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A B S T R A C T   

Modelling walking distance enables the observation of non-linearities in hedonic property pricing of accessibility 
to greenspace. We test a penalized spline spatial error model (PS-SEM), which has two distinctive features. First, 
the PS-SEM controls for the presence of a spatially autocorrelated error term. Second, the PS-SEM allows for 
continuous non-linear distance decay of the property price premium as a function of walking distance to 
greenspaces. As a result, compared with traditional spatial econometric methods, the PS-SEM has the advantage 
that data determines the functional form of the distance decay of the implicit price for greenspace accessibility. 
Our PS-SEM results from Oslo, Norway, suggest that the implicit price for greenspace access is highly non-linear 
in walking distance, with the functional form varying for different types of greenspaces. Our results caution 
against using simple linear distances and assumptions of log or stepwise buffer-based distance decay in property 
prices relative to pedestrian network distance to urban amenities. The observed heterogeneity in the implicit 
property prices for walking distance to greenspace also provides a general caution against using non-spatial 
hedonic pricing models when aggregating values of greenspace amenities for policy analysis or urban 
ecosystem accounting purposes.   

1. Introduction 

Walking accessibility to everyday destinations, such as schools, res-
taurants and greenspaces has been associated with better health (Crea-
tore et al., 2016), lower crime rates, fewer foreclosures and increased 
property values (Gilderbloom et al., 2015). These associations taken 
together make promotion of pedestrian accessibility to urban amenities 
a fundamental strategy in urban planning (Anderson and West, 2006; 
Czembrowski and Kronenberg, 2016). Accessibility to recreation in 
greenspace is an important urban ecosystem service (Gómez-Baggethun 
and Barton, 2013) providing well-being and health and determining 
choice of and willingness to pay for residential location. Studies showing 
higher real estate prices due to accessibility to greenspace can provide 
urban planners with arguments to support for public funding for 
greenspaces, cost sharing with private urban developers, as well as 
providing developers with support for marketing greenspace 

accessibility to potential homeowners. 
The hedonic pricing method (HPM) is the workhorse of housing price 

analysis to estimate implicit prices of property attributes (Kain and 
Quigley, 1970; Rosen, 1974). It allows estimation of revealed prefer-
ences by treating housing as a good composed of many different attri-
butes that together determine the price. It uses multivariate regression 
analysis to estimate the individual effects of the property and neigh-
bourhood attributes on real-estate prices to infer marginal willingness to 
pay for each attribute (Rosen, 1974). In the applications of HPM to 
housing markets, attributes usually include property structural attri-
butes and neighbourhood amenities such as, in our study, greenspaces 
with different attributes. 

Havinga et al. (2020) defined ‘amenity services’ from ecosystems as 
the information flow from the knowledge that a natural area such as a 
park or forest is visible, accessible and or unique to the location (p.6). 
The marginal willingness to pay for pedestrian accessibility to 
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greenspace revealed in property prices has been shown to decline with 
distance across many different property market settings with few ex-
ceptions (Crompton and Nicholls, 2020; Crompton and Nicholls, 2021). 
The decline in willingness to pay for ecosystem services delivered at a 
distance from residential location – known as ‘distance decay’ – has also 
been observed in many stated preference valuation settings (e.g. Badura 
et al., 2020; Bateman et al., 2006; Johnston et al., 2019; Schaafsma 
et al., 2013; Soderberg and Barton, 2014; Yamaguchi and Shah, 2020). 
Distance decay may vary by direction (Schaafsma et al., 2012), be 
spatially discontinuous (Johnston and Ramachandran, 2014; Olsen 
et al., 2020) and is expected to be highly non-linear, particularly for 
pedestrian accessibility in urban settings (Millward et al., 2013; Moudon 
and Lee, 2009). 

Non-linearity of distance decay may be due to spatial heterogeneity 
of greenspace attributes. Various proxy indicators for urban greenspace 
quality have been used in hedonic pricing. Czembrowski and Kronen-
berg (2016) found significant positive implicit prices for vegetation 
density, large parks, forest greenbelt, small forests, and negative implicit 
prices for cemeteries, using an ordinary least squares (OLS) model with 
linear prices and log-distances. Proximity to different greenspaces 
differentiated by function and size has been found to affect house prices 
both positively (Conway et al., 2010; Czembrowski and Kronenberg, 
2016; Garrod and Willis, 1992a; Garrod and Willis, 1992b; Melichar and 
Kaprová, 2013; Poudyal et al., 2009; Tyrväinen and Miettinen, 2000) 
and sometimes negatively, depending on vegetation type or function 
(Czembrowski and Kronenberg, 2016; François et al., 2002). A number 
of studies have found mostly significant positive effects of greenspace 
attributes on property values, notably green cover and urban trees 
(Dombrow et al., 2000; Donovan and Butry, 2010; Escobedo et al., 2015; 
Holmes et al., 2006; Kadish and Netusil, 2012; Mansfield et al., 2005; 
Morales et al., 1983; Sander et al., 2010; Mei et al., 2018), but some-
times negative (Thompson et al., 1999; Saphores and Li, 2012). 

Different hedonic pricing methods have been utilized in economic 
analyses of access to amenity services. Hedonic pricing of urban ame-
nities often models the effect of property prices as a linear, log-linear or 
log–log distance decay function. While early hedonic models used 
Euclidean distance, GIS and model developments in the last couple of 
decades have enabled measurement of distances along street networks 
(Crompton and Nicholls, 2020). Network distance measurements such 
as walking distance are more suitable than Euclidean distances in spatial 
analysis of accessibility (Lu et al., 2011, 2014; Shen and Karimi, 2017). 
Computing non-linear walking distance to greenspace as street network 
distance is increasingly common (Czembrowski and Kronenberg, 2016; 
Nicholls and Crompton, 2005; Tyrväinen, 1997; Lu, Charlton and 
Fotheringham, 2011; Lu et al., 2014; Shen and Karimi, 2017). More 
advanced approaches have recently been used for deeper exploration of 
the impact of walking distance to greenspace on real estate markets. For 
example, Sylla et al. (2019) and Kopczewska and Ćwiakowski (2021) 
applied geographically weighted regression models to explore spatially 
heterogeneous impacts of protected areas, forests, rivers, trees, and 
landscape diversity on real estate markets. Although there are some 
examples of hedonic pricing models that have estimated distance decay 
functions for access to greenspace (e.g. Daams et al., 2016; Graevenitz 
and Panduro, 2015; Łaszkiewicz et al., 2019), none of them has focused 
on exploring the nature of non-linear distance decay functions for 
greenspace. 

