examine the interaction of the spatial, temporal, and residual 
components of herd body condition and herd density. We 
therefore refer to this model as the decomposed interactions 
model, henceforth denoted DIMn.

Proportion of deviance explained

We quantified the contribution of each predictor to the 
complete model by calculating the proportion of deviance 
explained for each variable,

Q
�
=

1

NT

T
∑

t=1

Q
�,t and Qt =

1

NS

∑

�∈S

Q
�,t

�(Y) =fvcat(elev�) + f1(B�
) + f2(Bt−1) + f3(Br) + f4(N�

) + f5(Nt) + f6(Nr)

+ f7(B�
, N

�
) + f8(Bt−1, Nt) + f9(Br, Nr)

+ f10(nNDVI�) + f11(nNDVIt) + f12(nNDVIr)

+ f13(peakNDVIdoy�) + f14(peakNDVIdoyt)

+ f15(peakNDVIdoyr)

+ f16(SOdoy�) + f17(SOdoyt) + f18(SOdoyr)

+ f19(snow�
) + f20(snowt) + f21(snowr)

+ f22(WPGSdoy
�
) + f23(WPGSdoyt) + f24(WPGSdoyr) ,

where Dfull is the deviance of the full model, Dred is the 
deviance of the reduced model with the variable of inter-
est removed, and Dnull is the deviance of the null model. 
Typically, the scaled Student’s t distribution parameters � 
and � can be estimated automatically when fitting a GAM 
with such a distribution in mgcv. Care must be taken to use 
identical values for parameters � and � for the full, reduced, 
and null models when calculating proportion of deviance 

explained for GAMs and partial VCMs using the scaled 
Student’s t distribution. We chose to allow mgcv to esti-
mate the distribution parameters for the full decomposed 
interactions model, then used these same parameters when 
fitting the reduced and null models. Deviance explained 
was calculated for each of the decomposed variables in the 
DIMn model and their undecomposed counterparts in the 
GAMr model for direct comparison of the predictors in each 
model.

Cross‑validation and model comparison

GAM and partial VCM variations (see “GAMs and VCMs” 
section) were considered to determine an optimal model 
through both fit and prediction. We wished to ascertain if a 
national window for NDVI was sufficient for accurate predic-
tion of juvenile reindeer body mass, or whether windows that 
maintain regional differences in NDVI were more accurate 
descriptions. Additionally, we wanted to compare the predic-
tion capabilities of the decomposed interactions model with 
known modelling techniques that account for spatiotemporal 
autocorrelation. Since overfitting is a concern for the decom-
posed model (Oedekoven et al. 2017), cross-validation was 
also used to determine whether overfitting was a problem for 
Equation (3). If so, the decomposed interactions model would 
have much larger prediction errors than the model VCMn 
that includes spatiotemporal smoothers for herd body con-
dition, population density, the herd condition and density 

Dp =
Dred − Dfull

Dnull

,
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interaction, NDVI averaged using the national window, and 
AUC of snow depth. The prediction accuracies of the models 
were compared using random 10-fold cross validation (CV) 
and 10-fold CV for grouped data. In the random 10-fold CV, 
observations were randomly assigned to one of 10 folds. In 
the 10-fold CV for grouped data (which will be referred to 
as herd 10-fold CV), observations grouped by herd location 
were randomly selected to a specific fold. This allowed us 
to establish how well the model could predict at new spatial 
locations (Roberts et al. 2017). To estimate the CV prediction 
error we used nine of the 10 folds as training datasets and 
the remaining fold as a testing dataset. We then calculated 
the median absolute deviations for each k ∈ {1, 2,… , 10} 
fold, MADk , and summarized the fold-based errors as 
�CVE = median(MAD1,MAD2,… ,MAD10).

