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Ecosystem functioning depends on multiple successful interactions, many supported 
by individual movements. The degree to which the landscape allows these interactions 
to take place has been referred to as ‘effective connectivity’ (EC). Many of the cumula-
tive impacts of anthropogenic activities on ecosystem functioning arise from changes 
in EC. Therefore, a coherent framework to quantify EC is urgently needed. Recent 
theoretical developments propose that studying EC requires the simultaneous consid-
eration of spatial, environmental and species intrinsic characteristics (SEI framework).

In this paper we further expand the SEI framework by integrating advances in 
geographic information science, ecological niche modelling, movement ecology, island 
biogeography and network sciences to develop a comprehensive three-step method-
ological approach for quantifying EC. First, using niche modelling and movement 
ecology, we quantify the species movement probabilities with respect to local environ-
mental conditions. Second, we quantify ecological distances between non-adjacent 
locations by integrating species movement responses to the local environment with 
the spatial configuration of the landscape using the expected cost obtained from the 
randomized shortest paths (RSP) framework. This expected cost generalizes the two 
most frequently used ecological distance metrics, i.e. least-cost distance and resistance 
distance. Moreover the ‘absorbing random walk’ properties of RSP allow the inte-
gration of new developments in connectivity research, i.e. spatial absorbing Markov 
chains, to account for movement-related mortality. Third, drawing from island bioge-
ography and metapopulation ecology, we scale ecological distances by relevant species- 
and area-specific parameters to estimate EC for the ecological process of interest, e.g. 
migration, dispersal or gene flow.

The integrative and highly interdisciplinary approach we propose can lead to 
increasingly more realistic measures of EC at different organizational levels. Moreover 
efficient computation allows its application to large-scale high-resolution landscapes 
for theoretical studies, conservation planning and sustainable management of real 
landscapes.

Keywords: Circuitscape, movement cost, landscape resistance, least-cost distance, 
randomized shortest paths, resistance distance, SAMC, step selection function, 
survival

Defining and quantifying effective connectivity of landscapes for 
species’ movements

Bram Van Moorter, Ilkka Kivimäki, Manuela Panzacchi and Marco Saerens

B. Van Moorter (https://orcid.org/0000-0002-3196-1993) ✉ (bram.van.moorter@nina.no), M. Panzacchi and I. Kivimäki, Norwegian Inst. for Nature 
Research, Trondheim, Norway. Present address for IK: Finnish Inst. of Occupational Health, Helsinki, Finland. – M. Saerens, Univ. Catholique de Louvain, 
Louvain-la-Neuve, Walloon Brabant, Belgium.

Review and Synthesis



871

Introduction

The majority of the earth’s surface is profoundly affected by 
human developments (Barnosky et al. 2012, Díaz et al. 2019). 
The resulting loss of natural habitats and connectivity – fol-
lowing a global reduction in species’ mobility (Tucker et al. 
2018) – are the main drivers of the current ongoing loss of 
biodiversity (Foley et al. 2005). Connectivity conservation 
and restoration have been suggested as key strategies for 
protection of biodiversity under climate change (Heller and 
Zavaleta 2009). Therefore the quantification of landscape 
connectivity and the extent to which human activities affect 
it is central to landscape ecology (Correa Ayram et al. 2016). 
Despite the large and growing scientific literature on land-
scape connectivity, the adequacy of current approaches for 
successful hands-on connectivity conservation interventions 
has been repeatedly questioned (reviewed by Sawyer et al. 
2011, Zeller et al. 2012). This criticism reflects the challenges 
scientists are currently facing in the arduous process of devel-
oping a comprehensive framework for studying connectivity 
and consequently improving its relevance for applied studies.

Landscape connectivity can be defined as ‘the degree to 
which the landscape facilitates or impedes movement among 
resource patches’ (Taylor et al. 1993). The movement of 
individuals alone may, however, be insufficient to infer con-
nectivity for specific ecological processes, such as genetic con-
nectivity among patches (Robertson et al. 2018). Therefore 
Robertson et al. (2018) coined the term ‘effective connectiv-
ity’ (EC) to indicate landscape connectivity that is followed 
by the successful reproduction of immigrants. The ecological 
dynamics affecting the movement process and those affect-
ing reproduction success are generally not the same (Vasudev 
and Fletcher Jr. 2016, Robertson et al. 2018). We general-
ize the EC concept’s focus on the outcome of movement, in 
addition to successful movement itself, to other landscape 
ecological processes involving individual movement,and 
define EC as ‘the degree to which the landscape facilitates or 
impedes movements that contribute to the focal ecological 
process’. The factors contributing to the successful outcome 

of connectivity depend on the ecological process of interest. 
Following Fletcher et al. (2016), we consider the effective-
ness of connectivity for different ecological processes at three 
organizational levels: individual, population and community 
(Table 1). For instance, EC for seasonal migration requires 
connectivity for an individual between suitable seasonal 
ranges, whereas EC for gene flow requires successful repro-
duction upon arrival of immigrants (Webster et al. 2002, 
Lowe and Allendorf 2010, Robertson et al. 2018).

The quantification of connectivity – and even more so of 
EC – is challenging, as it requires the integration of mul-
tiple processes in geographic space (longitude, latitude and 
altitude) and environmental space (i.e. the multidimensional 
hyperspace of environmental conditions; Hutchinson 1957). 
Most connectivity studies have focused on some of these 
aspects, while simplifying or omitting others. Recent theoret-
ical developments, however, propose quantifying successful 
dispersal by focusing simultaneously on three aspects: a) spa-
tial constraints due to the configuration of landscape features, 
b) environmental characteristics and c) species’ intrinsic limi-
tations (the SEI framework; Vasudev et al. 2015).

In this paper we further elaborate the theoretical SEI 
framework (Fig. 1) and present a comprehensive analytical 
approach for quantifying EC using concepts and cutting-edge 
tools from geographic information systems (GIS), ecological 
niche modelling, movement modelling, island biogeography 
(including metapopulation theory) and network sciences. 
Our approach consists of three steps, each referring to a pair 
of the three SEI components (Fig. 2): 1) intrinsic–environ-
ment (IE), 2) environment–space (ES) and 3) space–intrinsic 
(SI). The IE step estimates habitat permeability for a species, 
from which the ES step computes the ecological distance, 
from which in turn EC is derived by including other key fac-
tors affecting the outcome of connectivity. Below we briefly 
introduce these three steps, which we further expand in the 
following sections.

We address first the link between the species’ intrinsic 
movement capabilities and its environment (IE – Fig. 2) 
by drawing from advances in movement ecology and niche 

Table 1. Data requirements for the EC workflow.

