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Abstract
The relationships between species abundance or occurrence versus spatial variation 
in climate are commonly used in species distribution models to forecast future distri-
butions. Under “space- for- time substitution”, the effects of climate variation on spe-
cies are assumed to be equivalent in both space and time. Two unresolved issues of 
space- for- time substitution are the time period for species' responses and also the 
relative contributions of rapid-  versus slow reactions in shaping spatial and temporal 
responses to climate change. To test the assumption of equivalence, we used a new 
approach of climate decomposition to separate variation in temperature and precipi-
tation in Fennoscandia into spatial, temporal, and spatiotemporal components over 
a 23- year period (1996– 2018). We compiled information on land cover, topography, 
and six components of climate for 1756 fixed route surveys, and we modeled annual 
counts of 39 bird species breeding in the mountains of Fennoscandia. Local abun-
dance of breeding birds was associated with the spatial components of climate as ex-
pected, but the temporal and spatiotemporal climatic variation from the current and 
previous breeding seasons were also important. The directions of the effects of the 
three climate components differed within and among species, suggesting that spe-
cies can respond both rapidly and slowly to climate variation and that the responses 
represent different ecological processes. Thus, the assumption of equivalent species' 
response to spatial and temporal variation in climate was seldom met in our study 
system. Consequently, for the majority of our species, space- for- time substitution 
may only be applicable once the slow species' responses to a changing climate have 
occurred, whereas forecasts for the near future need to accommodate the temporal 
components of climate variation. However, appropriate forecast horizons for space- 
for- time substitution are rarely considered and may be difficult to reliably identify. 
Accurately predicting change is challenging because multiple ecological processes af-
fect species distributions at different temporal scales.
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1  |  INTRODUC TION

Understanding the mechanisms and predicting the impacts of cli-
mate on the distributions and abundances of species is necessary 
for key goals in conservation and management. The complexity of 
species' responses to a changing climate may not be adequately 
characterized by the most commonly used form of forecasting 
based on species distribution models (SDMs, Adler et al., 2020; Illán 
et al., 2014; Rapacciuolo et al., 2012). In SDMs, associations are 
established between the occurrence or abundance of a species at 
sampling locations with climate and other environmental covariates 
(Franklin, 2009; Green et al., 2008; Jiguet et al., 2013; Stephens 
et al., 2016). Forecasts based on SDMs are typically implicitly based 
on space- for- time substitutions, which use current spatial patterns to 
forecast spatiotemporal patterns into the future (Adler et al., 2020; 
Blois et al., 2013; Stephens et al., 2016; Veloz et al., 2012). A spa-
tial climate difference associated with variation in occurrence or 
abundance of a species is assumed to have the same effect as an 
equivalent change in climate through time at a single location. SDMs 
built with data from one time period and forecast or hindcast to a 
different period have given robust spatial predictions, but excep-
tions are common across a range of taxa, including birds (Araujo 
et al., 2005; Soultan et al., 2022), mammals (Davis et al., 2014), but-
terflies (Kharouba et al., 2009), and plants (Dobrowski et al., 2011; 
Pearman et al., 2008; Pearson et al., 2006; Veloz et al., 2012; Worth 
et al., 2014). Moreover, even for SDMs that accurately predicted 
future species distributions, occurrences or abundances at the 
sites where change occurred were often poorly predicted (Briscoe 
et al., 2021; Illán et al., 2014; Rapacciuolo et al., 2012). Systematic 
assessments are needed of the use of simple space- for- time substi-
tutions versus more complex models of associations between spe-
cies and environments.

An unresolved issue of space- for- time substitution is whether 
there may be a specific time period during which spatial and tem-
poral species- climate relationships are equivalent, which could 
explain some of the heterogeneity among species responses to cli-
mate variation. The time spans over which the climatic drivers of 
species distribution patterns are expected to act are reflected in 
the calculation of climate covariates for SDMs. Milanesi et al. (2020) 
distinguished between SDMs with static and dynamic covariates 
(Figure 1a,b). For the commonly used static covariates, covariates are 
averaged over several years or decades and the forecasted distribu-
tion is then an average distribution for a future time period (Araujo 
et al., 2005; Dobrowski et al., 2011). Longer forecast horizons have 
been advocated for two reasons: (1) the influence of stochasticity 
on shorter timescales, and (2) because changes in species' distri-
butions may occur slowly (Blois et al., 2013; Pearman et al., 2008). 

Delayed changes in distributions may occur, for example, if disper-
sal limitations hamper the ability of a species to reach new suitable 
areas. Species' tolerances to climatic conditions may also be wider 
than the current realized niche, while responses to climatic change 
in the environment of the species may be slow, including succession 
from open habitats to forests or between forest types (Dobrowski 
et al., 2011; Schurr et al., 2012; Veloz et al., 2012; Wang et al., 2017; 
Zurell, 2017). If species' responses are delayed, valid forecast hori-
zons based on space- for- time substitutions with static covariates will 
be left-  and right truncated (Figure 2); forecasts would be applicable 
for the time period after the delay has been overcome (left truncation) 
and until the point in the future when the species- climate relation-
ship eventually changes (right truncation). Space- for- time substitu-
tions based on static covariates have been suggested for forecasting 
changes occurring over longer time periods of decades up to millen-
nia (Adler et al., 2020; Blois et al., 2013; Pearman et al., 2008).

In contrast, Damgaard (2019) cautioned against forecasting 
based on space- for- time substitution unless species' responses to 
environmental changes occur relatively rapidly, because a chang-
ing environment may cause predictions to become unreliable. An 
example of a fast species response might be when local climate 
conditions determine the extent or water depth of wetlands and a 
wetland- dependent species reacts quickly to the suitable habitat 
conditions. Here, we would expect the same relationship between 
the species' distribution or abundance and climate, regardless of 
whether the species- climate relationship is in space or time or is de-
scribing the imminent or more distant future (Figures 2 and 3). Fast 
species responses can be modeled with dynamic covariates, in which 
covariates represent variation at fine temporal resolutions, such as 
seasons or years, and the resulting forecasts can incorporate rapid 
changes in distributions or abundances (Figures 2 and 3; Briscoe 
et al., 2021; Devenish et al., 2021). Thus, the underlying approaches 
of SDMs with static and dynamic covariates are different, with rapid 
effects of climate conditions omitted when using static covariates, 
but included via dynamic covariates. For rapid species responses and 
forecasts based on space- for- time substitutions, forecast horizons 
are right truncated, but not left truncated, because they encompass 
the entire time period from the immediate future until the species- 
climate relationship changes (Figures 2 and 3). The time horizons 
apply to forecasts with either static or dynamic covariates (static or 
dynamic forecasts, henceforth).

The third type of SDMs, based on a decomposition of covariates 
(Figure 1c), provides a novel framework for investigation of the 
assumptions inherent in space- for- time substitution. Oedekoven 
et al. (2017) separated three components of climatic variation: (1) 
the long- term average at each location (spatial component), (2) the 
annual variation across all locations (temporal component), and (3) all 
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remaining variation (residual component or the spatiotemporal com-
ponent or space- time anomaly). Then, all components are included as 
covariates to model species counts or occurrences recorded at mul-
tiple sample sites and over multiple years. Oedekoven et al. (2017) 
found that the spatial effects of a given climate covariate were not 
always matched by equivalent effects of the temporal or residual 
components in modeling distributions of five common species of 
birds in Great Britain (ca. 210K km2, ca. 900 km latitude, 20 years).