The Kruskal-Wallis rank sum test was used to determine 
if the �CVE varied significantly among all the tested mod-
els for each CV procedure. If significant differences were 
detected, pairwise comparisons using the Wilcoxon signed 
rank test with Bonferroni corrections for multiple testing 
were employed to assess whether the decomposed interac-
tions model was significantly better than other models at 
accurately predicting out-of-sample values. If significant dif-
ferences were not detected by the Kruskal-Wallis rank sum 
test, adjusted R2 values and Akaike’s Information Criteria 
(AIC) were compared to evaluate the model fit. The model 
with lowest �CVE across all CV procedures, highest adjusted 
R2 , and lowest AIC was preferred. Finally, restricted maxi-
mum likelihood (REML) estimation was used for calcula-
tion of smooth term p-values in the preferred model instead 
of the default generalized cross-validation (GCV) in mgcv, 
because REML estimation is less prone to undersmoothing 
(Wood 2017).

Results

Most regions had diverse window sizes and optimal weeks 
of the year for NDVI, with a general trend of windows mov-
ing from the first half of the NDVI curve to the second half 
while progressing from northeast Norway to southern Nor-
way through the herding regions. The estimated optimal 
window for NDVI to predict the national average of juvenile 
body mass was for weeks 27 through 42, which overlapped 
many regional optimal windows for NDVI (SI Fig. S2).

Four GAM and partial VCM variations and the decom-
posed interactions model were evaluated for prediction accu-
racy using random 10-fold and herd 10-fold CV procedures. 
Adding spatiotemporal smooths to NDVI, snow depth, herd 
condition in the previous year, and population density gener-
ally improved fit, however prediction for VCMr and VCMn 
did not improve substantially for either CV procedures 
(Table 1). Models that included NDVI calculated using 

national windows provided better prediction and comparable 
fit to models with NDVI calculated using the regional win-
dow. The DIMn model had the best fit and lowest prediction 
errors. Differences in �CVE among the five models for the 
herd 10-fold CV procedure were apparent ( p < 0.05 ), but no 
differences among those models for the random 10-fold CV 
procedure were revealed (Table 1). The DIMn model was 
better than the VCMr ( p = 0.039 ) and VCMn ( p = 0.008 ) 
models for predicting out-of-sample-values in the herd 
10-fold CV procedure. It should be noted that GAMs and 
VCMs are known to lose prediction accuracy when smooth 
variables have a range outside of the training dataset, as evi-
denced by the increasing �CVE from random 10-fold CV to 
herd 10-fold CV for most of the models (Table 1).

The decomposed interactions model was fit for infer-
ence and compared to the fit of GAMn (see SI “Fit of the 
GAMn model” section). The component smooth functions 
of GAMn highlighted the nonlinear relationships between 
many of the predictors and juvenile body mass (SI Fig. S3). 
However, the spatial, temporal, and residual components of 
predictor variables in DIMn were often substantially differ-
ent from their singular smooth versions in GAMn (Figs. 1 
and 2). The spatial component of herd condition ( B

�
 ), i.e. 

the herd’s body condition averaged over time, was linear 
and positively related to juvenile body mass (Fig. 1). This 
was expected, as herd body condition was represented as 
the previous year’s juvenile body mass. As in GAMn, the 
interaction between the temporal components of herd con-
dition and population density and the interaction between 
the residual components of herd condition and population 
density in DIMn were significant, so the individual variables 
are not directly interpretable. For the interaction between 
the temporal components of herd condition in the previous 
year and population density ( Bt−1, Nt ), low herd condition 

Table 1   Median absolute cross-validation prediction errors ( �
CVE

 ), 
adjusted R 2 , and Akaike’s Information Criteria (AIC) values for each 
of four variations of either generalized additive models (GAMr and 
GAMn) or varying coefficient models (VCMr and VCMn) and the 
decomposed interactions model (DIMn). P values for the Kruskal–
Wallis rank sum test with degrees of freedom = 4 are also given for 
each of the two cross-validations