If economic valuation of amenities from greenspace is to inform 
urban planning and ecosystem accounting, it requires modelling that is 
sensitive to spatial variation in the heterogeneous urban fabric (Gómez- 
Baggethun and Barton, 2013). The present paper contributes to the 
urban ecosystem service valuation literature by demonstrating a flexible 
econometric model that can address the non-linear relationship between 
residential prices and pedestrian network walking distance. Instead of 
using predefined functions for distance decay, such as log-linear or 
linear, which may oversimplify the relationship between walking dis-
tance and real estate prices (Łaszkiewicz et al., 2019), we recover the 

rich structure of the value function for walking distance by allowing for 
non-linearity using a penalized spline spatial error model (PS-SEM). 

The paper has the following structure. In Section 2, we describe our 
case study city – Oslo – and the data. In Section 3, we provide the 
description of the methods, starting from a brief introduction of hedonic 
price model (3.1), through econometric models (3.2–3.4), the quantifi-
cation of walking accessibility variables (3.5), ending up with the 
specification of other variables (3.6). Section 4 contains the empirical 
results and Section 5 discusses them. We end with some concluding 
remarks. 

2. Case study site 

Our study was carried out in Oslo, Norway’s capital city and largest 
city, with an official population of 693 000 in 2020, predicted to grow to 
about 801 000 by 2050 (Leknes and Løkken, 2020). Until recently one of 
the fastest growing population of European capitals has caused a hous-
ing shortage and steady housing price increases. Oslo municipality has a 
vision for a more walkable city (Tjernshaugen, 2015). This includes 
reducing car accessibility in favour of walking and biking access, first 
and foremost in the city centre. The housing market in Oslo consists 
mainly of owner occupiers, both in apartments and detached houses. 
There is also a segment of housing cooperatives and a relatively small 
rental market, where many of the rented apartments are privately 
owned and sublet on a free market. 

In the only prior hedonic pricing study of greenspace in Oslo, Traa-
holt (2014) tested linear regression model estimated using ordinary last 
square method (OLS), spatial econometric models and a generalized 
additive model (GAM) for regulated greenspaces (parks, playgrounds, 
sports arenas, cemeteries and peri-urban forest (in Norwegian language: 
Marka)) (Fig. 1). Models used continuous linear Euclidean distance 
accessibility measures to regulated greenspaces. Extensive manual 
testing was conducted to find specific maximum distance thresholds for 
each type of greenspace. Only the OLS models observed significant ef-
fects of linear Euclidean distance measures on the logarithm of property 
prices across all regulated greenspace types. In a pilot study of economic 
values of greenspace Barton et al. (2015) used Traaholt (2014) OLS 
model to calculate an aggregate contribution of greenspaces in Oslo to 
property value, across all apartments in the city. Recognizing the limi-
tations of the simple OLS model for scaling values for urban ecosystem 
accounting, Barton et al. (2015) called for further exploration of robust 
models that control for spatial effects. The present paper follows up 
robustness checks on hedonic valuation of greenspace in Oslo, using a 
PS-SEM with general relevance also beyond the Oslo case study. We also 
take advantage of data on non-environmental neighbourhood amenities 
and services not available in the Traaholt (2014) study. 

3. Materials and methods 

3.1. Data 

Different sub-markets of the housing market should be estimated 
using different models (Palmquist, 2005). This study investigates owner 
occupied apartments only, as we consider it a separate market from 
housing cooperatives and single-family houses. Consequently, conclu-
sions cannot be drawn from our results for preferences in other markets. 
The sales data was provided by Ambita AS1 at the resolution of address 
points, and originally based on two data sets combined: firstly, the sales 
prices from the Tax Agency (Skatteetaten) and secondly, structural at-
tributes for all apartments in Land Survey Registers (Kartverket). The set 
consisted of all registered sales between 2007 and 2015. 

We cleaned the data using some simple exclusion criteria. We only 

1 A private company that provides official data on property transactions and 
characteristics in Norway. 
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used observations that were registered as sales on a free market, had 
coordinates attached to them, were registered as a dwelling and were 
larger than 10 m2. We used a house price index for apartments in Oslo, 
provided by Statistics Norway, to calculate real (in 2nd quarter 2015 
prices) per square meter apartment prices. As a final step, we omitted 
observations in the highest and lowest percentile of price per square 
meter, as well as other outliers, to get a sample without the extreme 
values that can be considered a sub-market, ending up with N = 41,805 
observations. We used price per square meter rather than total sale 
price, to standardize the prices as they to a large extent are determined 
by housing size (Tyrväinen, 1997). Using the price per square metre as a 
dependent variable enabled analysis of the additional effect of proximity 
to different amenities on prices, which are more clearly expressed in 
relative prices than absolute prices (Liebelt et al., 2018). 

We had access to data for the 2007–2015 period. Our analysis period 
is long enough to include short term market shocks, but not long enough 
to see significant changes in land use. Within this time period, the global 
financial crisis occurred, but the Oslo housing market only experienced a 
small downturn, mainly because of the guarantee for mortgages by the 
Norwegian government (Røed Larsen, 2018). We did not have access to 
longitudinal data for the individual property. All of our hedonic pricing 
models used time fixed effects for quarters and years to control for 
temporal fluctuations in real estate prices. 

To quantify urban form, we used geographical data on a variety of 
network infrastructure and amenities in the city. We obtained most of 
the data at non-aggregated level, e.g., businesses at address point level, 
and water and greenspaces as polygons. Due to privacy, the socioeco-
nomic data was obtained at aggregate level of city district and census 
tracts. 

In Table 1, the data sources are listed for all variables included in the 

analysis. The initial list of variables contained 62 potential covariates, 
including distance to the central business district, tram stops, commuter 
train stations, bars, restaurants, and many others that are not described 
in this paper. Greenspace amenity services were proxied using walking 
distances to different greenspace sizes, specific peri-urban forests and 
coastline. We reduced the initial list based on the results from previous 
hedonic pricing models and based on the result of the stepwise regres-
sion. The set of neighbourhood explanatory variables with data sources 
is presented in Table 1. 

3.2. Accessibility related attributes 

All walking distances to amenities were measured with the PST 
plugin for QGIS software (QGIS Development Team, 2009; Ståhle et al., 
2005), and their specifications are given below. We used an axial map, a 
representation of space, as the network to measure walking distance. 
The axial map has its origins in space syntax research and consists of a 
network of the longest and fewest axial lines (Hillier and Hanson, 1989). 
We measured walking distance to attractions and amenities that have 
consistently predicted residential prices in the hedonic pricing litera-
ture, including proximity to schools, public transport, water bodies, 
greenspace and commercial and cultural amenities (Dieleman, Dijst, and 
Burghouwt, 2002; Iacono et al., 2008; Millward et al., 2013; Moudon 
and Lee, 2009; Yang and Diez-Roux, 2012). All street segments except 
motorways are pedestrian, and the calculated network distances capture 
the pedestrian areas of the city. Distance to highways was measured to 
the nearest highway exit. 

Accessibility to school can be measured in different ways: school 
quality as measured by average scores or points, e.g. SAT score or 
average grades (Li et al., 2015), distance to closest school (Dai et al., 

Fig. 1. Overview map over the urban part of Oslo municipality, showing the great natural reserves north and east of the city and the fjord in the southwest.  
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2016) or number of schools within a distance or district (Chasco and Le 
Gallo, 2015). In this study we focused on the walking distance to pri-
mary schools. 