The aim of our study was to investigate equivalence in space 
and time of the relationships between local species abundances and 
climate for a diverse assemblage of bird species. A better under-
standing of whether and over which time periods the relationships 
between species abundance or occurrence and climate are equiva-
lent in space and time is crucial because equivalence would provide 
greater confidence in forecasts. We applied SDMs with decomposed 
climate covariates to 39 species of birds breeding in the mountains 
of Fennoscandia (Figure 4) to obtain a better understanding of the 

spatial and temporal effects of climate. The study area is large with a 
complex biogeography comprising alpine, boreal, arctic, Atlantic, and 
continental regions (Roekaerts, 2002), including the highest moun-
tains of Northern Europe and a large range of climate variability that 
is bounded by a temperate climate in the south, an arctic climate in 
the north, a maritime climate in the west, and a more continental 
climate in the east. Understanding the impact of climate variation 
on birds breeding in mountains and high latitudes is important given 
their vulnerability to climate warming (Freeman et al., 2018). We ex-
pected a similar response to climate across species for the spatial 
component because most bird species breeding in the mountains are 
expected to occupy the colder parts of Fennoscandia. Thus, the spa-
tial component provides a useful baseline to compare relationships 
for the temporal and residual components. We considered the joint 
effects of temperature and precipitation on species distributions 
because both climatic variables can explain responses of mountain 
birds to a changing environment (Tingley et al., 2012). Specifically, 

F I G U R E  1  Static, dynamic, and decomposed covariates in species distribution models (SDMs). In SDMs with static covariates (a), time- 
varying covariates such as temperature or precipitation are averaged over coarser temporal resolutions, such as several years. In SDMs with 
dynamic covariates (b), time- varying covariates represent variation at finer temporal resolutions, such as per season or year, and are used to 
model corresponding seasonal or annual occurrence or abundance data. In SDMs with covariates decomposed into multiple components (c), 
time- varying covariates are decomposed into the long- term average spatial pattern, the temporal trend across the area of interest, and any 
residual (spatiotemporal variation). All three components are then used as covariates to model annual occurrence or abundance data.
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Period 1 Period 2 Period 3 Period 4 Period 5 Period 6 

 (a)  Temperature

 (b)  Static predictions with space−for−time substitution for the four virtual species shown in (c)−(f)

 (c)  Simulated abundances for virtual species with slow, immediate responses

 (d)  Simulated abundances for virtual species with slow, delayed responses

 (e)  Simulated abundances for virtual species with rapid responses

 (f)  Simulated abundances for virtual species with mixed responses

colder warmer

Temperature

low abundance high abundance

Abundance Appropriate forecast horizon
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for each species, we expected one of the following three out-
comes, with consequences for time periods valid for space- for- time 
substitution:

1. Are the directions of effect between local abundance and cli-
matic variation consistent in space and time? Equivalence of the 
direction of effect of the temporal and spatial relationship would 
support the assumptions underlying space- for- time substitution. 
Species' responses that lead to consistent directions of effects 
are rapid species responses to climatic variation. Additionally, 
consistent directions of effect could also be expected for slow 
species responses if the species is already responding to a 
change in the long- term average climate. For rapid species 
responses, no left truncation of the forecast horizon is required 
for either static or dynamic forecasts (Figures 2 and 3). For 
slow species responses and static forecasts, left truncation 
of the forecast horizon is necessary, if the delay is not yet 
overcome. Dynamic forecasts based on space- for- time substi-
tution are not valid for slow species responses, as short- term 
variation is assumed to be stochastic (Figures 2 and 3).

2. Is local variation in species' abundances associated with temporal 
climate components? A lack of temporal effects would support 
the suggestion that species respond slowly to climate and have 
not yet responded to possible changes in the long- term average 
climate. Consequently, left truncation may be necessary for static 
forecasts, while dynamic forecasts are not valid using space- for- 
time substitution (Figures 2 and 3).

3. Is local variation in species' abundances associated with 
temporal climate components, but the directions of effect 
between local abundance and climatic variation are not con-
sistent in time and space? Species- climate relationships that 
are inconsistent in time and space would indicate that species 
respond differently across different temporal scales of climate 
variation. Consequently, SDMs with static covariates do not 
comprehensively capture species- climate associations. Static 

forecasts based on space- for- time substitution may need to 
be left truncated because an inconsistent pattern between 
space and time indicates that species responses to changes 
in the long- term average climate will be delayed. Dynamic 
forecasts based on space- for- time substitution are not valid 
(Figures 2 and 3).

2  |  MATERIAL S AND METHODS

2.1  |  Bird monitoring data

We used bird abundance data recorded on fixed routes of the 
three national bird monitoring schemes of Norway, Sweden, and 
Finland: the Norwegian terrestrial breeding bird monitoring (Norsk 
hekkefuglovervåking, tov- e.nina.no/hekke fugl, 13 years, 2006– 
2018), the Swedish breeding bird survey (Svensk Fågeltaxering, 
www.fagel taxer ing.lu.se, 23 years, 1996– 2018), and the Finnish 
breeding bird monitoring scheme (www.luomus.fi/en/bird- monit 
oring, 13 years, 2006– 2018). Fixed survey routes were laid out in 
a systematic grid across each country and are representative of 
the major habitats in Fennoscandia because they covered a large 
and topographically varied area across the three countries (ca. 
1.1M km2, ca. 1800 km latitude, Figure 4). Routes were surveyed 
once each year between the end of May and early July, but not 
all routes were surveyed in all years. Survey routes were 6 km 
(Finland and Norway) or 8 km (Sweden) in total length, each typi-
cally a square or rectangle, and birds were recorded either along 
line transects (Finland) or on a combination of line transects and 
point count stations with 5 min survey durations (Sweden and 
Norway). Sections of a route were not surveyed if the terrain was 
inaccessible, but the total length of transects or the number of 
points surveyed was recorded to correct for occasional variation 
in sampling effort. In Sweden, birds were counted separately on 
point count stations and line transects. In Norway, all species were 