Ecological outcome Data required
Level of organization Ecological process Movement probability Sij Movement cost cij Pre/post-arrival effectiveness ζs and ζt
Individual Home range Tracking Energy Resource availability, resource needs

Seasonal migration Tracking Energy and mortality Seasonal range quality
Population Distribution Tracking, CMR Mortality Number of immigrants, reproduction,  

habitat quality
Gene flow Landscape genetics Mortality Reproduction, genetic distance

Community Species interactions Tracking, CMR Mortality Habitat suitability, presence of recipient species
Biodiversity Tracking, CMR Mortality Habitat suitability, competitive exclusion

Overview of data required to measure effective connectivity (EC) for different ecological outcomes. Following Fletcher et al. (2016), we 
describe the data requirement to evaluate outcomes at three levels of organization: individual, population and community. To estimate EC 
using the three-step approach, spatially-explicit information is required for three parameters: probability (Sij) and cost (cij) of movement (in 
step 2, Fig. 2), and other ecological factors contributing to the outcome of connectivity (ζs and ζt in step 3, Fig. 2). In step 1, we extrapolate 
Sij and cij in geographic space from environmental space, which requires in addition to environmental explanatory variables (e.g. from 
remote sensing) data about the probability (e.g. tracking, capture–mark–recapture/CMR or genetic data) and cost (e.g. energy expenditure 
or mortality) of movement. In addition, in step 3 other ecological factors (ζ) are required to assess the effectiveness of connectivity for the 
outcome of the focal ecological process. See main text for further details.
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modelling. Occurrence or movement data are commonly 
used to estimate the suitability of environmental features 
with respect to the species’ intrinsic requirements or move-
ment preferences in environmental space (Zeller et al. 2012), 
using methods such as environmental niche models (Guisan 
and Thuiller 2005) and resource or step selection functions 
(Manly et al. 2007, Thurfjell et al. 2014). The results of these 
models are typically used for predictions in geographic space 
to produce maps indicating the suitability of local environ-
mental conditions for the presence of a species (‘preference 
maps’ or ‘species distribution maps’; Guisan and Thuiller 
2005, Thuiller et al. 2009) or its movements (‘friction maps’, 
‘resistance surfaces’ or ‘cost surfaces’; Zeller et al. 2012). As 
models in environmental space their treatment of the spa-
tial configuration of the landscape is limited to for instance 
habitat contiguity and grain size (Boyce 2006, Laforge et al. 
2015, Panzacchi et al. 2015). Hence efforts to integrate con-
nectivity in geographic space are of paramount importance 
(for instance Engler and Guisan 2009, Franklin 2010).

Second, we focus on the link between environmental 
features and geographic space (ES – Fig. 2), i.e. the man-
ner in which the spatial configuration of environmental 
features affects the ecological distance, or paths, between 
a source s and a target t location. Although Euclidean dis-
tances are commonly used to represent spatial relationships 
(but see Fletcher et al. 2016), they are often poor approxima-
tions of the actual ecological distance as experienced by an 
organism (Sutherland et al. 2015), as barriers in the matrix 
affect movement paths and associated ecological distances. 
Applications of network theory in GIS science and geomatics 
are focused on the emergence of landscape connectivity from 
spatial connections among adjacent landscape features which 
allows researchers to assess the ‘functional connectivity’ 
between pairs of locations by linking the physical structure 
of the landscape with the organism’s response (Taylor et al. 
2006). Two movement models are frequently used in ecol-
ogy to upscale the permeability of local environmental con-
ditions to entire paths between source and target locations 
(Zeller et al. 2012): optimal movement along the least-cost 
path (Adriaensen et al. 2003) and random movement using 
circuit theory (McRae and Beier 2007), which were recently 
integrated and generalized using the randomized shortest 
paths (RSP) framework (Saerens et al. 2009, Van Etten and 
Hijmans 2010, Panzacchi et al. 2016). These network-based 
methods allow the assessment of ecological distances through 
the geographic space of the landscape.

Third, we need to assess the effectiveness of connectivity 
with respect to the outcome of the focal ecological process, 
which requires two components to be successful: 1) reach-
ing the target, and 2) achieving the strategic objective of the 
movement. Approaches that build on the theory of island 
biogeography (MacArthur and Wilson 1967), e.g. large-scale 
ecological networks (Urban and Keitt 2001), meta-popula-
tion theory (Hanski and Ovaskainen 2000) or meta-commu-
nities (Leibold et al. 2004), rely on the effective demographic 
connectivity for population persistence between ‘islands’ of 
habitat embedded in a non-habitat ‘matrix’ given a species’ 
movement capabilities. In metapopulation theory the two 
components of effective connectivity between two patches 
are represented by: 1) the proximity between the patches, 
and 2) the number of dispersers from the source and the 
likelihood of settlement in the target patch (Table 1). The 
size of the source and target patch have been used as a proxy 
for respectively number of dispersing individuals and like-
lihood of settlement (Hanski and Ovaskainen 2000). The 
proximity between patches is commonly approximated as 
an exponential function of the Euclidean distance between 
patches scaled by the species’ dispersal abilities (Hanski and 
Ovaskainen 2000, Urban and Keitt 2001), while environ-
mental characteristics of the matrix are frequently ignored. 
Unfortunately, Euclidean distance is often a poor approxi-
mation of the ecological distance (Sutherland et al. 2015). 
Therefore the estimation of EC requires the foundation of 
the aforementioned steps 1 and 2 to obtain ecological dis-
tances, rather than relying on mere Euclidean distance. Thus, 
in this final step to quantify EC, we need to combine the 

Figure 1. Space–environment–intrinsic (SEI) conceptual frame-
work, adapted after Vasudev et al. (2015). The estimation of effec-
tive connectivity (EC) requires the integration of the following 
three components: environment (E), i.e. the environmental charac-
teristics of the landscape (e.g. vegetation type, altitude, anthropo-
genic infastructures), space (S), i.e. the spatial configuration of the 
landscape (e.g. the position of landscape features), intrinsic (I), i.e. 
the species and process intrinsic characteristics, (e.g. dispersal abili-
ties, trophic requirements, life-history, local population size). 
Broadly speaking, pairwise combinations of these three aspects rep-
resent the study objects of different disciplines. Niche modelling 
traditionally focuses on environmental factors affecting species 
occurrence (EI). Applications of network sciences in geographic 
information systems typically investigate the spatial configuration 
of environmental features (SE), while frequently overlooking the 
species’ intrinsic characteristics (I). Finally, island biogeography and 
metapopulation theory traditionally focus on the link between 
metapopulations and the spatial configuration of habitat patches 
(SI), while ignoring the environmental (E) characteristics of the 
matrix and thus oversimplifying the species movement patterns. 
The assessment of EC requires that all these components (SEI) be 
integrated, as we propose in the three-step methodological frame-
work shown in Fig. 2.
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ecological distances on the landscape with intrinsic charac-
teristics of the focal ecological process and species, such as 
dispersal distance, home range size, mortality risk, reproduc-
tive behaviour, local population size and inter-specific inter-
actions (SI – Fig. 2).