Model Random 10-fold Herd 10-fold adj. R 2 AIC
�

CVE
�

CVE

GAMr 0.953 1.057 0.638 5895.837
GAMn 0.897 1.029 0.638 5889.638
VCMr 0.903 1.052 0.645 5858.642
VCMn 0.896 1.026 0.646 5841.539
DIMn 0.868 0.829 0.685 5608.885
Kruskal–

Wallis P 
value

0.324 0.040
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combined with low densities was associated with an increase 
to juvenile body mass over time (Fig. 1, third row, far left). 
For the interaction of the residual herd condition and den-
sity components ( Br, Nr ), lower Br values that corresponded 
to herd condition values being smaller than the spatial and 
temporal averages, combined with Nr values between −4 
and 5 that occur when herds with population densities were 
close to the sum of its temporal and spatial components, 

coincided with lower calf body mass (Fig. 1, third row, far 
right). Years with peak NDVI DOY ( peakNDVIdoyt ) occur-
ring later corresponded to increasing juvenile body mass, 
while years with later spring onset ( SOdoyt ) or high NDVI 
values ( nNDVIt ) had lower calf masses (Fig. 2). Years with 
later winter onset ( WPGSdoyt ) also coincided with heavier 
juveniles. The residual spatiotemporal component of winter 
onset ( WPGSdoyr ) was positively linearly associated with 
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Fig. 1   Temporal, spatial, and residual component smooth functions of 
reindeer and elevation predictors in decomposed interactions model 
(DIMn). Smooth terms with p < 0.05 are bordered in red. Top row: 
herd body condition in the previous year ( B ); second row: population 

density ( N ); third row: interaction between herd condition in previous 
year and population density ( B,N ); fourth row: elevation categorized 
by latitude ( elev
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Fig. 2   Temporal, spatial, and residual component smooth func-
tions of environmental predictors in decomposed interactions model 
(DIMn). Smooth terms with p < 0.05 are bordered in red. Top row: 
mean normalized difference vegetation index as calculated using the 

national window ( nNDVI ); second row: peak NDVI day of the year 
( peakNDVIdoy ); third row: spring onset day of the year ( SOdoy ); 
fourth row: snow area under the curve ( snow ); fifth row: winter per-
manent ground snow day of the year ( WPGSdoy)
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juvenile body mass, namely, true winter onset values earlier 
than the spatial and temporal averages, resulting in lower 
WPGSdoyr values, corresponded to lower-than-average calf 
masses. 

The proportion of deviance explained for each of the vari-
ables in GAMn and their decomposed components in DIMn 
was often small (Table 2). Herd condition in the previous 
year explained the largest proportion of deviance in both 
GAMn and DIMn, followed by population density in both 
models. Elevation explained 6% of the deviance in GAMn 
but did not explain any variation in DIMn. When broken 
down into decomposed components, the largest proportion 
of deviance in DIMn was explained by the spatial com-
ponent of herd condition, followed by the spatiotemporal 
residual component of herd condition. The spatiotemporal 
residual component of population density explained 4% of 
the deviance in the decomposed interactions model, while 
3% of the deviance was each explained by the interaction of 
the temporal components of herd condition and population 
density, along with the temporal components of winter per-
manent ground snow DOY and spring onset DOY.

Interactions between the decomposed components of 
herd body condition and population density on the predicted 
average juvenile body mass from DIMn were further broken 
down in Fig. 3 and SI Figs. S4 to S6. Predicted calf mass 
strongly resembled the temporal component of herd body 
condition, since the latter was just average calf mass lagged 
by one year (Fig. 3a). Additionally, above average herd body 
condition and predicted calf mass were preceded or accom-
panied by lower-than-average population densities. Over 
space, herds with consistently high population densities and 
low herd body condition corresponded with persistently low 
weight calves and were concentrated in northern Norway 
(Fig. 3b). Herds with consistently low densities and mid to 
high herd conditions tended to have more stable juvenile 
body weights. Herds with years when true herd condition 