F I G U R E  2  Conceptual figures illustrating the conditions under which static forecasts are appropriate when using space- for- time 
substitution. The average temperatures for several periods are shown (row a). Space- for- time substitution, based on identifying associations 
between species abundance and temperature in Period 1, will lead to identical predictions regardless of the rapidity of species' responses 
to annual variation in temperature in the future Periods 2– 6 (row b). However, these predictions do not always match simulated species 
abundances, and green borders around panels in rows (c– f) show when space- for- time substitution produces valid predictions of species 
abundances. Applying static forecasts based on space- for- time substitution to species with immediate responses to changes in long- term 
averages of climate (slow responses) is appropriate for as long as the species- temperature relationship remains unchanged (row c). Applying 
static forecasts based on space- for- time substitution to species with slow, delayed responses (row d) is only appropriate after the delay has 
been overcome (from Period 4 onward) and for as long as the species- temperature relationship remains unchanged. Forecasts are thus “left- 
truncated” in time. Applying static forecasts based on space- for- time substitution to species with rapid responses (row e) is appropriate for 
as long as the species- temperature relationship remains unchanged. In mixed responses found in this study and in Oedekoven et al. (2017), 
species respond both slowly and rapidly to temperature variation, but with the direction of effect for fast and slow responses being 
inconsistent. Applying static forecasts based on space- for- time substitution to species with mixed responses (row f) is only appropriate after 
the delay has been overcome (from Period 4 onward) and for as long as the species- temperature relationship remains unchanged. Forecasts 
are thus “left- truncated”. Changes in counts were based on simulated abundances (Methods S1). All forecasts are also “right- truncated” (not 
shown), which means that at some point in the future, the current- day relationship between species abundance and temperature will have 
changed due to an evolutionary response or another change. The time periods when the response lag is overcome or when the species- 
temperature relationship changes are typically not known a priori.

https://tov-e.nina.no/hekkefugl
http://www.fageltaxering.lu.se
http://www.luomus.fi/en/bird-monitoring
http://www.luomus.fi/en/bird-monitoring
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Year 1 Year 2 Year 3 Year 4 Year 5 Year 6

 (a)  Temperature

 (b)  Dynamic predictions with space−for−time substitution for the three virtual species in (c)−(e)

 (c)  Simulated abundances for virtual species with slow responses

 (d)  Simulated abundances for virtual species with rapid responses

 (e)  Simulated abundances for virtual species with mixed responses
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Temperature

low abundance high abundance

Abundance Appropriate forecast horizon
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F I G U R E  3  Conceptual figures illustrating the conditions under which dynamic forecasts are appropriate when using space- for- time 
substitution. Annual changes in temperature are shown (row a). Space- for- time substitution, based on identifying associations between 
species abundance and temperature, will lead to identical predictions regardless of the rapidity of species' responses to annual variation 
in temperature in the future Years 2– 6 (row b). However, the predictions do not always match simulated species abundances, and green 
borders around panels in rows c– e show when space- for- time substitution produces valid predictions of species abundances. Applying 
dynamic forecasts based on space- for- time substitution to species with slow responses (row c) is inappropriate as forecasts based on the 
spatial pattern predict that species' abundances vary with temperature at fine temporal resolutions (row b), although variation in species' 
counts at fine temporal resolutions is stochastic. Applying dynamic forecasts based on space- for- time substitution to species with fast 
responses (row d) reproduces the year- to- year variation in the simulated abundances. In mixed responses, such as those found in this study 
and in Oedekoven et al. (2017), species respond both slowly and rapidly to different facets of temperature variation, but the direction of 
effects for fast and slow responses is inconsistent. Applying dynamic forecasts based on space- for- time substitution to species with mixed 
responses (row e) is inappropriate and does not correctly reproduce the year- to- year variation in the simulated abundances. All forecasts are 
also “right- truncated” (not shown). Changes in counts were based on simulated abundances (Methods S1).

F I G U R E  4  Spatiotemporal variation 
in temperature and precipitation in 
Fennoscandia, 1996– 2018. The four 
panels on the top show the spatial (a), 
temporal (b), and residual (c) components 
of breeding season temperature (May– 
July) and (d) the range of variation per 
component. The four panels on the 
bottom show the spatial (e), temporal (f), 
and residual (g) components of breeding 
season precipitation (May– July), and (h) 
the range of variation per component. 
The plotted values show the difference 
in temperature and precipitation to the 
overall mean across all years and cells of 
the study area (10.7°C, 193 mm).
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counted on point count stations, but a subset of rarer species were 
also counted on line transects. Consequently, we treated point 
counts and line transects as separate but spatially dependent sur-
veys. The total numbers of individuals (Sweden) or pairs (Norway 
and Finland) detected were recorded per species for each route. 
Background details on each monitoring program are summarized 
by Kålås et al. (2014), Lehikoinen (2013), Lehikoinen et al. (2014), 
Lehikoinen and Virkkala (2016), and Ottvall et al. (2007) and in 
Methods S1. The Norwegian data were taken from 470 routes 
with both point count and line transect data, and an additional 
seven routes with only point count data (route- years with tran-
sect data: 2765; route- years with point counts: 3101). In Sweden, 
there were 716 routes with both transect and point count data 
(route- years: 8897), and the Finnish data were from 563 routes 
with transect data (route- years: 2845). In total, data from 1756 
routes were included (routes with transect data: 1749; routes with 
point counts: 1186).

We initially selected 52 bird species for modeling, which were 
listed on the Swedish natural history portal Artfakta (artfa kta. se) as 
occurring in the Fennoscandian mountains. We present results for a 
subset of 39 diverse species of birds (Table S1) for which our fitted 
models exceeded a performance threshold (see below): Anseriformes 
(four species), Galliformes (two species), Charadriiformes (17 spe-
cies), Cuculiformes (1 species), and Passeriformes (15 species). The 
species ranged in body size from 8.7 g (willow warbler, Phylloscopus 
trochilus) to 1015 g (red- breasted merganser, Mergus serrator) and 
contain invertivore, granivore, herbivore, omnivore, and aquatic 
predator species (Tobias et al., 2022). Most species are migrants and 
spend the summer breeding season in the Fennoscandian mountains 
(Svensson et al., 2009). Only five species are resident or only par-
tially migratory: willow grouse (Lagopus lagopus), rock ptarmigan (L. 
muta), white- throated dipper (Cinclus cinclus), northern raven (Corvus 
corax), and common redpoll (Acanthis flammea). Willow grouse and 
rock ptarmigan often move to more sheltered habitats and lower 
altitudes in winter. Common redpoll and white- throated dipper are 
partial migrants that depart the most northerly areas of the study 
area in winter.

We jointly modeled data across all three countries, which en-
sured that sites spanned a larger range of environmental varia-
tion than in either of the three countries. Predicting outside of 
the sampled range of environmental variation can result in inac-
curate predictions (Dormann et al., 2013; Randin et al., 2006). 
We conducted a validation analysis to confirm that our choice of 
spatial extent did not influence the modeled relationships with 
the spatial climate component (Figure S5). We modeled counts, 
whereas many previous studies have modeled species occurrence. 
Occurrence and abundance are positively associated, and abun-
dance is a key quantity of interest for biodiversity studies (He & 
Gaston, 2003; Kunin, 1998). Abundance data contain more infor-
mation than occurrence data (Johnston et al., 2015), and SDMs 
based on abundance data with predictions converted to occur-
rence can outperform SDMs based on occurrence data (Howard 
et al., 2014).