Access to public transport has similar alternatives in measurement 
specification as accessibility to schools. One can measure the number of 
stations or stops within a distance or district (Dai et al., 2016), distance 
to the closest station or stop (Cervero and Kang, 2011; Duncan, 2011) or 
with a gravitational measure that weights the measure to the level of 
service of the station or stop in terms of trip frequencies (Martínez and 
Viegas, 2009). In our study, we used walking distance to stations for 
commuter rail, metro, and tram. 

Water as recreation amenity was included as the walking distance to 
the closest body of water, including the sea and lakes. While most studies 
estimating access to water use minimum distance (see for example Wen 
et al., 2014), there are examples measuring the percentage of water 
surfaces within a radius (Kestens et al., 2004) or assessing whether the 
dwelling is located adjacent to water (Bowman et al., 2009). 

Greenspace can be classified according to functional types (Ståhle, 
2006), by attributes or by size. Greenspace size is related to diversity of 
park functional attributes (Massoni et al., 2018) and size has been shown 
to be a proxy for function (Czembrowski and Kronenberg, 2016). 
Greenspaces were therefore further categorized by size (pocket, small, 
medium, and large parks). The categorization of greenspace sizes was 
determined by the municipal regulation plan of Oslo. Oslo Municipal-
ity’s 2010 Green Plan specifies standard walking distances from homes 
to city parks of different sizes for testing park accessibility of the pop-
ulation: 250 m for small parks (0.1–0.5 ha), 500 m for medium parks 
(0.5–10 ha), and 1000 m for large parks (>10 ha). Oslo’s planning norm 
requires at least one small park within 250 m and one medium park 
within 500 m of residences in the inner city, and one medium park 
within 500 m of residences in the outer city. 

The designation of greenspace is stable over the period of study, as 
opposed to vegetation landcover as determined by remote sensing. Our 
designated land use approach does not capture access to unregulated 
public areas and greenspace on private land such as gardens. The peri- 
urban forest called ‘Marka’2 was divided into two geographically sepa-
rated natural reserves, the East and North Marka, which have distinct 
natural attributes. 

Urban design studies suggest that the access to multiple amenities is 
a key feature of neighbourhood quality (Lundhede et al., 2013). We 
specified two composite variables for amenities not related to green-
space, one for ‘cultural amenities’ (art galleries, museums, cinemas, and 
libraries) and one for ‘commercial amenities’ (bars, restaurants, and 
shops). Both measure the walking distance to reach all types of ame-
nities in the respective category. 

3.3. Other attributes not using accessibility metrics 

Our sample consisted of apartment sales with structural attributes of 
the individual apartments, obtained from Ambita AS. In our analysis, we 
included the following structural attributes: size (in m2), presence of 
elevator, number of bathrooms, number of floor levels from the top 
floor, number of rooms, year of obtaining permit for construction or 
major renovation (as a set of dummies ‘last renovation‘ for three periods: 
before 2000, 2000–2009, after 2009) and the annual quarter the prop-
erty was sold. 

Noise was included using a GIS polygon layer for three different 
levels of noise: below 55 dB (reference category), from 55 to 64 dB and 
65 dB or more. The noise levels were interpolated from measuring points 
for traffic intensities and do not take building height or vegetation into 

Table 1 
Description of neighbourhood variables, including walking accessibility and 
amenity variables.  

Variable name Variable 
description 

Previous studies 
with similar 
specification 

Data source 

Distance to 
pocket park 

Network distance 
to a park smaller 
than 1000 m2 

Czembrowski and 
Kronenberg 
(2016); Kommune 
(2009) 

The Agency for 
Urban 
Environment 
(BYM) in Oslo 
Municipality 

Distance to small 
park 

Network distance 
to a park between 
1000 and 5000 m2 

Distance to 
medium park 

Network distance 
to a park between 
5000 and 100 000 
m2 

Distance to large 
park 

Network distance 
to a park larger 
than 100 000 m2 

Distance to 
Marka N 

Walking distance to 
the nature area 
surrounding the 
city of Oslo in the 
north 

Heyman et al. 
(2017); Sjaastad 
et al. (2008) 

The Agency for 
Urban 
Environment 
(BYM) in Oslo 
Municipality 

Distance to 
Marka E 

Walking distance to 
the nature area 
surrounding the 
city of Oslo in the 
east 

Socioeconomic 
index 

Average 
employment, 
education and 
income level on 
census tract 
(grunnkrets). The 
income is 
disaggregated from 
the level of city 
district (bydel). 

Li et al. (2015); 
Zabel (2015) 

Statistics Norway 
(Statistisk 
Sentralbyrå) 

Distance to 
commercial 
amenities 

Shortest network 
distance to reach 
restaurant, bar and 
shop 

Chasco and Le 
Gallo (2015); Jang 
and Kang (2015); 
Wen, Zhang, and 
Zhang (2014) 

Statistics Norway 
& The Oslo 
School of 
Architecture and 
Design 

Distance to 
cultural 
amenities 

Shortest network 
distance to reach 
art gallery, cinema, 
museum and 
library 

Rich and Nielsen 
(2004); Thériault 
et al. (2005) 

Statistics Norway 
& The Oslo 
School of 
Architecture and 
Design 

Distance to 
school 

Network distance 
to closest primary 
school 

Dziauddin, 
Alvanides, and 
Powe, (2013) 

Statistics Norway 
& The Oslo 
School of 
Architecture and 
Design 

Distance to fjord Network distance 
to the fjord 
(coastline) 

Abelson, Joyeux, 
and Mahuteau, 
(2013); Yoo et al. 
(2014) 

The Agency for 
Urban 
Environment 
(BYM) in Oslo 
Municipality 

Distance to 
metro 

Network distance 
to the closest metro 
station 

Cervero and Kang 
(2011); Jayantha 
and Lam (2015) 

The Agency for 
Urban 
Environment 
(BYM) in Oslo 
Municipality 

Distance to 
highway 

Network distance 
to the closest 
highway exit 

Li et al. (2015); 
Mitra and 
Saphores (2016) 

The Oslo School 
of Architecture 
and Design 

Noise below 55 Dummy variable 
for modelled noise 
below 55 dB 
(reference 
category) 

Baranzini, 
Schaerer, and 
Thalmann (2010) 

The Agency for 
Urban 
Environment 
(BYM) in Oslo 
Municipality 

Noise 55–64 Dummy variable 
for modelled noise 
from 55 to 64 dB 

Noise 65+ Dummy variable 
for modelled noise 
65 dB and more  

2 Literally translated, Marka means the outfield, the woodland, or the forest 
in Norwegian. In places like Oslo, Marka means urban forest, which is a large 
area of undeveloped land that is covered in vegetation and accessible to the 
general public. A Marka is therefore similar to a greenbelt in other countries. 
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consideration (Kommune, 2013). We did not include separate air 
pollution variables as this is mainly generated by traffic, and highly 
correlated with noise levels. 