Each of the disciplines mentioned above contributes an 
important piece of the ‘puzzle’ of EC estimation. In the fol-
lowing sections we describe advances in each of these disci-
plines and present a comprehensive three-step approach for 
integrating them within the SEI framework (Vasudev et al. 
2015) to quantify EC (Fig. 2). First, the IE step quantifies the 
species-specific landscape permeability. Second, the ES step 
measures the ecological distance between locations using net-
work science approaches to account for the spatial configura-
tion of the species-specific landscape permeability (from the 
IE step). Third, the SI step converts the ecological distance 
between locations (from the ES step) into EC, by integrating 
species- and process-specific characteristics that influence the 
effectiveness of connectivity for a given ecological process.

Step 1. Estimation of habitat permeability: 
environment–intrinsic step

The first step in estimating EC (Fig. 2) is to quantify the per-
meability of landscape features to a moving organism, that is 
the degree to which they facilitate or hinder its steps or move-
ments. Different terms have been employed in landscape 
ecology to describe permeability (reviewed in Zeller et al. 
2012), the most common of which are movement cost, 
used for least-cost modelling (Adriaensen et al. 2003) and 
resistance/conductance in circuit theory (McRae and Beier 

2007). In network theory the ease of moving between neigh-
bouring nodes is described using weights, which are labelled 
differently according to the application, e.g. as ‘affinities’ in 
social networks or as ‘capacities’ in transport networks.

In general two elements contribute to the permeability of 
a landscape element (Fletcher Jr. et al. 2019): the probabil-
ity of the agent traversing it and the cost of doing so. The 
cost of movement is the negative effect of movement on an 
individual’s expected fitness due to both energetic losses and 
mortality risk. An adapted agent (through natural selection) 
would show a negative relationship between the probabil-
ity and the cost of a movement. Individuals can, however, 
behave maladaptively, especially in human-dominated land-
scapes, and their movements may lead them to attractive 
sinks or dispersal traps; for instance Delibes et al. (2001) and 
Vasudev et al. (2015). Fletcher Jr. et al. (2019) used ‘spatial 
absorbing Markov chains’ to model dispersal movements of 
individuals, where the likelihood and mortality of movement 
can be treated independently.

Ideally, researchers would have access to independent data 
informing on these two elements of permeability (Table 1). 
However, in practice, this is often not the case and research-
ers may have to assume that movement choices are an adap-
tive response to environmental characteristics and therefore 
derive movement costs from estimations of movement prob-
abilities. In the following we first present a synthesis of the 
most relevant approaches for estimating the probability to 
move between adjacent cells, i–j, and then discuss a math-
ematical transformation to obtain movement costs from their 
likelihood. We discuss in more depth independent probabil-
ity and cost of movement for the ‘absorbing random walk’ in 
‘Spatial absorbing random walk’ section.

Figure 2. Three-step workflow for the quantification of effective connectivity (EC) based on Fig. 1. First, the intrinsic–environment step 
estimates the species-specific likelihood of moving between adjacent locations i and j based upon local environmental characteristics. It also 
infers or estimates (if data on the costs of performing each step are available) the cost associated to each step in terms of energetics and/or 
mortality risk. Second, the environment–space step scales up this pixel-specific information to the entire landscape, represented as a net-
work of nodes and links. This is achieved first by employing frameworks and algorithms developed in network science (e.g. randomized 
shortest paths) to obtain the probability distribution of all paths in the landscape. For EC based on energetic costs of movements (a), or a 
proxy thereof, the ecological distance between a source s and target location t is computed from the landscape graph, which in step 3 is 
converted into an ecological proximity by including species and process intrinsic movement capabilities. Whereas, for EC based on mortal-
ity costs (b), the survival probability is computed, which serves directly as the ecological proximity between s and t. Finally, the space–intrin-
sic step focuses on the ecological outcome (connectivity for what?). This is achieved using approaches from island biogeography and 
metapopulation theory to scale ecological proximity with the intrinsic characteristics of the focal species and the ecological process, thus 
producing estimates of EC. 
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Estimation of step probabilities

Zeller et al. (2012) reviewed approaches for estimating land-
scape permeability, from methods based on expert-opinion to 
resource selection analysis and movement analysis. Different 
data sources have been used to infer landscape permeabil-
ity, from observations of individuals to genetic samples and 
movement data, e.g. GPS tracking data (Table 1). When only 
occurrence data are available, estimates of habitat suitability 
or preference are frequently used as proxies for movement 
probability. This practice may, however, lead to biased esti-
mates, as a species’ habitat preference may not adequately 
reflect the manner in which the environment influences its 
locomotion. Zeller et al. (2012) concluded that the analy-
sis of high-resolution tracking data provides the strongest 
empirical basis for inferring landscape permeability, a con-
clusion also supported by a virtual ecology approach using 
agent-based models (Simpkins 2017). Note however that also 
capture–mark–recapture or genetic data can be used to evalu-
ate the probability of movement (Table 1, Sutherland et al. 
2015, Remon et al. 2018, Robertson et al. 2018, Peterman  
et al. 2019).

Step selection functions (SSF) are one of the approaches 
most widely used to quantify step probabilities that utilize 
movement data and produce close-up representations of 
landscape permeability (Fortin et al. 2005, Thurfjell et al. 
2014). In movement ecology, the movement between sub-
sequent observations is commonly referred to as a ‘step’ 
(Turchin 1998, Calenge et al. 2009), a term which we use 
more generally to denote transitions between any pair of 
consecutive locations, e.g. two neighboring pixels. The SSF 
approach compares environmental attributes recorded along 
the observed step, such as proportion of a land cover type, 
maximum traversed slope or road crossings, with those 
recorded along a set of available random steps that the indi-
vidual could have takenfrom the same starting point. The 
predicted SSF is proportional to the probability of an indi-
vidual crossing a given environmental feature, not equal to 
it. Lele and Keim (2006) further extended this method to 
quantify the actual probability that a step will be taken or 
‘used’ given that it is encountered (Lele et al. 2013), which 
can be used to estimate step selection probability functions 
(SSPFs). In the SSPF approach also the probability of not 
moving is estimated; hence the entire distribution of move-
ment is quantified, which allows for the prediction of actual 
step selection probabilities. SSPFs represent arguably the 
most theoretically sound analytical framework to quantify 
organism-intrinsic landscape permeability (Zeller et al. 2012; 
for a review of alternative methods).

In the approach presented in this paper, we chose to quan-
tify step probabilities using SSPFs. To parameterize an SSPF, 
the following log-likelihood needs to be maximized (Lele and 
Keim 2006, Lele 2009; for details):

( ; , , , ) = ( ; ) ( )1 2
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b p b bx x x x n
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where xk is the vector of L covariates associated to the kth 
sample from n observed steps in the data set, π is the prob-
ability of selection, and P f s dk k k( ) = ( ; ) ( ; )b p bò x x x , where 
fk(x;sk) denotes the distribution of resources available for step 
sk. The available resources for step sk are sampled with random 
steps from the same starting point as sk, having random length 
and direction (Forester et al. 2009). This likelihood optimiza-
tion is implemented in the ResourceSelection library 
(Lele et al. 2017) for R (<www.r-project.org>); see demon-
stration in Supporting information. The probability of a step 
from i to j is then computed from the SSPF coefficients (for 
a logit link function):
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where βSSPF and x are vectors with L elements correspond-
ing respectively to the coefficients from the SSPF and the 
environmental characteristics of the step (the first element, 
the intercept, equals 1). Thus, Sij is the estimated probability 
of the individual selecting step i-to-j, instead of staying at 
location i, based on the vector of covariates characterizing 
this step. These step probabilities provide a strong theoretical 
basis for quantifying organism-intrinsic landscape permeabil-
ity (Zeller et al. 2012, 2016).