2.2  |  Environmental data

To model the influence of climate on the local abundance of 
birds during the breeding season, we used daily mean tempera-
ture and daily precipitation for the 48- year period of 1971– 2018 
from the Nordic Gridded Climate Dataset (NGCD), provided by 
the Norwegian Meteorological Institute (Lussana, Saloranta, 
et al., 2018; Lussana, Tveito, et al., 2018). The NGCD is an in-
terpolation of observed temperature and precipitation data for 
Norway, Sweden, and Finland onto a high- resolution grid of 
1 km. To control for the expected effects of habitat on bird abun-
dances, we included land cover information from the European 
CORINE land cover data (European Union, 2019). CORINE data 
classify land cover into 44 classes at a 100 m spatial resolution. 
We pooled similar land cover classes into seven broader catego-
ries that were relevant for our focal species: (1) sparsely veg-
etated mountain areas (bare rocks, sparsely vegetated areas), 
(2) mountain vegetation (moors, heathlands, and natural grass-
lands), (3) deciduous forest, (4) other forest (coniferous and 
mixed forest and transitional woodland scrub), (5) wetlands (in-
land marshes and peat bogs), (6) inland waters, and (7) agricul-
ture. CORINE land cover classifications were available at 6- year 
intervals, for the years 2000, 2006, 2012, and 2018, and we 
matched bird counts from the periods 1996– 2003, 2004– 2009, 
2010– 2015, and 2016– 2018 with the corresponding land cover 
data. We found relatively few changes between consecutive 
CORINE maps in mountain environments, and therefore, assign-
ing bird counts to the nearest land cover map (≤4 years) should 
not introduce large errors. Last, elevation, slope, and solar ra-
diation are important explanatory variables for distributions of 
many species (Franklin, 2009). We extracted elevation from the 
Copernicus digital elevation model (DEM, 25 m spatial resolu-
tion, European Union, 2019) and calculated slope and solar ra-
diation from the DEM (Methods S1).

Species- environment relationships are spatial scale depen-
dent and covariates may influence a response variable at mul-
tiple spatial scales and potentially in different ways (Bradter 
et al., 2013; Wiens, 1989). We restricted our choice of spatial 
scale of covariates to one scale as our models already con-
tained a large number of covariates due to the climate decom-
position. We used 300 m buffers to represent the main activity 
areas used by the detected individuals during the breeding 
season. Thus, all environmental covariates were summarized 
within 300 m buffers around each point count station and ei-
ther side of line transects. Separately across all point counts 
and along the full length of transects for each survey route, we 
calculated the proportion of each of the seven land cover cate-
gories, and the mean value for each climatic and topographical 
covariate.

To assess collinearity among the different covariates, we cal-
culated variance inflation factors (VIFs, Zuur et al., 2009). Climate 
covariates and slope were included as covariates for each species. 
We removed elevation because the variable was correlated with 

http://artfakta.se
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temperature leading to a high VIF. Other covariates were selected 
based on existing knowledge of the habitat associations of each spe-
cies and with the aim to keep VIFs between fitted covariates low 
(Methods S1). For each species, all VIFs between fitted covariates 
were <4.

2.2.1  |  Climate decomposition

From the daily NGCD climate data, we calculated the mean 
temperature and cumulative precipitation during the breed-
ing season within each 1 km2 for the years 1971– 2018, inclu-
sive. We investigated the effect of climate variation both of 
the current and the previous year because settlement deci-
sions of individuals may be influenced by the current local 
conditions, but also by past conditions if individuals prefer-
entially return to locations where they nested successfully 
in previous years (Schaub & von Hirschheydt, 2009; Shitikov 
et al., 2015). Additionally, environmental conditions in the pre-
vious year can influence recruitment into a population through 
the number of individuals available to settle (Pearce- Higgins 
et al., 2015). For the current year, we investigated represent-
ing the breeding season as both May– July and May– June. The 
spatial component of May– July climate better represents the 
typical choice in SDMs with static covariates, where climate 
data are frequently aggregated over the breeding period. By 
contrast, the temporal and residual components of May– June 
better represent the temporal and spatiotemporal climate var-
iation experienced by birds in a given year at the time when 
the surveys were conducted. We calculated both mean tem-
perature and cumulative precipitation for each of these com-
binations of months and years.

Following Oedekoven et al. (2017), we decomposed the 
May– July and separately the May– June climate data into the 
spatial, temporal, and residual components. We conducted the 
decomposition in four steps. First, we calculated the global 
mean across the three countries and all years (1971– 2018) for 
each climate variable (Temperature 10.7°C in May– July and 
8.9°C in May– June; precipitation: 193 mm in May– July and 
113 mm May– June) and centered the values of each climate vari-
able across all years (1971– 2018) and grid cells. Thus, for each 
climate variable C (breeding season temperature or precipita-
tion), i = 1, …, N grid cells and t = 1, …, T years, we first calculated 
the global mean as:
where CC is the centered climate variable and C is the uncentered 
climate variable. Next, the spatial component was calculated as the 
long- term centered spatial average value for each of ca. 1.1 M 1- 
km2 grid cells during the 48- year period of 1971– 2018 (Figure 4): 
CCSpacei =

∑T

t=1
CCi,t

T
.

Then, the temporal component was calculated as the annual de-
viations during the 23- year study period 1996– 2018 from the long- 
term average; deviations were calculated for each year by averaging 

centered values across all grid cells in all three countries (Figure 4): 
CCTimet =

∑N

i=1
CCi,t

N
.

Last, the residual component of climate variation was calculated 
as the spatiotemporal climate variation that remained after account-
ing for the spatial and temporal components. The residual compo-
nent was calculated separately for each cell and year 1996– 2018 
(Figure 4): CCResiduali,t = CCi,t − CCSpacei − CCTimet.

2.3  |  Statistical analysis

For each bird species, we fitted three different models, with each 
model including the three climate components from either: (1) May– 
July of the current year, (2) May– June of the current year, or (3) May– 
July of the previous year. Results were similar for the two models 
with climate components of the current year. Here, we present re-
sults with climate components from May– July in either the current 
or previous year.

We modeled counts of each species per survey route and per 
year (hereafter “local abundances”). Ecological count data are often 
overdispersed (Lindén & Mäntyniemi, 2011) and some focal spe-
cies had many survey routes with zero counts. To identify the most 
appropriate way to account for potential overdispersion and zero- 
inflation, we conducted preliminary analyses where we used a log 
link and four alternative candidate error structures for the models 
with climate components of the current year: a Poisson distribution, 
a negative binomial distribution (NB), and zero- inflated versions of 
both models (ZIP and ZINB). The ZIP and ZINB are mixture models 
combining a Bernoulli distribution with either a Poisson or negative 
binomial distribution, respectively. Species- specific model selec-
tion between these four distributions was based on rankings with 
AIC (Akaike's Information Criterion), and the model with the lowest 
AIC was chosen (Burnham & Anderson, 2004). For all bird species, 
the model with minimum AIC value was either the NB or the ZINB 
model. Due to problems with model convergence in some models 
for white- throated dipper, we used a Poisson distribution for this 
species.