We specified a neighbourhood socioeconomic index from the level of 
employment, education, and income. The index was set as the average 
value (between 0 and 100) from the three components, specified as 
follows. 

sij =

⎛

⎝
emj − min

j
{emj}

max
j
{emj}− min

j
{emj}

+
edj − min

j
{edj}

max
j
{edj}− min

j
{edj}

+
ij − min

j
{ij}

max
j
{ij}− min

j
{ij}

⎞

⎠

3
⋅100,

where si is socioeconomic index for ith apartment located in jth census 
tract; emi is employment level for jth census tract; edi is education level 
for jth census tract and ii is income for jth census tract. 

The data for employment and education were available at census 
tract level of which there are j = 540 in the research area. Income was 
obtained on the more aggregate level of 16 city districts. To make use of 
all three variables, we assigned uniform district income levels to census 
tract level within the same district. Income was measured as average 
yearly income and standardized. For employment levels, we divided the 
number of employed with the total number of employable persons 
within each census tract to get a standardized value. In the same fashion, 
we calculated the share of people with a degree from college or uni-
versity education longer than three years within the age of 20 to 64. 

3.4. Modelling approaches 

We estimated the hedonic price model as a penalized spline spatial 
error model (PS-SEM) to allow for a flexible non-linear relationship 
between housing prices and walking distance to various destinations, 
and judge whether it coincides with walking distance. Also, we sup-
plement the results obtained using the PS-SEM with other econometrics 
models (provided in ESM Section 2) to show the robustness/sensitivity 
of the PS-SEM results and highlight which of our results need to be 
interpreted with caution. 

Similar to other studies (Basile et al., 2014; Montero et al., 2018), we 
chose PS-SEM for two reasons: (1) to capture potential non-linear impact 
of covariates on the apartment prices (distance decay function) and (2) 
to control for the spatially correlated property prices. Below we provide 
further arguments for choosing PS-SEM as an appropriate method to 
deal with non-linearity in distance decay functions, which simulta-
neously controls for spatial autocorrelation. 

3.4.1. Distance decay functions 
The hedonic price models often assume a linear impact of covariates 

on home prices or use a predefined functional form to approximate the 
non-linear relationship in a parametric approach. However, willingness 
to walk is expected to be non-linear in a network with varied spatial 
configuration, with additional variation caused by residents’ age, sea-
sonal conditions and type of destination (Koushki Parviz Amir, 1988; 
Moudon and Lee, 2009; Yang and Diez-Roux, 2012). Therefore, a flex-
ible distance decay functional form is important. In this study, we used 
PS-SEM, which uses a semi-parametric approach – the same as in a 
generalized additive model (GAM) (Wood, 2017) – to estimate the non- 
linear distance decay function. We chose the PS-SEM because it enabled 
capturing non-linearity of distance decay in a more flexible way than 
linear or log-linear models (Anderson and West, 2006; Kong et al., 
2007). In particular, the PS-SEM uses penalized splines that enable 
estimating the fluctuations in the relationship between explanatory and 
outcome variables. This allowed us to go beyond the simple conclusions 
about positive/negative/no association between walking distance and 
property prices that is common to the linear or log-transformation of the 
covariates (Bao and Wan, 2004). The semi-parametric distance decay 
function is expected to more readily fit the local neighbourhood 

variation in perception of accessibility to different types of amenities 
(Iacono et al., 2008; Yang and Diez-Roux, 2012). 

To demonstrate the usefulness of PS-SEM distance decay functions, 
we compared them with the simplest solutions such as (1) natural log-
arithm of distance to amenities, (2) stepwise distance decay function 
specified using an interaction between the natural logarithm of distance 
and a set of dummies for distance thresholds and (3) the greenspace 
coverage in the circular buffers <100 m, 100–250 m, 250–500 m, 
500–1000 m, >1000 m (Crompton and Nicholls, 2021) (ESM Section 3). 

3.4.2. Spatial autocorrelation 
In the hedonic pricing models spatially correlated property prices are 

often observed. It occurs due to the inability of a model to control for all 
important locational attributes such as proximity externalities or 
neighbourhood features, leading to spatially-correlated omitted vari-
ables (Czembrowski and Kronenberg, 2016). To deal with spatially 
correlated property prices it is necessary to extend the non-spatial he-
donic price model. Spatial econometric models use spatially lagged 
dependent and/or independent variables and/or spatially lagged error 
term to address this (Czembrowski and Kronenberg, 2016; Kim et al., 
2018; Votsis, 2017). Other approaches include adding spatial fixed ef-
fects (Anselin and Arribas-Bel, 2013) or a smoothing function of 
geographical coordinates (spatial geo-additive gradient) (Łaszkiewicz 
et al., 2019; Veie et al., 2013). However, as was pointed out by Anselin 
and Arribas-Bel (2013), the former rarely removes spatial autocorrela-
tion, while the latter might be more useful if spatial drift instead of 
autocorrelation occurs (Dormann et al., 2007). 

Considering the above, we chose PS-SEM because it enabled us to 
control for spatial autocorrelation using a well-established spatial 
econometrics approach (Anselin et al., 2013). In particular, we captured 
spatial autocorrelation by enabling the error term in the PS-SEM to be 
spatially correlated. This approach requires a priori specification of a 
spatial weight matrix so it could be seen as less flexible than a data- 
driven spatial geo-additive gradient commonly used in the GAM (Val-
tiala et al., 2019). Nevertheless, the PS-SEM allows to capture spatial 
autocorrelation arising from spatially-correlated omitted variables 
(Basile et al., 2014; Montero et al., 2018). 

To assess whether the PS-SEM should be preferred over other 
econometric models, we conducted an extensive evaluation of spatial 
autocorrelation using several alternative modelling techniques (see ESM 
Section 2 for details). 

3.5. A penalized spline spatial error model 

We estimated PS-SEM (Basile et al., 2014; Montero et al., 2018), 
specified as follows: 

lnyi = β0 + β1z1i + ...+ βkzki + f1(x1i) + ...+ fl(xli) + ui

ui = λ
∑n

j=1
wijuj + εi,

(1)  

where yi is sales price per square meter for ith apartment; z1i,…, zki are 
the explanatory variables representing structural attributes, time and 
spatial fixed effects. Impact of z1i,…, zki on the outcome variable is 
assumed to be linear. x1i,…, xli are the explanatory variables repre-
senting property structural and neighbourhood attributes, such as the 
walking distance variables. Impact of x1i,…, xli on the outcome variable 
is assumed to be unknown and non-linear. β0,…, βk are estimated pa-
rameters; f1,…, fl are nonparametric smoothing functions representing 
distance decay; λ is a spatial autoregressive parameter; wij is an element 
of the spatial weight matrix W; µi is spatially autocorrelated disturbance 
and εi follows a normal distribution, i.e., ε ~ N(0,σε

2). 
The histogram of the outcome variable and descriptive statistics for 

explanatory variables are provided in Electronic Supplementary Mate-
rials (ESM Fig. 1 and ESM Table 1, respectively). 