values larger than the spatial and temporal averages, result-
ing in greater Br values, typically occurred in the southern 
half of Norway (SI Fig. S4). The exceptions were during the 
1994–1995 and 2002–2004 periods, when the spatially-aver-
aged Bt−1 component was much larger than the overall aver-
age (Fig. 3a). Herds in the northern half of Norway typically 
had greater values for Nr generated by true population densi-
ties being higher than the spatial and temporal averages (SI 
Fig. S5). However, the period of 1996–2003 for that region 
had true population densities equal to or less than the Nt and 
N

�
 components, when there was a dip in spatially-averaged 

population densities (Fig. 3a). These spatial and temporal 
variations in herd body condition and density resulted in pre-
dicted average juvenile body mass from the DIMn ranging 
from 15 to 26 kg, with herds located in southern regions of 
Norway typically having heavier calves than northern herds 
(SI Fig. S6).

Discussion

We used nonparametric regression to determine the optimal 
regional and national NDVI windows that best predict aver-
age juvenile reindeer body mass, along with other relevant 
herd, environmental, and plant phenology predictors and 
assessed various model structures for fit, prediction, and 
interpretability of spatiotemporal data. NDVI summarized 
using the national window describes and predicts changes 
in average juvenile body mass for individual herds as ade-
quately as NDVI averaged using the regional windows. The 
three-dimensional spatiotemporal smooth included in the 
GAMs and VCMs captures the variation between herds not 
captured by the climate and vegetation variables in these 
models, acting as a nuisance variable. The relationships 
found among the climate and vegetation variables and calf 
mass are thus independent of location and year (e.g., for a 

Table 2   Proportion of deviance 
explained for variables in 
the generalized additive 
model using nationally-
summarized normalized 
difference vegetation index 
(NDVI), labeled GAMn, and 
decomposed interactions 
model (DIMn). For DIMn, 
the proportion of deviance 
explained is broken down 
into spatial, temporal, and 
residual components as well as 
providing the total proportion 
of deviance explained for each 
variable

Variable GAMn DIMn

Temporal Spatial Residual Total

�, t 0.08 – – – –
Herd body condition in prev. yr. (B) 0.11 0.00 0.33 0.18 0.50
Population density (N) 0.09 0.02 0.00 0.04 0.06
Interaction of herd condition in prev. yr. and 

population density (B, N)
0.01 0.03 0.00 0.01 0.05

Elevation (elev) 0.06 – – – 0.00
Mean NDVI from national window (nNDVI) 0.01 0.01 0.00 0.00 0.01
Peak NDVI day of the year (peakNDVIdoy) 0.00 0.01 0.00 0.00 0.01
Spring onset day of the year (SOdoy) 0.00 0.03 0.00 0.00 0.03
Snow area under the curve (snow) 0.00 0.00 0.00 0.00 0.00
Winter permanent ground snow day of the year 

(WPGSdoy)
0.01 0.03 0.00 0.00 0.03
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given herd, population density has a nonlinear relationship 
to average calf body mass). Therefore, the effects of cli-
mate and vegetation shown in our results are average effects 
for any reindeer calf within the spatial range of the data 
used in our analyses. Accounting for spatiotemporal vari-
ation in several of the predictors only improves prediction 
for locations within the range of the training data, a well-
known limitation of GAMs and VCMs due to the way basis 
functions are constructed (Moisen and Frescino 2002). The 
decomposed interactions model produces the best fit and 
lowest cross-validation prediction errors, and the ability to 

calculate proportional deviances for spatial, temporal, and 
residual components of each variable increases the interpret-
ability of such a model.