In addition to the habitat and topographical covariates (see 
above and Methods S1), we used the spatial, temporal, and residual 
components of both temperature and precipitation as covariates. 
We allowed for interactions between temperature and precipitation 
for each component of the climate decomposition. We accounted 
for temporal variation in abundances not explained by the covari-
ates by fitting second- order polynomials for year. We accounted for 
differences in protocols among the national monitoring schemes 
by including two categorical variables: (1) “Survey”, which could be 
either Point or Line to account for differences in abundances be-
tween point count and line transect methods; (2) “Unit”, with the 
levels Individual or Pair, to account for differences in counts due to 
recording observed birds as either individuals or pairs. We used the 
natural logarithm of survey effort (the length of the transect line or 
the number of point count stations per route) as an offset to account 

CCi,t = Ci,t −

∑T

t=1

∑N

i=1
Ci,t

N× T
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for differences in survey effort. To account for the repeated mea-
sures from the same routes in different years and between- route 
differences not explained by the covariates, we fitted route as a ran-
dom intercept. The same suite of covariates was fitted both to the 
count and the zero- inflation part of the model, with the exception of 
the covariates for monitoring schemes which were not expected to 
influence the recording of zeros. We present results based on model 
selection using AIC (Methods S1). Results based on full models led 
to the same conclusions, and therefore, we do not present details 
related to model selection uncertainty. Despite the large extent of 
the study region and long- term dataset, we had relatively few ob-
servations per year for some species (Table S1). Therefore, for rarer 
species, we expected the statistical power of our models to be lower 
and with higher uncertainty in model selection.

Our modeled abundances were relative indices rather than abso-
lute abundances because we were unable to account for imperfect 
detection. The bird monitoring data did not contain the repeated 
counts necessary to estimate detection probability with occupancy 
models (MacKenzie et al., 2003), and only a subset of the sampling 
protocols used distance bands, which are necessary for distance 
sampling methods (Buckland et al., 2001). Nevertheless, survey 
methods were standardized, and counts were not carried out in rainy 
or windy conditions, and we assumed the ability of surveyors to de-
tect birds was relatively constant among years. Potential differences 
in detectability by route were also accommodated by the random 
effect for route. Climate change has advanced the beginning of the 
breeding season of 73 species in Finland by an average of 4.6 days 
over four decades (Hällfors et al., 2020). By contrast, in Northern 
Sweden, only 3 out of 14 species advanced their breeding season 
over 32 years, though years with warmer temperatures in May led 
to earlier breeding of most species (Ram et al., 2019). Variability in 
phenology can impact species detectability, but effects in UK and 
Finnish monitoring schemes were relatively small (Lehikoinen, 2013; 
Massimino et al., 2021).

2.3.1  |  Assessing the effects of the 
climate components

To assess the effects of spatial, temporal, and residual variation in 
climate on local relative abundance of a species, we predicted the 
relative abundance of each species at each of the 1749 routes of 
line transects while varying the values of temperature and precipita-
tion for each component within their observed ranges in the study 
area (Figure 4d,h). We fixed all other covariates to typical values 
(Methods S1). To assess the effects of only the spatial climate com-
ponents, we set the temporal and residual climate components to 
zero and created new combinations of values of covariates by vary-
ing temperature and precipitation for the spatial component along 
10 evenly spaced values between the observed minimum and maxi-
mum values for the study region. Then, we made predictions from 
the model for all possible combinations of the 10 temperature and 
10 precipitation values. To assess the effects of the temporal and 

residual climate components, we repeated the procedure, but hold-
ing the spatial component constant at observed values and varying 
the temporal or residual component. We then summed the route- 
specific predicted abundances over all 1749 survey routes for each 
combination of temperature with precipitation and each climate 
component. Finally, we calculated Spearman's rank correlation coef-
ficients (rs) between predicted relative abundances of: (1) the spatial 
and temporal components, (2) the spatial and residual components, 
and (3) the temporal and residual components. We calculated three 
sets of correlation coefficients: (1) along temperature and precipi-
tation gradients, (2) along a temperature gradient, and (3) along a 
precipitation gradient (Figure S6).

2.3.2  |  Model performance and robustness tests

To assess model performance, we computed the Pearson correlation 
coefficient between the fitted local abundances and the observed 
counts for each species across all routes, separately for Norway, 
Sweden, Finland, and then for all three countries combined. We 
present results for the 39 of 52 species of birds (75%) with at least 
an intermediate level of correlation in the models in which climate 
data were summarized for the current year: rp ≥ 0.4 for each country 
and rp ≥ 0.5 for Fennoscandia as a whole. The other 13 species were 
mainly rare species with many zero counts from the survey routes. 
We assessed how well the models generalized to predicting relative 
abundances by holding 1 year out during model fitting, and then by 
computing the Pearson correlation coefficient via a cross- validation 
procedure (Wenger & Olden, 2012; Methods S1).

We assessed the sensitivity of our results to three elements of 
our data and models (Methods S1). First, we tested the robustness 
of our models to spatial and temporal sample selection bias. Our 
data were spatially and temporally biased because survey coverage 
in more remote areas tended to be sparser and monitoring started 
in different countries and regions in different years. Such biases can 
potentially bias the conclusions from models and forecasts (Bradter 
et al., 2018, 2021; Johnston et al., 2020). Second, we tested the ro-
bustness of our joint analysis of data from three national monitoring 
schemes. Last, we assessed robustness to residual spatial or tempo-
ral autocorrelation which can increase Type I error rates (Dormann 
et al., 2007). Our three sets of robustness tests indicated that con-
clusions from the models were robust to the spatial and temporal 
bias in the data and to the joint analysis of data from the three na-
tional monitoring schemes (Methods S1). Thus, we present findings 
based on data from the full time series and all three countries.

2.4  |  Software

All analyses were conducted in R 4.1.2 (R Core Team, 2021). VIFs 
were calculated using the function corvif from Zuur et al. (2009). 
Models were fitted using package glmmTMB (Brooks et al., 2017). 
Model validation was aided by functions from package DHARMa 
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(Hartig, 2018). We assessed spatial autocorrelation of model re-
siduals with function Moran.I from the package ape (Paradis & 
Schliep, 2019).

3  |  RESULTS

Temporal cross- validation demonstrated that our models were able 
to generalize to held out years for most species. The Pearson's cor-
relation coefficient between observed and predicted relative abun-
dances was 0.66 (median, range: 0.27– 0.83, climate data of the 
current year), indicating that predicted abundances for most species 
in held out years had an intermediate or high level of correlation with 
observed counts. Models based on the same climate data retained 
the spatial climate component after variable selection for all 39 spe-
cies. As might be expected for birds breeding in mountain habitats, 
most species were more abundant at colder sites, demonstrated by 
a negative association between abundances and long- term average 
temperatures (spatial component, Figure 5; Table S3; Figure S8). 

Only six species (15%) had their highest predicted abundance in 
locations with warmer long- term average temperatures (Figure 5): 
mallard (Anas platyrhynchos), common gull (Larus canus), Northern 
raven, common redpoll, fieldfare (Turdus pilaris), and willow warbler. 
These six species are widespread and abundant in Fennoscandia and 
were not restricted to the mountain region. Thus, we opted to focus 
on the subset of 33 species that had their highest predicted abun-
dances in colder locations for the spatial component as a common 
baseline against which to compare associations between species 
abundances with the temporal and residual climate components.

The spatial component for temperature was always retained in 
variable selection for each of the 33 species, regardless of whether 
the climate data were summarized for the current or the previous 
breeding season (Table 1). Furthermore, the spatial component for 
precipitation was retained for 31/33 (94%) species. The temporal 
components for either temperature, precipitation, or both variables 
were retained for most species (82– 88% of species). The spatiotem-
poral residual components for either temperature, precipitation, or 
both were less frequently retained, but were still retained for most 
species (73%– 76%, Table 1).