As stated, in PS-SEM we do not need a priori knowledge about the 

E. Łaszkiewicz et al.                                                                                                                                                                                                                            



Ecosystem Services 53 (2022) 101394

6

functional form of the relationship between explanatory and outcome 
variables. The non-linearity is modelled through smoothing functions – 
splines (f1,…, fl in Eq. (1)). The splines are sums of weighted basis 
functions with the estimated coefficients used as the weights (Wood, 
2017). The number of basis functions to be included in the model is 
selected for each covariate by the researcher and determines the degree 
of flexibility of the relationship with the outcome variable. We used 
effective degrees of freedom (EDF) to check if the non-linear impact of 
covariates on the outcome variable is necessary. The EDF = 1 is an 
equivalent to a linear distance decay functions (due to the using loga-
rithm of dependent variable in our case it is an equivalent of log-linear 
relationship), EDF > 1 and ≤ 2 corresponds a weak non-linearity, while 
EDF > 2 indicates a highly non-linear distance decay functions (Zuur 
et al., 2009). 

In Eq. (1) spatial autocorrelation is allowed via a spatially-correlated 
error term with the estimated parameter λ. In addition, in this model we 
controlled for the spatial heterogeneity of apartment prices using spatial 
fixed effects and allowed for temporal dynamics by using a set of 
dummies for quarterly apartment sales. The details for choosing spatial 
weight matrix W and spatial fixed effects were presented in ESM Section 
2. 

The sptpsar package for the development of semiparametric spatial 
and spatio-temporal econometric models in R was used to estimate PS- 
SEM (Basile et al., 2014; Montero et al., 2018). The coefficients of PS- 
SEM were estimated using restricted likelihood maximization method. 

In addition to the PS-SEM we also estimated: 1) a non-spatial linear 
regression model, 2) a linear regression model with additional spatial 
fixed effects, 3) a spatial error model, 4) a spatial smooth gradient 
model, and 5) a spatial smooth gradient model with additional spatial 
fixed effects. For more details, see the Section 2 of the electronic sup-
plementary materials (ESM). These models were treated as alternatives 
to the PS-SEM in terms of the way they control (or not) for spatial 
autocorrelation. The results from these alternative models help us to 
choose the most appropriate structure of spatial autocorrelation and 
heterogeneity in PS-SEM. Their analysis helps understand why the PS- 
SEM was chosen as appropriate modelling technique for out data. 

4. Results 

4.1. Penalized spline spatial error model 

The results for the PS-SEM estimates are presented in Table 2 and 
Fig. 2. For structural, noise and socioeconomic index, the network dis-
tance is not measured, hence linear coefficients are represented in the 
upper panel and significance of distance decay functions of environ-
mental/walking distance variables are presented in the lower panel of 
Table 2. 

Coefficient estimates for the structural variables follow intuition and 
previous research. A price premium is given for higher floor level, 
presence of elevator, more toilets and a new construction and/or reno-
vation (last renovation or construction year). The model also shows that 
smaller area apartments have higher square meter prices, which can in 
part be explained by fixed transaction cost (Dahlman, 1979; North, 
1992), as well as a pricing strategy where the price per unit area for the 
bigger flats is slightly lower than for smaller apartments (Mok et al., 
1995). 

The socioeconomic index, a proxy variable for neighbourhood de-
mographic composition, shows a positive correlation with prices, in line 
with previous research (Mathur, 2014; Poudyal et al., 2009b). Dummy 
variables for modelled noise levels from 55 dB-64 dB and 65 dB and 
above were found as statistically insignificant when we control for 
spatial autocorrelation of error term (see ESM Table 5). 

The PS-SEM has the highest goodness-of-fit (AIC) in comparison to 
alternative models such as spatial error model or spatial smooth gradient 
model (ESM Table 5). Moran’s I test for PS-SEM residuals informs in-
dicates that they are not spatially correlated. The estimated parameter λ, 

which captures spatial autocorrelation in PS-SEM, is positive and sta-
tistically significant, indicating that effects of spatially-correlated 
omitted variable(s) have been identified and controlled for. 

4.2. Distance decay of property prices to walking distances 

Walking distance variables are presented with EDF in the lower panel 
of Table 2. The semi-parametric modelling of distance decay functions is 
reported graphically in Fig. 2. The distance decay curves depict pre-
dicted price per square meter for the median sale prices on the y-axis and 
the walking distance in meters on the x-axis. The EDF estimated from PS- 
SEM are above 2 for each distance decay functions indicating a high non- 
linearity of an impact of distance to amenity on sale prices (Zuur et al. 
2009). The parametric part of the majority of distance decay functions 
are not statistically significant. Only the parametric part of distance 
decay to small, medium and large parks are significant. For these 
greenspaces distance decay functions distinguish parametric and semi- 
parametric features (Table 2). 

Walking distance to large parks displays non-linear distance decay in 
the PS-SEM plot only beyond about 800 m. The plot for medium parks 
shows increasing price with distance, but this finding is not significant 
(the 95% confidence interval lies outside the plot range in the figure). 
For medium parks the slope varies from positive to negative between 
models with different specifications of the spatial component, suggest-
ing correlation with omitted spatially-correlated variable(s) (see ESM 
Table 5). At distances of up to about 100 m from small parks, the PS-SEM 

Table 2 (upper panel) 
Results from the penalized spline spatial error model (PS-SEM):  

Variable Estimated coefficient Std. Error P-value 

Const.  12.722***  0.361  0.000 
Last renovation 2000–2009  0.065***  0.005  0.000 
Last renovation after 2009  0.080***  0.006  0.000 
Top floor  − 0.030***  0.000  0.000 
Elevator  0.031***  0.004  0.000 
Number of WCs  0.076***  0.003  0.000 
Ln(Living space)  − 0.267***  0.003  0.000 
Socioeconomic index  0.001**  0.000  0.023 
Noise 55–64  − 0.005  0.004  0.198 
Noise 65+ − 0.001  0.005  0.855 

Significant at: *** 0.01; ** 0.05; * 0.1. 

Table 2 (lower panel) 
Results from the penalized spline spatial error model (PS-SEM): semi-parametric 
distance decay functions.  