Estimation of movement costs

As discussed above, the landscape permeability depends on 
two components: movement probability and cost of move-
ment (Fletcher Jr. et al. 2019). The cost of movement can be 
further divided into energetic and mortality costs. Although, 
both affect an individual’s expected fitness, their integration 
over a path is not the same. Intuitively, the energetic costs of 
a path is the sum over all steps, whereas the survival prob-
ability for a path is the product of the survival probability 
at each step. The energetic landscape is commonly estimated 
using measurements of overall dynamic body acceleration 
with miniature acceleration dataloggers attached to individu-
als in tracking studies (Halsey et al. 2009, Gleiss et al. 2011, 
Pagano et al. 2020), these can be calibrated using physiologi-
cal measures of energy expenditure from individuals in cap-
tivity (Mosser et al. 2014, Pagano and Williams 2019). The 
spatial distribution of mortality risk can be estimated using 
habitat-dependent mortality risk, which can be obtained from 
field experiments (Nowakowski et al. 2015, Fletcher Jr. et al. 
2019), habitat-dependent survival analysis (Low et al. 2010, 
Basille et al. 2013, Plante et al. 2020) or mortality data, such 
as roadkill data (Zeller et al. 2018, Lin et al. 2019). Whether 
costs in terms of energy, mortality or both are most impor-
tant for EC will depend upon the species and scope of the 
study (Table 1): energetic costs are likely to dominate connec-
tivity at smaller scales (such as within an individual’s home 
range), whereas connectivity at larger scales (such as dispersal 
between areas) are probably more affected by mortality costs.
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Although much progress has been made in the quantifica-
tion of costs associated to movement using additional data 
sources, such data remain rare in most empirical studies. It 
is therefore common practice to derive the movement costs 
from their assumed negative relationship with the likelihood 
of movement (but see: Fletcher Jr. et al. 2019). Whereas step 
probabilities (Sij) are constrained between 0 (impossible) and 
1 (certain to be selected, if available), the cost of movement 
(cij) is often less clearly defined and may lack an upper bound 
(although, mortality probability PMort ∈ [0,1]). As the func-
tion used to transform step probabilities into costs defines 
the cost scale, the choice of transformation affects crucially 
the ecological distance between two points and therefore the 
overall estimates of EC. Many mathematical forms could be 
used to describe this negative relationship between move-
ment probability and cost (for instance Chetkiewicz and 
Boyce 2009, Poor et al. 2012, Panzacchi et al. 2016). The 
logarithmic transformation has a theoretical advantage over 
other transformations when cumulative costs along a path 
(Ã) are considered, as the sum of logarithms is the logarithm 
of the product. The use of a logarithmic transformation to 
link step probabilities and cost (Poor et al. 2012) is known 
in information theory as the ‘surprisal’ or ‘self-information’ 
of the step, i.e. steps with a low probability will have a high 
surprisal or self-information:

c Sij ij= - log   (3)

Thus the exponential transformation of cumulative ‘surprisal’ 
costs equals the product of step probabilities, which is the 
likelihood of the path (for further details: Hock and Mumby 
2015). Note that this transformation requires that Sij ∈ [0,1], 
because, if Sij > 1, costs become negative.

In conclusion, as a first step (Fig. 2), we estimated the 
permeability of each landscape feature by fitting an SSPF 
to movement data (demonstration in Supporting informa-
tion) and transforming the resulting step probabilities into 
movement costs using the logarithmic transformation; as 
a transformation is an assumed relationship between both 
permeability components, they should only be used when 
no independent estimates of movement cost (i.e. energy 
and mortality) are available. Both step probability and cost 
surfaces can then be obtained by predicting the step prob-
ability and costs on map

Step 2. Quantification of ecological 
distances: environment–space step

From steps to movement paths

The second step in estimating EC consists of upscaling the 
local pixel-based information on movement permeabil-
ity, i.e. step probability and/or cost, to movement paths at 
the landscape scale. That is, it uses information on steps 
between adjacent cells i and j to identify entire paths between 

non-adjacent source s and target t locations. Methods devel-
oped in network science are frequently used to assess how the 
spatial configuration of the landscape affects the ecological 
distance between s and t (Fig. 2; Dale 2017). Network sci-
ence, in general, studies phenomena that can be represented 
as graphs, i.e. mathematical abstractions consisting of nodes 
connected by edges, each of which can have attributes. The 
computation of the ecological distance between locations is 
achieved by representing a landscape as a graph, where the 
connection between two neighbouring cells is represented by 
the step probability (Sij) and/or cost (cij). Different choices 
exist for modelling paths between non-adjacent source and 
target cells s and t along steps between adjacent cells i and j. 
The two most frequently used are optimal or least-cost paths 
(LCPs; Adriaensen et al. 2003), and random paths based on 
circuit theory (McRae and Beier 2007, McRae et al. 2008).

The LCP is the path between s and t with the smallest 
accumulated cost (the ‘least-cost distance’). It relies on the 
assumption that individuals have perfect knowledge of the 
global landscape and make optimal movement choices. Thus 
the LCP approach usually identifies a single, one-pixel-wide 
path, while ignoring all other alternative paths, which leads 
to heavily biased estimates of connectivity in real landscapes. 
In a somewhat ‘ad hoc’ attempt to diminish the severity of 
this problem, researchers have buffered LCPs to incorporate 
adjacent areas (LaRue and Nielsen 2008) or summed a num-
ber of LCPs (Beier et al. 2008). Unfortunately, these solu-
tions have limited theoretical support.