The decomposition method allowed us to separate the spatial 
and temporal climate components associated with species abun-
dance. Higher abundances of these 33 species were associated 
with colder locations in the spatial component, but associations 
with the temporal component were more variable (Figure 6). For 
these species, higher local abundances were associated with colder 
places, but not necessarily with colder years. Rank correlation co-
efficients between the spatial and temporal components were high 
for only a few species whether temperature and precipitation were 
considered together, or each climate variable on its own (Figure 6). 

F I G U R E  5  The conditions with highest relative abundances 
predicted by the spatial climate component relative to 
temperature and precipitation for the 39 bird species breeding 
in the Fennoscandian mountains. The green polygon shows the 
percentages of species for which the spatial climate component 
predicted highest abundances in locations with different climates. 
The majority of species had highest predicted abundances in 
locations that are on average colder, and we focused on these 
33/39 species (within the blue polygon). Only six species had 
highest predicted abundances in locations that are on average 
warmer (outside the blue polygon) and these six species were not 
considered for the analysis of the temporal and residual climate 
components. For most species, the highest predicted abundances 
fell on only one of the eight climate axes of the spider graph. 
For the few species which had highest predicted abundances on 
two of the eight climate directions, we split their contributions 
in the spider graph proportionally to their distribution of highest 
predicted abundances (50:50 or 75:25).

TA B L E  1  Retention of the spatial, temporal, and residual 
climate components for the climate variables, temperature, and 
precipitation in models for 33 species with climate data summarized 
within either May– July of the current year or the previous year

Climate component

Current year
Previous 
year

Number of 
species/%

Number of 
species/%

Temperature, precipitation or both

Spatial 33/100 33/100

Temporal 29/88 27/82

Residual 25/76 24/73

Temperature

Spatial 33/100 33/100

Temporal 28/85 19/58

Residual 20/61 18/55

Precipitation

Spatial 31/94 31/94

Temporal 28/85 25/76

Residual 23/70 19/58
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F I G U R E  6  Correlations between the abundances predicted from any two climate components (spatial, temporal, and residual) indicate 
that the direction of effect was typically not consistent between any two climate components. Violin plots of rank correlation coefficients 
of pair- wise comparisons between predicted local species abundances based on the spatial versus temporal climate component, the spatial 
versus residual climate components, and the temporal versus residual components for (a) temperature and precipitation combined, (b) 
temperature, and (c) precipitation. Rank correlation coefficients for models with decomposition data from May– July of the current year 
are shown. For a graphical description of how correlation coefficients were calculated, see Figure S6. Violin plots show the probability 
density of the data at different values of the correlation coefficient. Black crosses and blue circles represent individual species. Blue 
circles with correlation coefficients of zero represent species for which no association between a species' local abundance and one of the 
climate components was found, while an association was found with the other. Blue circles with correlation coefficients of one represent 
species for which no association was found between the local abundance of the species and either of the climate components. Thus, 
there is an agreement in conclusions of no effect of either climate component. Crosses represent species for which associations between 
the local abundance of the species and both climate components were detected. High correlation coefficients indicate that predicted 
local abundances vary with the climate variable (temperature, precipitation, or both) in the same direction for both climate components 
 (spatial- temporal, spatial- residual, or temporal- residual). Low correlation coefficients indicate that predicted local abundances vary with the 
climate variable in the opposite direction, for example, local abundances may decrease with temperature for the spatial climate component 
but increase with the temporal climate component. Correlation coefficients at or near zero indicate that no association was found between 
the local abundance of the species and one climate component (blue circles) or that associations were complex, such as an increase of 
predicted local abundance with temperature at low precipitation, but a decrease at high precipitation (Figure S6).
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Negative rank correlation coefficients indicated that the direction 
of effect between the spatial and temporal components was even 
opposite for some species. For several species, correlation coef-
ficients were zero or near zero, indicating either that an associa-
tion between climate and the species' local abundance was only 
found for one component, or that associations for at least one cli-
mate component were more complex, such as an association with 
lower temperatures when precipitation was high, or conversely 
with higher temperatures when precipitation was low (Figures 6; 
Figures S6 and S8; Table S3).

The decomposition method also allowed us to separate the resid-
ual from the spatial and temporal climate components. The residual 
component describes the potential interaction between the spatial 
and temporal components, such as an annually increasing tempera-
ture varying with space. The climate conditions in which the highest 
local abundances were predicted with the residual component often 
did not match the climate conditions producing highest predicted 
abundances for either the temporal or the spatial climate component 
(Figure 6). Therefore, for most species, neither the temporal nor the 
residual climate variation had the same direction of effect on local 
species abundances as the spatial climate variation. Qualitatively 
similar results were also obtained for models with climate data from 
the previous season (Figure S9).

For models with climate data from the current season, the subset 
of species with highest predicted local abundances both in colder lo-
cations and in colder years were common snipe (Gallinago gallinago), 
jack snipe (Lymnocryptes minimus), red- necked phalarope (Phalaropus 
lobatus), white- throated dipper, and redwing (Turdus iliacus). These 
five species had rank correlation coefficients >0.5 between the 
spatial and temporal climate components for temperature. Similarly, 
the subset of species with highest predicted local abundances in 
colder locations, and in warmer years were dunlin (Calidris alpina), 
whimbrel (Numenius phaeopus), long- tailed skua (Stercorarius longi-
caudus), western yellow wagtail (Motacilla flava), northern wheatear 
(Oenanthe oenanthe), and Lapland bunting (Calcarius lapponicus). 
These six species had rank correlation coefficients < −0.5 between 
the spatial and temporal climate components for temperature. 
Regression coefficients for the nine climate coefficients were only 
moderately correlated between models with climate decomposition 
based on the current year versus the previous year (rank correlation 
coefficients for full models, median: 0.67, min: −0.30, max: 0.97). 
Thus, higher local abundances may be associated with certain tem-
perature or precipitation conditions in the current breeding season, 
but not necessarily with the same climatic conditions in the previous 
breeding season. Our conclusions were unchanged if models were 
based on climate components from May– June of the current year 
(Results S2).