While complex smoothers can improve fit and predic-
tion by accounting for spatiotemporal correlations in data, a 
disadvantage of GAMs and VCMs with complex smoothers 
is that they are difficult to interpret. Effects of smoothed 
variables over two or three dimensions become difficult to 
ascertain. While hotspots and low points can be visualized 
using three-dimensional smoothers over space-time, the size 
of the direct effect is difficult to quantify. We have shown 

a

b

Fig. 3   Interactions of spatial components and temporal components 
from the decomposed interactions model (DIMn) on average juvenile 
reindeer body mass. a Centred temporal components of herd body 
condition in the previous year ( Bt−1 , dark orange) and population den-
sity ( Nt , purple) overlaid on the centred predicted average juvenile 
body mass from the DIMn model ( ̂Y  , green) for years 1985–2013. 

Approximate pointwise 95% confidence intervals for Ŷ  are shaded in 
green. b Spatial components of herd body condition in the previous 
year ( B

�
 , left) and population density ( N

�
 , centre) and the predicted 

average juvenile body mass from the DIMn model averaged over time 
( ̂Y  , right)
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that the decomposed model structure of Oedekoven et al. 
(2017) allows the effect of a covariate to be more easily 
measured over space and time separately while still produc-
ing an effective model for prediction. Further, we have illus-
trated the incorporation of interaction terms into the decom-
posed model and provided detailed interpretation of their use 
and inference. Moreover, we have devised a simple way to 
quantify the contribution of the components of the model, 
which allows researchers to determine whether spatial or 
temporal effects are more pronounced for each decomposed 
variable of interest.

The change in NDVI seen in the Norwegian reindeer 
herds’ summer locations and observed in similar boreal 
regions Park et al. (2016) is likely to have effects on juve-
nile growth rates and consequences for over-winter survival. 
The NDVI window that best predicted the national mean of 
juvenile body mass was from the beginning of July to the 
first week of October, reflecting the relationship between 
high-quality food and juveniles body mass. Calving for 
Norwegian reindeer occurs in May to early June (Reimers 
2002; Holand et al. 2003), and calves are capable of eating 
solid food within a month after birth. Juveniles are therefore 
likely to be consuming large volumes of high-quality forage 
in addition to their mothers’ milk soon after birth in order 
to quickly put on mass before the arrival of winter in late 
October. Observed changes in calving dates of reindeer in 
the Arctic Circle indicate plastic responses of females to 
milder fall and winter conditions (Paoli et al. 2018), which 
will likely expand the time in which calves and reproducing 
females can feed on high-nutrition plant material and put 
on mass before winter. These responses may be necessary 
if reindeer populations are to avoid widespread starvation 
and population collapse during winter warming events that 
have been observed with increasing frequency in the Arctic 
(Aanes et al. 2002; Albon et al. 2016).

Lack of availability to varied elevation may alter reindeer 
responses to extended spring and summer seasons, however. 
In the south, lower elevation corresponded to below-average 
calf mass. Southern reindeer herds experienced persistently 
low juvenile body masses, perhaps related to reduced graz-
ing activity from prolonged insect harassment common at 
low elevations (Colman et al. 2003; Vistnes et al. 2008; 
Weladji et al. 2003), as these reindeer remain on the same 
grazing pastures year-round and do not have access to higher 
elevations. As warmer seasons become longer, reindeer in 
southern Norway may be unable to compensate for such pro-
longed stress (Colman et al. 2003). In cooler regions where 
insect harassment is less severe or prolonged and some herd 
migration is common, semi-domesticated reindeer exhibited 
more nuanced preferences for elevation likely driven by food 
availability, protection against predators, and avoidance of 
human activity common to their wild counterparts (Pape and 
Löffler 2015; Vistnes et al. 2008).