McRae and Beier (2007) and McRae et al. (2008) pio-
neered the use of random walks based on circuit theory, one 
of the oldest branches of electrical engineering, for landscape 
connectivity studies. Circuit theory describes the move-
ments of electricity on a network, which is analogous to the 
movement of random walkers on undirected graphs (Doyle 
and Snell 1984). The random walk relies on an assump-
tion that is opposite to that of the LCP, i.e. that individu-
als have no knowledge of the landscape and respond only 
to their immediate surrounding of adjacent cells. Another 
more implicit assumption in the random walk model is the 
immortality of the walker. However, Fletcher Jr. et al. (2019) 
recently used ‘spatial absorbing Markov chains’ or ‘absorb-
ing random walks’ to explicitly include mortality into ran-
dom walk movements. The random walk approach uses 
resistance distance (and related metrics: commute time and 
commute cost distances; Chandra et al. 1989, Klein and 
Randic 1993, Kivimäki et al. 2014) to quantify the distance 
between s and t, which explicitly takes into account the 
number of alternative paths between the two locations, in 
contrast to the LCP approach. Circuit theory, and its associ-
ated popular software for ecological applications Circuitscape 
(McRae and Shah 2009, Anantharaman et al. 2020), have 
rapidly gained popularity for connectivity studies (Marrotte 
and Bowman 2017, Dickson et al. 2019). Unfortunately, 
as the number ofpossible paths increases, as in the case of 
large or high-resolution landscapes, the chance of a ran-
dom walker finding its target becomes increasingly depen-
dent on the number of local connections leading to this 
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target, rather than on the global properties of the entire 
paths, such as path costs. This phenomenon is known as the  
‘lost in space’ or ‘global information loss’ problem (Von 
Luxburg et al. 2010a, b, Nguyen and Mamitsuka 2016, Odor 
2017).

Thus, whereas optimality approaches, e.g. LCP, focus 
solely on the cost of a single path and ignore the multitude 
of paths, random walk approaches suffer the opposite prob-
lem. This can be readily observed in a simple simulated land-
scape. Figure 3 (top row) shows that widening a corridor, i.e. 
increasing the number of paths, affects least-cost distances 
very little. Conversely, expected-cost distances for the random 
walk (bottom row in Fig. 3) are relatively uniform (especially 
with a wide corridor) with an edge effect (i.e. the increased 
expected cost of reaching edges and especially corners). This 
edge effect is caused by the dependency of the distance on 
the local characteristics of the cells, i.e. the number of neigh-
bours, rather than their global characteristics. The distances 
have become also relatively uniform within each patch, as 
the global properties of the entire path have been lost, e.g. 

its length, probably corresponding to the ‘lost in space’ phe-
nomenon. However, in these small landscapes, not all global 
information has disappeared from the random walk distance 
in the presence of a very strong bottleneck (lower left panel in 
Fig. 3), and the difference between the two patches becomes 
smaller as the corridor becomes wider.

Randomized shortest paths framework

Because individuals are unlikely to move either perfectly 
optimally (and be omniscient) or eternally at random, land-
scape connectivity depends on both the number of paths and 
their overall cost. Advances in computer science inspired by 
work in transportation science (Akamatsu 1996) recently led 
to the development of the randomized shortest paths frame-
work (RSP; Saerens et al. 2009), which defines a probability 
distribution over all paths between a source and target using 
a ‘randomness’ parameter. This ‘inverse temperature’ param-
eter θ controls the degree of randomness in the movements 
(Saerens et al. 2009, Kivimäki et al. 2014). When θ = 0, the 

Figure 3. Effect of the randomness parameter in the randomized shortest paths framework on expected cost distances in three simulated 
landscapes. The expected cost from the white pixel in the upper left corner of the landscape to all other pixels is shown. The columns depict 
from left to right an increase in the corridor width, whereas the rows show a decrease in the randomness parameter θ from the least-cost 
path in the top row (θ = ∞) to random paths in the bottom row (θ = 0). The top row shows that the least-cost distances are sensitive for the 
Euclidean distance from the source, whereas increasing the number of paths by widening a corridor affects them only little. In contrast, the 
expected-cost distances for the random walk on the bottom row are less affected by the Euclidean distance from the source and therefore 
relatively uniform (especially with a wide corridor), moreover they show an edge effect (i.e. the increased expected cost of reaching edges 
and especially corners). See main text for further explanation and discussion.
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RSP distribution equals a pure random walk probability dis-
tribution over all paths between s and t; as θ increases, the 
RSP distribution increasingly emphasizes paths of lower cost, 
until it finally focuses exclusively on the LCP (as θ→∞). 
Hence the RSP distribution bridges the gap between the 
extreme assumptions associated to both random walks, i.e. 
random movements without knowledge of the landscape, 
and the LCP approach, i.e. optimal movements based upon 
perfect knowledge of the landscape. That is, θ influences the 
degree to which movements are determined exclusively by 
the transition probabilities (or ‘choice probabilities’ sensu 
Lele et al. 2013) between adjacent locations or by the cost of 
the entire path between non-adjacent source and target loca-
tions, respectively. Figure 2 (2nd and 3rd row) demonstrates 
the sensitivity of RSP to both the cost and the number of 
paths for intermediate values of θ, as the ecological distances 
to the source are affected by both the widening of the corridor 
(number of paths) and an increasing Euclidean distance (path 
costs). The θ parameter thus controls the relative importance 
of the cost of paths and the number of possible alternative 
paths, which renders the RSP framework especially attractive 
for connectivity studies in ecology. We demonstrate the use 
of RSP using the gdistance (van Etten 2017) and samc 
(Marx et al. 2020) libraries in R (<www.r-project.org>; 
Supporting information).

Following its recent introduction into movement ecology, 
the RSP framework has already been applied to a variety of 
data, such as archaeobotanical and genetic data (Van Etten 
and Hijmans 2010, Gruber and Adamack 2015), and GPS 
tracking data for reindeer (Panzacchi et al. 2016), caribou 
(Fullman et al. 2017, Long 2019), grizzly bears (Peck et al. 
2017) and elk (Brennan et al. 2018). RSP generalizes and 
extends previous approaches used in movement ecology, and 
its flexibility allows the identification of more realistic move-
ment corridors as compared to either the LCP or random 
walk approaches (Panzacchi et al. 2016). Hence we chose this 
framework to scale up step probabilities and costs between 
adjacent i and j locations to entire paths between non-
adjacent source and target locations at the landscape scale. 
We provide a brief overview of the RSP framework in the 
Supporting information and refer to Kivimäki (2018) for a 
technical review. Note that, in addition to RSP, other interest-
ing approaches have been developed to interpolate between 
LCP and random walk distances (Fouss et al. 2016), such as 
the logarithmic forest distance (Chebotarev 2011) and the 
p-presistance distance (Herbster and Lever 2009, Alamgir and 
Luxburg 2011). However, up to now, these alternatives seem 
to lack the interpretability or computational convenience of 
RSP (Kivimäki et al. 2014) and have not been introduced 
yet into ecological applications. This could be an interesting 
avenue left for future work.

Randomness in ecological distances

The main advantages of RSP are its flexibility and its gen-
erality, and that it allows more realistic movement corridors 
to be modelled as compared to either the LCP or random 

walk approaches. However the cost of its flexibility implies 
that the level of randomness, θ ∈ [0,∞), must be set explic-
itly for the ecological process of interest. Note, however, that 
when adopting either the LCP or random walk approach the 
user implicitly also sets the level of randomness (respectively 
θ→∞ and θ = 0), which represent only the extremes of a con-
tinuum. As Marrotte and Bowman (2017) noted, researchers 
should recognize the bias they may be adding when choos-
ing one of these extreme parameters. Moreover, intermedi-
ate values of 6 are more likely to describe adequately species 
movements in real landscapes than any of the two extremes 
themselves (Panzacchi et al. 2016).