4  |  DISCUSSION

Our results show that avian responses to climatic variation 
are highly species specific and that common SDM forecasting 

methods may not sufficiently account for diverse responses. 
First, in addition to the expected effects of the spatial climate 
components, both temporal and spatiotemporal climate compo-
nents were associated with local changes in counts for a major-
ity of bird species. The same pattern was observed whether we 
considered climate variation based on the current or the previous 
breeding season. Second, while the majority of the bird species 
had higher predicted local abundances in areas with colder long- 
term average temperature, the direction of the effects of climate 
variation for each species often differed among the spatial, tem-
poral, and residual components. Therefore, our results suggest 
that the most widely used form of space- for- time forecasting, 
where average climate is used to predict average responses, will 
fail to account for dynamic changes in local counts. For space- for- 
time substitution to be valid for predicting the impacts of climate 
change, a direct linkage is needed between species' responses 
to spatial and temporal variation in climate. This key assump-
tion was seldom met for our focal bird species at the temporal 
scales we examined. Thus, for the majority of species considered, 
useful forecasts based on space- for- time substitution cannot be 
generated for the immediate future. Instead, if space- for- time 
substitution is applicable at all, then it will only be valid for fore-
cast horizons that are both left-  and right truncated. However, 
appropriate forecast horizons are rarely considered in forecasts 
with SDMs and are difficult to ascertain. Our third major result 
was that our findings applied both for species' responses to 
variation in temperature, as well as to responses to variation in 
precipitation. Models of species responses to climate variation 
often focus on temperature, but our results join previous work 
in indicating that precipitation is also an important driver (Duclos 
et al., 2019; Illán et al., 2014; Pearce- Higgins et al., 2015; Tingley 
et al., 2012). Species' responses to spatial and temporal variation 
in climate were rarely equivalent for the species that we exam-
ined; nevertheless, we did identify a subset of bird species for 
which predicted local abundances increased with colder condi-
tions in both space and time. Species with negative associations 
with the temporal climate components may be among the first to 
be negatively impacted by climate warming in our study regions, 
as colder breeding seasons are expected to become rarer in the 
future (Bärring et al., 2017).

Overall, our results for 33 bird species in Fennoscandia extend 
earlier work by Oedekoven et al. (2017) for five bird species in the 
UK in showing that the assumptions of space- for- time substitu-
tions were not consistent with the temporal species- climate rela-
tionships indicating that limitations to forecast horizons will often 
exist. Together, our findings indicate that forecasts of bird species' 
responses to climate change can be made more consistently reliable 
in several ways. First, we advocate for the routine use of SDMs with 
dynamic covariates with appropriately selected descriptors of cli-
matic variation. Second, we argue that the forecasting horizon— for 
when in the future reliable forecasts can be made— should be rou-
tinely considered when interpreting and discussing forecasts. Last, 
we discuss how decomposition SDMs can facilitate the identification 
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of species that are immediately vulnerable to climate change versus 
species that are initially resilient.

4.1  |  Species distribution models with static, 
dynamic, and decomposed covariates

Our results suggest that a more dynamic modeling approach to SDMs 
may improve on SDMs with static covariates. Accounting simulta-
neously for the effects of seasonal and annual climate variation, 
potential interannual to decadal climate cycles and climate warm-
ing is important because the use of the average future distribution 
of a species may not be sufficient for efficient conservation action 
(Dupont- Doare & Alagador, 2021). It is also vital to understand the 
pattern of species distributions in the intervening time, the variation 
in distribution patterns in response to climate variation at different 
temporal scales, and the mechanisms causing the variation in distri-
bution pattern. For example, long- term average conditions were ad-
equate to explain the average distribution and catch of a fish species, 
but deviations in average catch were best explained by interannual 
variability of the marine environment (Brodie et al., 2021). For some 
bird species in the US, SDMs with dynamic covariates described the 
breeding distributions and their dynamic changes better than SDMs 
with static covariates (Bateman et al., 2016). Similarly, years with ex-
treme conditions such as drought or cold winters can have a strong 
impact on species abundances and distributions (Pearce- Higgins 
et al., 2015), but may be less well represented when future climate 
data are averaged over many years for forecasts based on SDMs 
with static covariates.

Our results suggest that temporal changes in local relative abun-
dances were not uniform in space because the spatiotemporal resid-
ual component of climate variation was retained in variable selection 
for the majority of bird species. Retention of the residual climate 
component suggests that settlement decisions of individuals were 
dependent on local conditions in specific years. Thus, naïve extrap-
olation of responses to climatic variation to new regions should be 
made with caution.

Our finding that climate conditions of both the previous and 
the current breeding season can influence local abundances of our 
focal species is consistent with previous results for abundance of 
bird species in England (Pearce- Higgins et al., 2015) and population 
trends of aerial insectivores in North America (Michel et al., 2021). 
Strong effects of climate during the current breeding season for gen-
eralist species in England were explained by warm- adapted species 
either settling further north or becoming more detectable during 
warmer breeding seasons (Pearce- Higgins et al., 2015). Species set-
tling in greater or smaller numbers in Fennoscandia depending on 
climatic conditions could also explain some of the variation in spe-
cies abundances in our study. Here, we evaluated changes in local 
abundances allowing for increases in local abundances in some re-
gions and decreases in others. Differences in survey protocols re-
stricted our ability to model the detection process and variation in 
species detectability could have influenced our results. If variation 

in detectability had confounded our results, we might expect a sim-
ilar direction of effect on predicted local abundances between the 
temporal and spatiotemporal climate components, which is not what 
we found. Davey et al. (2012) controlled for imperfect detection in 
a study on British birds and found that species richness increased, 
and the habitat specialism of bird communities decreased in warmer 
years, which also suggests that climate of the current year can affect 
species distribution pattern. Thus, our study joins a growing body of 
evidence that settlement decisions and abundance of birds are influ-
enced by both recent past and current climate conditions, and thus 
SDMs with dynamic covariates are likely to outperform SDMs with 
static covariates for predicting species distributions.

The direction of effects from the temporal and residual climate 
components sometimes differed between models based on climate 
from the current breeding season versus the previous breeding sea-
son. The same climate variable can have opposing effects on species 
abundances depending on the time lag between climate and abun-
dance estimates (Elston et al., 2017; Pearce- Higgins et al., 2015). 
The influence of the climate of the current breeding season is likely 
driven by settlement decisions or early abandonment of territories 
based on current conditions. In contrast, climate conditions of the 
previous or earlier breeding seasons may influence annual produc-
tion and recruitment, whereas conditions at staging and wintering 
areas will influence survival of all age classes and the number of indi-
viduals available to settle in the current breeding season (Jørgensen 
et al., 2016; Pearce- Higgins et al., 2015; Sanderson et al., 2006). 
Past climatic conditions may also affect settlement decisions if sites 
with past reproductive success are preferentially occupied (Doligez 
et al., 2004; Shitikov et al., 2015). Such multiple temporal and spa-
tiotemporal effects of climate are unlikely to be fully accounted for 
by using year and site- specific climate covariates. Decomposition 
SDMs offer a promising way forward to make SDMs dynamic while 
accounting for the complex spatiotemporal patterns and multiple 
temporal effects. For example, the temporal component in our 
models for the previous or current year could be replaced by a more 
complex temporal component that accounts for lag effects of cli-
mate from multiple previous seasons and the current season (Elston 
et al., 2017). A limitation is that climate data for future scenarios are 
only available as long- term averages. However, it may be possible to 
simulate realistic pattern of annual or seasonal variation for future 
climate scenarios, which could be used to estimate the range of vari-
ability in dynamic forecasts.