Variable Parametric part of 
function 

Semi-parametric term 
(EDF) 

f1 (Distance to commercial 
amenities) 

1.252  5.234 

f2 (Distance to cultural 
amenities) 

− 0.478  21.483 

f3 (Distance to metro) − 0.345  8.776 
f4 (Distance to highway) 2.002  8.417 
f5 (Distance to school) − 0.328  5.434 
f6 (Distance to fjord) − 1.366  12.961 
f7 (Distance to Marka N) − 0.528  7.282 
f8 (Distance to Marka E) − 0.112  3.872 
f9 (Distance to pocket parks) 0.072  6.825 
f10 (Distance to small parks) − 0.574***  8.680 
f11 (Distance to medium 

parks) 
3.635**  5.957 

f12 (Distance to large parks) 0.725***  6.257  

Time fixed effects Yes 
Spatial fixed effects Yes 
λ 0.404*** 

AIC − 30,020 
Moran’s I test − 0.001 
N 41,805  
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shows distance decay effects, but not beyond. There is no meaningful 
distance decay in PS-SEM for pocket parks. A slight negative trend is 
observed for the mass of sales points (see histogram on the right y-axis) 
up to 200 m. In contrast, using simple log–log models produces consis-
tently negative, statistically significant estimates (ESM Table 5). 

Walking distance to the peri-urban Marka forests on either side of the 
city shows monotonically decreasing prices which flatten out above 2 
km for Marka East and 3 km for Marka North. Distance decay is negative 
and statistically significant in the log–log SEM model for both peri-urban 
forests (ESM Table 5). Only distance decay for the East forest is signif-
icant in the PS-SEM. Walking distance to the fjord shows significant 
distance decay over the nearest 1500 m. This is consistent with the re-
sults obtained using alternative models which all estimated the distance 
to fjord as statistically significant with a negative sign. 

Walking distance to primary schools in all log–log models was found 
as statistically significant with negative sign of estimates. The sale prices 
decrease with an increase of distance to primary schools mostly up to 
400 m. Walking distance to cultural amenities does not follow expected 

patterns of distance decay, as it shows an expectation that prices in-
crease with distance, while the commercial amenities variable has a flat 
distance decay function. Also, all of the alternative models, which use 
log–log functions, would indicate that the decrease of distance to cul-
tural or commercial amenities results in a decrease rather than an in-
crease of sale prices. 

Walking distance to metro stations shows no significant pattern 
within the walkable range. Highway entrance points are a disamenity, 
also in the log–log models (ESM Table 5). 

4.3. Robustness checks 

Using the data-driven PS-SEM approach we find some of non-linear 
distance decay functions (Fig. 2) that appear to run counter to the ex-
pectations from much of the HPM literature. Especially, when it comes 
to distance to medium parks the marginal willingness to pay increases 
with distance to these parks rather than decreases, as expected. Visual 
inspection of the distance decay functions in Fig. 2 shows that the 

Fig. 2. Estimated distance decay functions (Eq. (1)). The 95% confidence intervals are shown as light dotted grey lines. In some plots uncertainty is so high that 
confidence bounds lie outside the plot range. Histograms of the individual walking distance variables are added on the right y-axis. 
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counter-intuitive positive slopes of implicit property prices for green-
space are local and not significant over the distance ranges of the vari-
ables. For further documentation we carried out extensive robustness 
checks on the PS-SEM, including (i) alternative econometric approaches 
with the emphasis on the correct inclusion of omitted spatially- 
correlated variable(s) bias and (ii) alternative functional forms for 
accessibility. 

4.3.1. Alternative econometric approaches 
To assess robustness, we estimated other econometrics models, 

described detailed in ESM Section 2. We started from the non-spatial 
linear regression model for which we run diagnosis towards an identi-
fication of spatial autocorrelation and heterogeneity. For the former we 
applied Moran’s I test and Lagrange Multiplier tests. The Moran’s I test 
on the linear regression model residuals shows the presence of spatial 
autocorrelation (ESM Table 3). Using Moran’s I we tested eight different 
spatial weight matrices with the global, semi-local and local structure of 
relations between sales points (Chen, 2012). We found that the highest 

Moran’s I coefficient (0.26) is for the spatial weight matrix with 3 
nearest neighbours (KNN = 3) (Kooijman, 1976). This informs us that 
we have local spatial autocorrelation in the model. For the KNN = 3 
spatial weight matrix we conducted the Lagrange Multiplier tests (ESM 
Table 2) which suggested that the spatial autocorrelation instead of 
spatial dependence is necessary to control in our model. One of the 
potential explanations why local spatial autocorrelation was found in 
this model could be the omitted structural characteristics of housing 
stock such as a building’s condition. 

To check spatial heterogeneity, we estimated a non-spatial linear 
regression model with spatial fixed effects. We tested three different 
ways of grouping the city into spatial units (ESM Table 4). Based on the 
Radj

2 we decided that adding spatial fixed effects for 3-digit postcodes is 
necessary to control for spatial heterogeneity. The inclusion of those 
fixed effects increased the Radj

2 more than any other spatial fixed effects 
– from 52% (lack of spatial fixed effects) to 61%. We used spatial fixed 
effects in all the next models. This is in the line with others (Heyman and 
Sommervoll, 2019) who found using the hedonic pricing model in Oslo 

Fig. 2. (continued). 
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that the 3-digits postcodes improve the goodness-of-fit and enables 
capturing the local sale prices fluctuations. 

In addition, we conducted the Box-Cox test to evaluate if any 
transformation of our dependent variable is required in the further 
analysis (Davidson and MacKinnon, 1985). We obtained λ = 0.06 which 
suggests that the logarithmic transformation of sale prices is necessary. 
Therefore, in all models we used natural logarithm of sale prices. Also, 
following Heyman and Sommervoll (2019), who estimated the hedonic 
pricing model for Oslo using OLS and obtained goodness-of-fit around 
81.5% for sale prices, we tested how much the goodness-of-fit of our 
basic model (without non-linear distance decay functions, but including 
spatial autocorrelation) would differs if we would use sale prices instead 
of sale prices per square meter (see Section 3.1). We found that the 
model with sale prices as the dependent variable is comparable when it 
comes to goodness-of-fit with those proposed by Heyman and Som-
mervoll (2019) and have Radj

2 = 82%. Finally, for the non-spatial linear 
regression model (ESM Table 2), we found that multicollinearity is not 
expected to be a problem as the variance inflation factor (VIF) is 

consistently below the suggested value of 5 (Rogerson, 2001). 
To address spatial autocorrelation, we estimated not only PS-SEM, 

but also four additional models representing different approaches to 
deal with spatial autocorrelation (see ESM Section 2). This included 
models which were previously found to have limited ability to control 
spatial autocorrelation such as model with additional spatial fixed ef-
fects. We would expect that only the spatial error model (SEM) enables 
fully controlling for spatial autocorrelation. The SEM has the highest 
goodness-of-fit measured by AIC and Moran’s I test for its residuals 
shows no spatial autocorrelation. Other models, including spatial 
smooth gradient model, reduced the Moran’s I coefficient, but could not 
fully eliminate the autocorrelation. 