No protocol has yet been developed for selecting the best 
θ-value for any given ecological process. Several authors 
have, however, tested a range of values and validated the 
choice on observed species movement data. For instance 
Panzacchi et al. (2016) used the GPS tracking data of migrat-
ing reindeer to estimate the randomness that minimizes the 
deviance between the modelled movement flow obtained 
from the RSP approach and the empirical one obtained from 
the observed trajectories collected over several years. In their 
study θ was thus a combination of intra-individual random-
ness and inter-individual plus inter-year variation. Recently, 
Kivimäki et al. (2020) developed a maximum likelihood 
method for the estimation of θ from individual movement 
data given a permeability and cost surface and applied it also 
to reindeer GPS-tracking data. In this case θ was estimated 
for each single trajectory, and thus the randomness was esti-
mated for a single individual in a single year. In general the 
RSP framework can be interpreted in different manners, 
which affect the meaning of θ and guide the steps leading 
to its parameterization (Kivimäki 2018). We first explore the 
role of θ in the context of RSP as a model for movement 
with incomplete knowledge and then, in ‘Spatial absorbing 
random walk’ section, discuss θ further as a scaling param-
eter of the absorption rate in its ‘absorbing random walk’ 
interpretation.

Similar to the contribution of both movement probability 
and cost to the permeability of landscape features, i.e. the 
connectivity between adjacent locations i and j, that of the 
movement between two non-adjacent locations in the land-
scape is determined by two constraints: information (about 
the landscape) and cost (in terms of energy and mortality 
risk). The amount of information available to an individual 
regarding the characteristics of its environment affects its abil-
ity to navigate the landscape (Peer and Kramer-Schadt 2008). 
In the absence of such knowledge, only random movements 
would be possible, while on the contrary the ability to find 
the optimal path connecting distant locations requires perfect 
knowledge of the entire landscape. Frequently, animals pos-
sess at least some, although only partial, knowledge of the 
broader landscape within both their perceptual (Lima and 
Zollner 1996) and familiar range (reviewed in Fagan et al. 
2013), which leads to non-random and yet sub-optimal 
movements. In other words, if an individual knows its envi-
ronment reasonably well, its movements could be modelled 
with a higher value of θ; whereas, smaller values of θ are more 
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suitable for modelling connectivity with obvious knowledge 
constraints, such as dispersal through novel landscapes and 
reintroductions.

The RSP framework allows one to incorporate explicitly 
the amount of spatial knowledge available to individuals in 
ecological distance metrics, as the RSP probability distribu-
tion (PRSP

st ) minimizes the expected cost of following a path 
between the source and target, constrained by the informa-
tion available to the individual (Eq. 8 in Supporting informa-
tion). From this RSP distribution we can derive the expected 
cost for moving between a source s and target location t, the 
‘RSP expected cost’ (C st

RSP
, Eq. 10 in the Supporting infor-

mation) subject to incomplete knowledge. As already men-
tioned, this RSP expected cost generalizes the two standard 
distance measures used in ecology (Kivimäki 2018): the least-
cost distance (Adriaensen et al. 2003) and the resistance dis-
tance (McRae et al. 2008). With a low degree of randomness, 
the RSP expected cost converges to the least-cost distance, 
whereas with increasing randomness it converges towards the 
resistance distance (multiplied by a constant; Kivimäki et al. 
2014). The RSP expected cost is particularly suited to rep-
resent the expected energy cost of move between s and t, 
whereas the mortality cost is better dealt with using the sur-
vival probability (‘Spatial absorbing random walk’ section).

Step 3. Estimation of effective connectivity: 
space–intrinsic step

The last step in our workflow transforms ecological distances 
into estimates of EC for a given ecological process. First, EC 
requires the ability of individuals to reach the target from 
a source or their proximity. The proximity of a source s to 
a target t is usually in the range [0,1], where 0 denotes no 
connection and 1 perfect connectivity. Ecological distances, 
dst ∈ [0,∞), are in general not scaled to the species’ intrinsic 
movement capabilities, because of the use of indirect prox-
ies for the cost of movement, e.g. utilizing a transformation 
of movement probabilities in step 2, ‘Step 1: Estimation of 
habitat permeability: environment–intrinsic step’ section. 
However, when movement costs are estimated directly, for 
instance through the probability of mortality, then the sur-
vival probability between s and t could serve directly as a 
proximity measure that is scaled to species-specific movement 
capabilities (‘Spatial absorbing random walk’ section).

Second, as mere arrival at the target will seldom be enough 
for connectivity to be effective with respect to the focal pro-
cess, non-movement related ecological characteristics will 
also affect EC (Table 1). Therefore, in addition to the prox-
imity between a source and target, EC is also affected by non-
movement related ecological characteristics that contribute to 
the outcome of connectivity, those characteristics depend on 
the focal ecological process. Fletcher et al. (2016) describe 
the outcomes of connectivity at three organization levels. For 
instance, at the individual level connectivity within a home 
range is effective in so far it provides an individual’s daily 

resources, and migration connectivity is effective when it 
results in access to seasonally suitable ranges. Similarly, distri-
bution and genetic connectivity at the population level and 
connectivity supporting species interactions and biodiversity 
at the community level are effective not only when individu-
als arrive at the target, but also depending on species and 
process specific factors (Table 1).

In this section we first introduce the ‘absorbing random 
walk’ framework, followed by the scaling of distances with 
a species’ intrinsic movement capabilities, and then finally 
assess the effect of other ecological processes on the effective-
ness of connectivity.

Spatial absorbing random walk

As discussed above, two types of costs may be associated with 
movement: energetic andmortality costs. Recently, Fletcher 
Jr. et al. (2019) introduced the ‘spatial absorbing Markov 
chains’ (SAMC) also called ‘absorbing/killed random walks’ 
(Fouss et al. 2016) into landscape ecology to account explic-
itly for differences in the response of animal movement prob-
abilities and mortality to the landscape. Interestingly, as an 
alternative to movement with incomplete knowledge, the 
RSP model can also be interpreted in terms of an absorbing 
random walk (Fouss et al. 2016).

A standard random walk moves on a graph according to 
the random walk transition probabilities or normalized step 
probabilities (pij = Sij/∑jSij); however an absorbing random 
walk assigns, for all edges or nodes, some of the transition 
probability mass to the possibility of ‘absorbing’ or terminat-
ing the walk in i (Fletcher Jr. et al. 2019). Any ecological 
process that results in the individual terminating its random 
walk before reaching the target would lead to the ‘absorption’ 
of the random walk, such as the death of the individual or its 
settlement in an intermediate location.