4.2  |  Forecasting horizons

For most of our focal species, the assumption of equivalent pat-
tern in space and time was not met for the most general form of 
space- for- time substitution where forecast horizons are truncated 
only to the right when the modeled species- climate relationships 
change (Figures 2 and 3). The spatial climate component did not 
describe the variation in local annual abundances 1996– 2018 
and the direction of effects of climate variation differed between 
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space and time. If space- for- time substitution based on the spa-
tial component is valid, it is only for static forecasts and for fore-
cast horizons that are left-  and right truncated. Forecasting under 
changing species- climate relationships is currently beyond the 
purpose and capability of correlative SDMs, and the potential of 
species- climate relationships to change via evolutionary adapta-
tion or changes in species interactions has wider implications for 
right truncation of the forecast horizon (Araujo & Peterson, 2012; 
Dormann, 2007; Pearson & Dawson, 2003; Singer et al., 2016; 
Urban et al., 2016). Appropriate time thresholds for left trunca-
tion (Figures 2 and 3), where delays of species responses occur, 
will be difficult to identify for several reasons. First, climate vari-
ation affects multiple ecological processes simultaneously and at 
different temporal scales (Damgaard, 2019). For example, most of 
13 forest birds were affected by the direct effects of climate, and 
by the indirect effects of climate on forest structure and compo-
sition, with effects manifesting themselves at different temporal 
scales (Duclos et al., 2019). Additional factors, such as predation 
pressure may change at yet other temporal scales and may also 
interact synergistically with habitat structure (Kubelka et al., 2022; 
Layton- Matthews et al., 2020). Second, even for a single ecological 
process, it may be difficult to accurately forecast when and where 
the impacts on species distributions will be manifested. For exam-
ple, succession of alpine mountain habitats to forests may lag be-
hind climate change and can be affected by topographic conditions 
or land use practices, such as grazing (Bryn, 2008; Kullman, 2001; 
Wang et al., 2017). Accurately predicting the future distribution 
of habitats is therefore difficult, even more so when fine thematic 
and spatial resolutions are needed (Prestele et al., 2016). Similarly, 
invertebrates are an important food source for many bird spe-
cies but may be less available in both cold and hot/dry conditions 
(Barras et al., 2021; Curry, 2004; Pearce- Higgins, 2010; Pearce- 
Higgins & Yalden, 2004; Perez et al., 2016). However, the data are 
rarely available to determine optima where initially positive effects 
of warmer conditions on food availability transition into negative 
 effects of hot conditions.

4.3  |  Immediately vulnerable versus initially 
resilient to climate warming

An important result of our decomposition SDM was identification 
of a subset of five bird species which may be among the first to be 
negatively impacted by climate warming. Based on climate data from 
the current breeding season, predicted local abundances increased 
with colder conditions in both space and time and the birds were 
mainly species associated with freshwater habitats (red- necked 
phalarope, white- throated dipper) or inundated areas (common 
snipe, jack snipe). A possible mechanism for an immediate positive 
effect of colder years for these species may be through the patterns 
of snow melt and water levels, with spring floods typically less in-
tense in colder years, while water from snow melt continues to be 
available for longer. For example, common snipe are dependent on 

wet soil for foraging, which remain suitable for probing throughout 
the breeding season, while spring floods may be detrimental for 
early nesting (Green, 1988). Conversely, based on climate data from 
the current breeding season, the six species with highest predicted 
local abundances in colder locations but also warmer years may be 
initially resilient to a warming climate. Many of these bird species de-
pend on terrestrial invertebrates, at least during the breeding season 
(dunlin, whimbrel, western yellow wagtail, northern wheatear, and 
Lapland bunting). A possible mechanism for a potential immediate 
negative effect of colder years on these species may be a reduction 
in invertebrates in the Fennoscandian mountains in colder breeding 
seasons, leading to individuals not settling to breed or prematurely 
abandoning their territories. A more comprehensive assessment of 
species that are immediately vulnerable and species that are initially 
resilient to climate warming would require taking into account ad-
ditional effects of the climate of previous breeding, migration, and 
wintering seasons. Multiple climatic effects from different seasons 
could enhance or counteract each other. Accounting for lag effects 
would require replacing the temporal component in our decomposi-
tion SDMs with a more complex component that includes multiple 
years (Elston et al., 2017).

For longer forecast horizons in a warming world, the decreases in 
local abundance that would be predicted by space- for- time substitu-
tion are realistic for many of our focal species, including birds depen-
dent on open mountain habitats. Even though climate warming may 
not initially be detrimental to many of these species, in the long- term, 
strong negative effects are expected where open mountain habitats 
are replaced by forests through rising tree lines, or through other fac-
tors, such as increased predation from expanding populations of gen-
eralist species. However, forecasts are now needed that go beyond 
correctly forecasting the broad direction of change, but that can ac-
curately forecast change at a fine resolution in both space and time.

In our study area, a landscape monitoring program in Sweden 
found no change in the extent of the alpine or mountain birch 
forest areas between the periods 2003– 2007 and 2008– 2012 
(Hedenås et al., 2016). Over longer timescales, tree line rises have 
mainly been confined to wind- sheltered and snow- rich areas in the 
Swedish mountains (Kullman, 2001). In Norway, upper altitudinal 
limits of forests have raised during previous decades, mainly driven 
by regrowth of woody plants after cessation of livestock grazing 
(Bryn, 2008). Our results suggest that expansion of forests is not yet 
a primary driver of abundance changes in bird species breeding in 
the Fennoscandian mountains over large spatial extents as for most 
species, the direction of effect of climate variation was not consis-
tent in time and space.

5  |  CONCLUDING REMARKS

SDM forecasts with static covariates and space- for- time substitu-
tion have accurately predicted future species' distribution for some 
species, but have performed poorly for others (Araujo et al., 2005; 
Kharouba et al., 2009; Pearman et al., 2008; Soultan et al., 2022). 
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Moreover, even for SDMs that accurately predicted future species 
distributions, prediction accuracies for sites at which distribution 
changes occurred were often low suggesting that improvements to 
forecasting based on SDMs are needed (Briscoe et al., 2021; Illán 
et al., 2014; Rapacciuolo et al., 2012). Our models with climate varia-
tion decomposed into a spatial, temporal, and residual spatiotempo-
ral component revealed that climate variation from both the current 
and previous breeding season affected local abundances and that 
species- climate relationships were equivalent in space and time 
for only a few species. Our results suggest that forecasts based on 
SDMs can be improved by (1) making SDMs more dynamic so that 
forecasts can be produced at the finer temporal resolutions, such 
as those required for spatial conservation planning (Dupont- Doare 
& Alagador, 2021) and (2) obtaining a better understanding of the 
time spans over which drivers of changes in species distributions 
and abundances are expected to act. Our results indicate that more 
dynamic SDMs need to consider spatiotemporal variation in addi-
tion to multiple temporal effects of climate variation. Models that 
integrate extensive occurrence or abundance data from surveys 
that cover large areas with intensive demographic data collected 
in smaller areas where patterns of species distributions emerge 
from population dynamics should help with a better understanding 
of the temporal scales over which ecological processes act (Zipkin 
et al., 2021). However, the comprehensive population data needed 
to parameterize alternative models including population dynamics 
is available for few species (Bradter et al., 2021; Urban et al., 2016), 
suggesting that correlative SDMs will remain important as they 
can be parameterized with more widely available data. Our results 
suggest that SDMs based on a decomposition of covariates can in-
crease our understanding of species responses to climatic variation 
and that caution is required when using space- for- time substitutions 
based on correlative SDMs.
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