Interestingly, models with additional spatial fixed effects (Eq. 3 and 
6) for within-building interactions, reduced the Moran’s I more than 
pure spatial smooth gradient model (excluding SEM). Although there is 
no doubt among spatial econometricians that spatial fixed effects cannot 
fully remove spatial autocorrelation from the model (Anselin and 
Arribas-Bel, 2013), the only exception is the group-wise spatial 

Fig. 2. (continued). 
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autocorrelation in which all spatial observations that are members of the 
same group influence one another in the same way. The reduction of 
Moran’s I coefficient in this case is in the line with the argument that the 
source of the spatial autocorrelation in our model is perhaps the omitted 
spatially-correlated variable(s) such as missing quality of the housing 
stock. 

The results from the estimation of alternative models show the su-
periority of SEM over the other modelling strategies. Therefore, the 
extension of SEM towards its semi-parametric version (PS-SEM) was 
applied as the final model. The comparison of PS-SEM with SEM shows 
that PS-SEM has higher goodness-of-fit than SEM. Also, the EDFs sup-
ports the conclusion that going beyond the log–log function offered by 
SEM, towards semi-parametric non-linearity in PS-SEM is an appropriate 
direction of analysis. Both PS-SEM and SEM control for spatial auto-
correlation in the same way and could be used for more detailed 
comparisons. 

Interestingly, the estimates for distance to amenities vary between 
alternative models. This suggests that the distance-related explanatory 
variables are the most susceptible to the way we control for spatially- 
correlated omitted variables. The use of non-spatial models may lead 
to misleading conclusions regarding the impact of the amenities on sale 
prices. While the estimates for distance to commercial and cultural 
amenities remains the same across models, other distance-based vari-
ables switch their signs or lose significance. This is especially observed 
for distance to small and medium parks. This suggest the necessity to 
interpret the findings with the greatest caution as they may reflect the 
spatial instability of the estimates. More detailed comparison of the re-
sults form alternative econometric approaches are provided in ESM 
Section 2. 

4.3.2. Alternative functional forms for accessibility 
We checked alternative approaches to capture the non-linearities in 

the hedonic pricing models with the use of a stepwise function and 
alternative measure of greenspace proximity using the proportion of 
greenspace within different circle buffers from the residence (ESM Ta-
bles 6 and 7). In particular, we specified a stepwise distance decay 
function, for the SEM, as the interaction between logarithm of distance 
to greenspace and a set of dummies reflecting discrete distance seg-
ments, instead of a single continuous distance variable as above. 

The estimates of the stepwise distance decay function are interpreted 
similarly to log–log estimates, however they are valid for the given 
distance range. While the log–log estimate can be treated as an 
“average” impact on all sale prices, the stepwise distance decay function 
decomposes this “average” into distance ranges. This means that esti-
mates for stepwise distance decay function would vary from the log–log 
estimate and increase/decrease or remain insignificant depending on 
the shape of distance decay function. However, the estimation of step-
wise distance decay requires a series of distance-based variables, 
increasing the possibility of potential collinearity with other covariates, 
including spatial fixed effects. 

In addition, in comparison to a semi-parametric distance decay 
functions obtained from PS-SEM, a stepwise decay function is still just an 
average. It could be valid if there is no local variation in distance decay 
function and the frequency distribution of observations for different 
distance thresholds is similar. However, in our case, there is variation in 
the number of property transactions for different walking distances to 
greenspace, and variation in the structure of street networks and 
accessibility. This leads to local variation in each distance decay func-
tion. For this reason, the average effects in the logarithmic distance 
decay models are not fully consistent with the estimates for stepwise 
distance decay functions while the latter do not fully reflect the shape of 
semi-parametric distance decay functions in the PS-SEM. 

The stepwise averages of the distance decay function (ESM Table 6) 
are only partly consistent with the non-linear distance decay functions of 
the PS-SEM and the log–log SEM estimates. For example, the estimates 
for ln distance to pocket greenspaces was found to be negative and 

statistically significant (− 0.011 with p-value < 0.01), as expected, in 
SEM model. The estimated PS-SEM semi-parametric distance decay 
function for pocket greenspace shows no meaningful distance decay, 
especially after a threshold at 200 m (most observable decrease is up to 
50 m). The estimates for corresponding stepwise distance decay function 
is more in line with expectations. The estimates for the distance up to 50 
m has the highest absolute value. Within the distance of 50 m an in-
crease of distance to pocket greenspace by 1% results in a decrease of 
sale prices per square meter by 0.018% (ceteris paribus). This effect is 
lower in absolute value for the distance range 50–100 m (0.015%) and 
then decrease again up to 200–400 m. Although the stepwise distance 
decay function indicates that after 200 m the impact of pocket green-
space is still statistically significant, it is smaller especially in compari-
son to effect within distance up to 50 m. 

The estimates for medium greenspace are statistically significant but 
positive, both in log–log SEM and in model with stepwise distance decay 
function. The PS-SEM shows that these counterintuitive effects are not 
significant. 

The stepwise distance decay function for small greenspace shows 
that the highest reduction of sale prices with increasing distance to small 
parks is observed up to 100 m. This impact remains statistically signif-
icant and negative for the other distance ranges, however it systemati-
cally decreases. In contrast, in PS-SEM the visual inspection of semi- 
parametric distance decay function gives more unambiguous conclu-
sion about the threshold distance. Importantly, the distance thresholds 
used to create stepwise distance decay functions were based on the in-
spection of PS-SEM results. What does this mean? Without this knowl-
edge the researcher who wants to detect the thresholds has to do it by 
testing various thresholds set up a priori or based on the previous 
findings. In contrast, with the PS-SEM, the stepwise decay functions 
might be used to evaluate the robustness of the results. 

While the results from log-log, stepwise distance decay and semi- 
parametric distance decay functions produce a partly consistent pic-
ture of the greenspace “premium”, models using aggregated greenspace 
in buffers are in contradiction (ESM Table 7). The estimates for density 
of greenspace in the circle buffers are expected to be statistically sig-
nificant and positive with the systematic decrease of estimates for the 
buffer >100 m, 100–250 m, 250–500 m and 500–1000 m. However, 
these estimates are not statistically significant and those which were 
found to be significant have negative sign. The negative sign means that 
with the increase of greenspaces in the circle buffer (for example from 
100 to 250 m from the sale point), the sale prices decrease. These results 
indicate the need to disaggregate greenspaces in hedonic pricing 
models. It is because, as our study demonstrates, not all greenspaces 
generate price “premium” and some of them may act even as dis-
amenities for real estate buyers (Łaszkiewicz et al., 2019). 

5. Discussion 

Using PS-SEM to estimate the non-linear distance decay functions 
between apartments’ prices and walking distance to amenities provides 
a novel and flexible approach to valuing greenspace. The combination 
with advanced spatial analysis enables PS-SEM to capture peoples’ 
spatial preferences in a more detailed way than in previous HPM liter-
ature. In the following, we discuss some urban planning and policy 
implications of the results. 