The interplay between population density, herd body con-
dition, and calf weight in reindeer is complex. A mother’s 
weight significantly influences her calf’s weight, and both 
adult and juvenile body weights are negatively related to 
herd density (Bårdsen and Tveraa 2012; Tveraa et al. 2003, 
2013). The expected density-dependence of juvenile body 
mass and interactions between herd body condition and den-
sity were apparent for herds in our analyses (Bårdsen 2017; 
Tveraa et al. 2003). Presumed positive effects of increased 
plant productivity on juvenile body mass may be unlikely 
to overcome maternal effects and intrapopulation competi-
tion for food during the early and late weeks of the grow-
ing season, where availability of edible vegetation are more 
limited (Veiberg et al. 2017). This is reinforced by the higher 
proportions of deviance explained for herd condition in the 
previous year and population density predictors compared 
to those for NDVI and peak NDVI DOY. An extended grow-
ing season and overall warming of the Arctic ecosystem 
(Masson-Delmotte et al. 2018; Oberbauer et al. 2013) has 
contrasting effects on reindeer. On the one hand, earlier veg-
etative onset in the spring increased calf weight and survival, 
likely through both mother and calf access to high-quality 
forage (Bårdsen and Tveraa 2012; Tveraa et al. 2013). How-
ever, warmer autumn and winter temperatures delay or com-
press the mushroom fruiting season, affect distribution of 
spores, and change mushroom abundance in Fennoscandia, 
an important food source for reindeer during the autumn, 
which may contribute to reduced female herd condition and 
consequently female reproductive success (Collado et al. 
2019; Kauserud et al. 2008, 2010, 2011; Paoli et al. 2019). 
Therefore, earlier spring onset and later permanent ground 
snow coverage for the winter without significantly warmer 
temperatures in the autumn are likely important for coun-
teracting negative density-dependent effects on maternal fit-
ness, reproductive success, and calf survival and body mass 
(Bonenfant et al. 2009).

Fall and winter conditions, such as the onset of winter 
in this study, not only affect reindeer herd and population 
recruitment, but also alter availability of vegetation early in 
the growing season, when damaged plants may be delayed 
in recovery and intrapopulation competition for resources is 
high among reindeer (Bårdsen and Tveraa 2012; Helle and 
Kojola 2008; Mårell et al. 2006). Dominant vegetation in 
sub-Arctic tundra will have difficulty recovering from recur-
rent sudden winter warming events when the availability of 
soil nitrogen is increased by summer warming (Aerts 2010). 
Refreezing of exposed vegetation during a winter with high 
snow-melting events contributed to the collapse of a reindeer 
population on Svalbard (Aanes et al. 2000, 2002). Enhanced 
vascular plant growth due to warmer temperatures during 
the growing season is likely to lead to reduced lichen cover, 
a major part of reindeer winter diet (Bjerke et al. 2011). 
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Herbivores in northern latitudes may therefore be required 
to adapt to changes in plant phenology in order to exploit 
high-quality forage efficiently (Zhao et al. 2019), particularly 
if winter warming events followed by severe freezes that 
seriously reduce food availability become more common.

Persistent changes and increased fluctuations in the 
Arctic ecosystem due to climate change are likely to com-
plicate the relationship of reindeer mass to plant produc-
tivity and phenology, autumn and winter environmental 
conditions, maternal weight, and herd density over time. 
It is evident that relationships between environmental 
and density-dependent effects in the population dynam-
ics of large Arctic herbivores are changing with global 
warming, but Arctic wild reindeer population dynamics 
may stabilize in the face of more frequent extreme win-
ter events (Hansen et al. 2019a). Our results underscore 
that good conditions early in life through maternal effects 
along with robust, low density populations may be key 
for Arctic herbivores such as reindeer to withstand the 
density-dependent effects of extreme environmental vari-
ability brought about by climate change (Hansen et al. 
2019a; Paoli et al. 2020). More importantly, our methods 
expand the usability of nonparametric regression models 
for effective summarization, modelling, and interpretation 
of spatiotemporal climate effects on animal populations, 
and our deployment of these methods for the analysis of a 
complex spatiotemporal plant-herbivore system illustrate 
their broad applicability for examining population-level 
responses to environmental variation and climate change 
at large spatial and temporal scales.
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