Formally, in the RSP model, the absorbing of the random 
walk is obtained by multiplying the transition probabili-
ties with exp(−θcij); thus the absorbing probability is non-
zero for all θ > 0 and cij > 0. The RSP model is identical 
to the model presented by Fletcher Jr. et al. (2019), when 
exp(−θcij) = (1 − ri) with ri the probability of mortality in i 
(Fletcher Jr. et al. 2019; for a discussion of ri). In other words, 
when costs are the ‘surprisal’ of the survival probability (i.e. 
cij = −log(1 − ri)) and θ = 1, the RSP model is the SAMC in 
Fletcher Jr. et al. (2019). Hence, the ‘partition function’ (Eq. 
9 and 11 in the Supporting information) provides the arrival 
(or ‘survival’) probability of a random walker from a source 
to a target, i.e. the probability of it reaching t from s without 
being absorbed during the walk. This survival probability is 
well suited to account for the mortality costs of movement. 
Although the inclusion of θ in the RSP framework eneral-
izes the absorbing random walk model in Fletcher Jr. et al. 
(2019), the ecological interpretation of values differing from 
1 is probably less meaningful in this context than it is in the 
application of the RSP model to movement with incomplete 
knowledge discussed above.
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When the ‘absorption’ is related to non-lethal habitat-
related mechanisms, such as the settling of a dispersing 
individual in a suitable intermediate location i rather than 
continzuing its walk towards the target t, then the cij could 
incorporate this habitat-settlement link (in this case, cij no 
longer represents only movement costs). In other words, 
the availability of many vacant settlement areas in between 
source and target would decrease the direct (‘arrival’) connec-
tivity between s and t, although these settlement areas would 
function as sources in their own right increasing the overall 
connectivity of the landscape.

Scaling distances

The relationship between connectivity and ecological dis-
tances depends on both the movement capabilities of a spe-
cies (Bunn et al. 2000) and the specific ecological process of 
interest (Fletcher et al. 2016, Fletcher and Fortin 2018). In 
general a negative relationship exists between the distance an 
individual is willing to travel and the frequency of its trips 
(Bowman et al. 2002, Carbone et al. 2004). For instance 
daily movements within the home range are typically much 
shorter than migratory movements between seasonal ranges 
(van Moorter et al. 2013). Hence, for a given species, areas 
that are connected for seasonal migration may not be effec-
tively connected for daily foraging movements. In island 
biogeography (MacArthur and Wilson 1967) and metapopu-
lation theory (Hanski and Ovaskainen 2000) it has long been 
recognized that the manner in which the distance between 
two locations translates into their proximity depends on the 
movement abilities of the species. Therefore the proximity 
(kst) between a source and target in these models is com-
monly represented using an exponential function of their 
(Euclidean) distance scaled based on the species’ average or 
median dispersal distances:

k dst st= ( )exp -a   (4)

where the distance (dst) is multiplied by a scaling factor α 
characterizing a species specific movement capabilities, e.g. 
so that 1/α is the average dispersal distance. The species-spe-
cific scaling factor α is typically obtained from the literature 
but can also be derived from other sources relevant to the 
study aim, e.g. the theoretical relationships between daily or 
dispersal distances and body mass (Sutherland et al. 2000, 
Carbone et al. 2004).

In the framework presented in this paper, we propose mea-
suring ecological distances using RSP expected costs, rather 
than the simple Euclidean distance used in island bio-geogra-
phy, and converting them to estimates of ecological proximity 
using the negativevexponential transformation for any given 
ecological process of interest. This transformation is among 
the most frequently used, and it is also, conveniently, the 
inverse function of the logarithmic transformation used in 
Step 1 to translate step probability into cost. Note, however, 

that other transformations could be possible (for instance, 
Clark et al. 1999).

Ecological distances based on proxies for movement costs 
are not measured in standard units. Moreover published 
movement capabilities are typically expressed in metric units, 
which therefore need to be converted. The easiest approach 
consists of approximating ecological distance to the length of 
the paths in metric units, i.e. the number of transitions (in 
the LCP) or expected number of transitions (known as the 
‘commute time’ of a random walk) multiplied by the pixel 
size. These path lengths can then be scaled using species-
specific movement capabilities in metric units (Bunn et al. 
2000). The main drawback of this approach is that it does 
not account for the cost along the path (Simpkins et al. 
2018). Alternatively, ecological distances between s and t can 
be regressed against the corresponding Euclidean distances to 
obtain a conversion rate (Foltête et al. 2012), which can then 
be used to express ecological distances in metric units to scale 
with species-specific movement capabilities (demonstrated in 
Supporting information).

Although ecological distances can be converted into metric 
distances using published data, if suitable data are available, 
it seems preferable to estimate the movement capabilities of a 
species directly as ecological distances. For instance the eco-
logical distance of observed dispersal paths of individuals pro-
vides an empirical basis for inferring movement capabilities, 
which can be used to transform those distances to ecological 
proximities (demonstrated in the Supporting information). 
Similarly, when movement costs are scaled to represent the 
‘true’ cost of a step between adjacent locations, e.g. probabil-
ity of mortality, then the ‘absorbing random walk’ or RSP 
framework allows the direct estimation of the proximity 
between non-adjacent locations s and t as the probability of 
survival from source to target.

Effectiveness for the outcome of connectivity

Finally, the effectiveness of connectivity between a source 
and a target depends not only on the ecological distance and 
movement abilities of the species for an ecological function, 
but also on other intrinsic factors (e.g. the reproductive suc-
cess of immigrants; Robertson et al. 2018) and ecological 
characteristics (e.g. resources available in a patch) of the land-
scape for a species (Table 1). Again in island biogeography 
(MacArthur and Wilson 1967) and metapopulation theory 
(Hanski and Ovaskainen 2000), the EC EC (KEFF) between 
a source and target island or patch is a function not only of 
their proximity (kst, Eq. 4), but also of other ecological factors 
(ζ) at s and t affecting the effectiveness of connectivity:

K kst s t st
Eff = z z   (5)

where the area size of each patch is commonly used for ζ 
(Hanski and Ovaskainen 2000), the area size is used as a 
proxy for both the number of individuals that emigrate from 
the source (ζs) and the likelihood of immigration into the 
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target patch (ζt). The area size or quality of habitat patches is 
a common means of integrating other ecological characteris-
tics relevant to the effectiveness of connectivity for processes 
related to population persistence (Drielsma et al. 2007, Saura 
and Pascual-Hortal 2007, Drielsma and Ferrier 2009, Saura 
and Rubio 2010). However, as with movement capabilities, 
the relevance of other ecological, behavioural or life-history 
characteristics to the effectiveness of connectivity depends 
on the process of interest (Fletcher et al. 2016, Fletcher and 
Fortin 2018). For instance, effective demographic connectiv-
ity depends on the relative contribution of the immigrants 
to population growth, whereas effective genetic connectivity 
is affected more by the absolute number of dispersers (Lowe 
and Allendorf 2010). These characteristics, such as the repro-
duction probability of immigrants, can be included in the 
measure of EC (for instance, Robertson et al. 2018). Table 1 
for more examples, however an exhaustive treatment of all 
the ecological characteristics of a system that contribute to 
the effectiveness of connectivity is likely to fall outside the 
scope of many connectivity studies, which focus instead on 
the minimum requirements for EC.