5.1. Accessibility thresholds for different greenspace types 

The walking distance variables related to greenspace show varied 
results across types of greenspace. This is similar to the results provided 
by (Czembrowski and Kronenberg, 2016) who found that different types 
of greenspace exert different impacts on property prices. A review of US 
studies found that most of the impact on sale prices by greenspace is 
generated within 400 metres (Crompton and Nicholls, 2021). This range 
is lower than what we find for Oslo’s peri-urban forests, large parks and 
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coastline. 
The walking distance to the peri-urban forests of Marka East exerts a 

sigificant influence on property prices, while the relationship is not 
significant for the peri-urban forest to the North of the city. There is 
indication of distance decay after a threshold distance for large parks, 
indicating that commonly used logarithmic assumptions about distance 
decay could be incorrect for specific categories of greenspaces. There is 
also some support that distance to small parks has a significant effect on 
prices within the proximity of approximately 100 m, which follows 
previous research (Millward et al., 2013). 

Yang and Diez-Roux (2012) showed that walking distances around 
1.5 km are common for recreational destinations. Small and pocket 
parks follow an expected pattern of distance decay for most alternative 
econometric models (see ESM). Plots for PS-SEM (Fig. 2) show distance 
decay effects to be non-linear close to residences. Lacking significance of 
smaller greenspace accessibility across longer distances may be because 
98% of residences have access at least to small parks (>1000 m2) within 
close walking distance (300 m) (Kommune, 2021). The significant re-
sults for coastline, peri-urban forest and large parks emphasize that for 
these large blue-green spaces access is more unequally distributed across 
the city, leading to significant and different distance decay functions. 
There is greater willingness to walk further for larger greenspaces 
because they offer a greater diversity of use opportunities (Massoni 
et al., 2018). 

How are these results relevant for urban planning in Oslo? The sig-
nificant distance decay effect for large parks above 700 m is quite 
compatible with Oslo’s Green Plan recommendations. Weak or lacking 
distance decay for medium, small and pocket parks is an indication that 
the Green Plan’s objective of residential walking access to greenspace 
has also been environmentally just as property values do not generally 
discrimante residents’ neighbourhood greenspace access (Suárez et al., 
2020). The fewer large parks, coastline and peri-urban forest provide 
higher multifunctionality (Massoni et al., 2018) are also unequally 
distributed. More unequal distribution of large greenspaces provides a 
plausible explanation for higher likelihood of observing significant 
distance decay effects. Furthermore, the lack of distance decay effects 
within walking distance of the large parks may suggest that accessibility 
to smaller parks is good within that range. A new finding for Oslo’s 
Green Plan is that access to the fjord is significant within about 1500 m. 
This could be due to decreasing fjord visibility with distance, whereas 
distance decay to parks and forest is due to walkability. Other studies 
have found similar distance decay for access to water and beaches 
(Millward et al., 2013). 

5.2. Generalizing hedonic pricing results for urban ecosystem accounting 

The modelling results emphasize the importance of using network 
walking distances in order to capture non-linear effects of distance in 
hedonic pricing models. Euclidean distance underestimates actual 
walking distance to reach greenspaces. An average Euclidean distance 
from sale points to the nearest pocket park is 25% lower than network 
distance. Similar underestimation of distance is observed for other 
greenspaces. For small parks the underestimation caused by using 
Euclidean instead of network distance is 24%, for medium parks 33% 
and for large parks 23%. 

Using Euclidean distance specifications and OLS models without 
spatially-correlated error term Traaholt (2014) observed distance decay 
in implicit property prices for greenspace access, but this seems to be 
driven by the variable and model specification. While Euclidean dis-
tance to greenspace variables are largely not significant in the non- 
spatial GAM model used by Traaholt (2014), using PS-SEM we observe 
non-linear distance decay in property prices relative to walking distance 
for some types of greenspace. What does it mean in the broader 
perspective? Insufficient or lack of control for spatially-correlated 
omitted variable(s) may lead to misleading conclusions. As we demon-
strate in the robustness analysis, especially distance-related variables 

are highly sensitive to the way the spatial effects are included in the 
model. What is more important, the simple non-spatial models might 
wrongly indicate statistically significant effects, even with signs of pa-
rameters that are consistent with our expectations, just because of the 
way those variables are correlated with omitted spatial variable(s). 
Therefore, caution is needed in using any single modelling strategy and 
an extensive robustness analysis is required to confirm the consistency of 
results. 

Are our findings generalizable? With a large number of greenspaces 
of different sizes within the built zone, and peri-urban Marka forests 
immediately adjacent to and completely encircling the built zone, Oslo 
may be somewhat atypical compared to more densely built capital cities 
(Łaszkiewicz et al., 2021). We speculate that the close pedestrian 
proximity to a large variety of greenspaces across the city mean that 
urban greenspace recreation value is harder to observe in property 
prices than in most of the cases documented in the HPM literature. The 
results in this paper confirm that the linear scaling and aggregation of 
OLS estimates by Barton et al. (2015) was not a reliable approach to 
valuing most greenspace types in Oslo, even if the purpose is for general 
awareness-raising requiring less reliability. In Oslo other methods for 
identifying the economic values of urban greenspace amenities are 
needed. 

Our documentation of robust non-linear distance decay effects using 
the PS-SEM provides a general caution against using HPM valuation 
estimates for greenspace policy analysis that are based on linear distance 
and smooth log distance decay specifications. The caution is also rele-
vant for future thematic urban ecosystem accounts (United Nations, 
2021). National Statistical Offices commissioning hedonic pricing 
methods should measure pedestrian network distances and should check 
robustness to spatial heterogeneity in different urban areas using sGAM 
models. 

6. Conclusions 

This paper investigates the relation between walking accessibility to 
amenities from greenspaces on apartment prices in Oslo, controlling for 
structural effects and network pedestrian distances to greenspace and 
other urban amenities. We demonstrate non-linear relationships be-
tween walking distances to some amenities and property prices. Dis-
tance decay in property prices is non-linear, sometimes displaying 
thresholds that depend on the size and type of greenspace. Our com-
posite indicators of cultural and commercial amenities are not sensitive 
to the spatial processes defined in the PS-SEM. We carry our extensive 
checking of modelling robustness and find that non-linear distance 
decay effects are robust in the Oslo case. We discuss the advantages of 
the PS-SEM, in particular its data-driven specification of distance decay 
functions, rather than using a priori assumptions required by other 
econometric modelling techniques. Notwithstanding the idiosyncrasies 
of Oslo’s greenspace configuration, we argue that the PS-SEM is a 
generally applicable approach to control for non-linear distance decay. 

The findings of significant thresholds in modelling hedonic price 
decay in walking distance to greenspace in PS-SEM could be used by 
planners to assess distributional impacts and inform standards on 
maximum walking distances to greenspace for new property de-
velopments. Significant effects of publicly managed parks on property 
prices may also provide additional support for public park maintenance 
efforts. If significant non-linear distance decay functions are observed, 
they will also provide more accurate value aggregation for the purpose 
of urban planning policy and ecosystem accounting. 
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