Discussion

Because of the rapid decline of ecological connectivity 
caused by human land use (Tucker et al. 2018), its quanti-
fication to assess the effects of land use changes and guide 
connectivity conservation is a high research priority in 
landscape ecology (Correa Ayram et al. 2016). Recently, 
Vasudev et al. (2015) developed the first conceptual basis 
for the study of EC, the SEI framework argues that repro-
ductive connectivity is limited by 1) spatial constraints 
related to the geographic location of landscape elements, 2) 
external environmental factors and 3) intrinsic constraints 
related to the moving organism and its ecology. Although, 
intrinsic movement constraints can vary within or between 
individuals of the same species (e.g. due to varying energy 
reserves; Vasudev et al. 2015), and modeling approaches 
such as agent-based models allow for more flexible ecological 
dynamics (Revilla and Wiegand 2008), often at the expense 
of computational complexity. Instead, we focused on varia-
tion across species (although, a similar approach could be 
used to incorporate group variation within a single species, 
e.g. sex or age classes). In this paper we first generalized the 
definition of EC to include any movement-related ecologi-
cal process of interest. We then further expanded the SEI 
theoretical framework with a three-step analytical approach 
to quantify EC (for instance Revilla and Wiegand 2008 and 
Robertson et al. 2018 as other examples of a similar work-
flow), using advances from different research disciplines.

We started our assessment of EC from arguably one of the 
best data sources onindividual movement to quantify land-
scape permeability (individual tracking data in the IE step), 
however other data sources, such as capture–mark–recapture 

data, can be used (Remon et al. 2018, Robertson et al. 2018). 
Moreover, in some cases it may be more convenient to study 
permeability at a higher organizational level (Table 1). For 
instance it may be easier to investigate effective genetic con-
nectivity directly at the genetic level (Spear et al. 2010) rather 
than indirectly through the movement of individuals, which 
requires the addition of other ecological dynamics to assess 
the effectiveness of those movements for gene flow. The field 
of landscape genetics has evolved rapidly over the last two 
decades (Storfer et al. 2010, Manel and Holderegger 2013), 
and tools have been developed to quantify landscape perme-
ability using genetic data (Spear et al. 2010, Peterman et al. 
2019). Interestingly, these tools rely on the same three steps 
we have described, although iteratively, as data are available 
only regarding the effective genetic connectivity. The tools 
optimize the weighted combination of environmental layers 
for the permeability surface (the IE step) that minimizes the 
differences between the modelled EC (the ES and SI step) 
and the observed genetic similarity between pairs of sample 
locations (Peterman 2018, Peterman et al. 2019).

The estimation of EC between a source and target is data 
demanding (Table 1), as data on both the probability and 
cost of movement are needed and data on ecological dynam-
ics at s and t that contribute to the effectiveness of movement 
for the focal process (e.g. home range use, seasonal migra-
tion or colonization). However, gaps in data can be ‘patched’ 
through additional assumptions or the use of expert opin-
ion. For instance, the assumption of individuals behaving 
well-adapted to their environment would allow: 1) the cost 
of movement to be derived from the movement probability, 
and 2) the abundance of resources from occupancy data (e.g. 
resource selection functions: Manly et al. 2007) to assess, for 
instance, the effectiveness of home range or migration connec-
tivity (Table 1). Data to estimate the likelihood of movement 
have become increasingly available due to the development of 
tracking technology (Cagnacci et al. 2010), and occurrence 
data are readily available for many species from monitoring 
programs or citizen science data (Hochachka et al. 2012, 
Altwegg and Nichols 2019). However, even in the absence 
of any data on species-habitat responses, the proposed three-
step framework for EC could be implemented based solely 
on expert knowledge (Gurrutxaga and Saura 2014, Avon and 
Bergés 2016).

The definition of ecological distance commonly relies 
on either ‘least cost’- or on ‘random walk’-based distances 
(Marrotte and Bowman 2017, Peterman 2018). Recently, 
however, the RSP framework (Saerens et al. 2009) was 
introduced into landscape ecology (Van Etten and Hijmans 
2010, Panzacchi et al. 2016); the RSP model interpolates 
between the two extremes of a continuum from optimal 
to random movement. In addition to its interpretation as 
movement with incomplete knowledge, the RSP model can 
also be interpreted as an ‘absorbing random walk’ or ‘spatial 
absorbing Markov chain’ (Fletcher Jr. et al. 2019). We dis-
cussed two RSP-based metrics for the ES and SI steps of EC: 
first, the RSP expected cost interpolates between the least 
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cost and resistance distance, and second, the survival prob-
ability (Fletcher Jr. et al. 2019). Hence the RSP model rep-
resents a general framework for the distance and proximity 
metrics that are frequently employed in ecology, rendering 
it ideally suitable as a model for use in a general framework 
for quantifying EC. For the two costs of movement, i.e. 
energetic and mortality costs, the RSP expected cost and 
the survival probability respectively will be the most appro-
priate metrics. The simultaneous assessment of both move-
ment costs, however, is still and interesting avenue for future 
research.

Software for the three-step analytical approach is readily 
available in open-source latforms. We presented a demonstra-
tion of this workflow in R (<www.r-project.org>, Supporting 
information) using SSF and SSPF for the EI step fitted with 
respectively the survival-library (Therneau and Grambsch 
2000) and the ResourceSelection-library (Lele et al. 
2017) with both the RSP framework (Saerens et al. 2009) 
from the gdistance-library (van Etten 2017) and the 
‘absorbing random walk’ approach from the samc-library 
(Marx et al. 2020) for the ES step. We are actively devel-
oping an open-source library to improve computational 
efficiency for these RSP-based metrics. The computation of 
LCPs is available in all major GIS and computing environ-
ments, and Circuitscape is a highly popular choice among 
landscape ecologists for modelling random movements using 
circuit theory (McRae and Beier 2007, McRae et al. 2008, 
Dickson et al. 2019). We focused in our approach to esti-
mate EC on its steady-state behavior; however, interestingly 
in the samc-library connectivity can be computed over a 
specific time interval (Marx et al. 2020), which would allow 
for future studies on the transient dynamics of EC.

The large societal demands for connectivity conservation 
and restoration have placed the measurement of ecological 
connectivity at the forefront of research in landscape ecol-
ogy. We presented an integration and synthesis of research 
developments for the different steps involved in the esti-
mation of the EC between areas using the SEI framework 
(Vasudev et al. 2015). This integrative approach will enable 
practitioners and researchers to quantify EC for an ecological 
function of a focal species and study the manner in which it 
is affected by land use changes. This is especially important in 
the context of climate change, as connectivity conservation 
has been identified as a major strategy for climate-change 
adaptation for biodiversity (Heller and Zavaleta 2009, 
Keeley et al. 2018).
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