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Accurate occurrence data is necessary for the conservation of keystone or endangered 
species, but acquiring it is usually slow, laborious and costly. Automated acoustic mon-
itoring offers a scalable alternative to manual surveys but identifying species vocalisa-
tions requires large manually annotated training datasets, and is not always possible 
(e.g. for lesser studied or silent species). A new approach is needed that rapidly predicts 
species occurrence using smaller and more coarsely labelled audio datasets. We investi-
gated whether local soundscapes could be used to infer the presence of 32 avifaunal and 
seven herpetofaunal species in 20 min recordings across a tropical forest degradation 
gradient in Sabah, Malaysia. Using acoustic features derived from a convolutional neu-
ral network (CNN), we characterised species indicative soundscapes by training our 
models on a temporally coarse labelled point-count dataset. Soundscapes successfully 
predicted the occurrence of 34 out of the 39 species across the two taxonomic groups, 
with area under the curve (AUC) metrics from 0.53 up to 0.87. The highest accuracies 
were achieved for species with strong temporal occurrence patterns. Soundscapes were 
a better predictor of species occurrence than above-ground carbon density – a metric 
often used to quantify habitat quality across forest degradation gradients. Our results 
demonstrate that soundscapes can be used to efficiently predict the occurrence of a 
wide variety of species and provide a new direction for data driven large-scale assess-
ments of habitat suitability.

Keywords: bioacoustics, machine learning, soundscape, species occurrence, tropical 
forest

Introduction

Ecosystems are being subjected to increasing external pressures from land-use change 
and global warming (Walther et al. 2002, Lambin and Meyfroidt 2011). These pres-
sures have resulted in global biodiversity declines, as the natural habitats required to 
support many species shrink and disappear (Newbold  et  al. 2015). Efforts to slow 
this decline often aim to protect areas of high conservation value that may support 
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populations of endangered or keystone species (Mills  et  al. 
1993). This leads to the key question: how can we identify 
such locations rapidly, accurately and on a large scale?

An established solution is to carry out manual surveys 
of the region of interest (Brown  et  al. 2013). Common 
approaches include actively searching for species of interest, 
deploying traps to capture them or looking for features that 
may indicate their presence (e.g. nests). However, manual 
surveys are expensive, labour intensive, and do not scale well 
temporally or spatially (Gijzen 2013). In contrast, automated 
passive acoustic monitoring has shown promise as a route to 
gaining scalable insight into ecological systems (Gibb et al. 
2019). Audio data can be recorded and analysed inexpen-
sively, in real-time and over extended durations, making it an 
increasingly powerful tool for ecologists and conservationists 
(Pijanowski et al. 2011, Sueur and Farina 2015).

Species occurrence data can be extracted from audio 
recordings automatically by detecting vocalisations. Using a 
large training dataset of annotated examples a machine learn-
ing model can be trained to identify calls made by a target 
species (Aide  et  al. 2013, Stowell  et  al. 2016, Wrege  et  al. 
2017). For example, BirdNET leveraged citizen science to 
train a model on over 226 000 high quality recordings of 
vocal species found in historically well-studied regions of the 
world (Kahl  et  al. 2021). Detecting vocalisations, however, 
relies upon three key assumptions; 1) the species has at least 
one unique vocalisation, 2) the species is active and audible 
during the recording and 3) there exists a large, labelled data-
set of the species’ vocalisations (or the resources to collate 
such training data from scratch). These barriers are particu-
larly difficult to overcome when searching for lesser studied 
species in highly biodiverse and noisy environments such as 
tropical forests (Stowell et al. 2019, Gibb et al. 2019), or for 
species that are largely silent. Novel approaches are required 
that can utilise acoustic monitoring data in complementary 
ways to survey a broader array of species and in a more data 
efficient manner.

Analysing soundscapes in their entirety provides an alter-
nate route to the automated analysis of eco-acoustic data 
(Pijanowski  et  al. 2011). In this approach, features of the 
audio signal are used to infer habitat quality, without the 
need for species specific training data (Sueur  et  al. 2008, 
Pieretti et al. 2011, Sethi et al. 2020b). Whilst soundscape 
features have been shown to correlate with summary metrics 
of biodiversity (e.g. alpha or beta diversity of a whole com-
munity), they are not normally used to provide direct evi-
dence for how suitable a habitat is for a single given species.

In this study we demonstrate that an environment’s 
overall soundscape fingerprint can be used as a powerful 
indicator of species occurrence. We built upon prior work 
looking at community level structure in soundscapes, and 
employed acoustic features derived from a convolutional 
neural network (Sethi et al. 2020). Using these learned high-
dimensional features allowed us to characterise soundscapes 
in finer detail than would be possible with algorithmically 
derived traditional soundscape indices. Rather than focussing 
on species-specific vocalisations, our model learned acoustic 

features which indicated species presence using only coarsely-
labelled point count data from across a gradient of tropical 
forest degradation in Sabah, Malaysia. By performing a fully 
cross-validated classification task, we were able to predict 
occurrence accurately for a number of avifaunal and herpeto-
faunal species without the need for large, precisely annotated 
training datasets. Additionally, we showed that soundscapes 
are a more accurate predictor of species occurrence than 
above-ground carbon density – the standing density of live or 
dead woody matter – a metric often used to quantify habitat 
quality across tropical forest degradation (Jucker et al. 2018). 
Our findings indicate a promising new route for audio data 
to be used for the conservation of species on a large scale, and 
across a wide range of taxa, without many of the limitations 
of vocalisation detection-based approaches.

Material and methods

Study location and estimates of habitat quality

This work was undertaken at the Stability of Altered Forest 
Ecosystems (SAFE) Project in Sabah, Malaysia (Ewers et al. 
2011) between March 2018 and February 2020. The month 
of sampling wasn’t controlled for since the region shows no 
clear seasonality and there were no unusual climactic events 
(e.g. El Niños) during the period covered by our study 
(Walsh and Newbery 1999). We surveyed eleven sites across 
a land-use intensity gradient (Fig. 1): two sites in oil palm 
plantations, two sites in salvage logged forest (last logged in 
the early 2010s), five sites in selectively twice-logged forest 
(logged in the 1970s and early 2000s), and two sites in forest 
inside a protected area (where small amounts of illegal log-
ging activity had occurred). The minimum distance between 
sites was 583 m (mean pairwise separation = 7.6 km), and as 
such the soundscapes could be considered as independent.

In November 2014 airborne LiDAR data was acquired 
of the SAFE landscape (Jucker et al. 2018). This flight fol-
lowed the most recent round of logging, and therefore the 
measured canopy structure would not have changed sig-
nificantly by 2018–2020 (when our point counts were 
performed). The raw LiDAR point cloud was used to 
produce a pitfree canopy height model at 1 m resolution. 
Above-ground carbon density (ACD) was calculated at 
1 ha resolution using top of canopy height and gap frac-
tion (Swinfield  et  al. 2020). ACD is closely correlated 
with above-ground biomass (AGB) which has been used 
as a metric of forest intactness at SAFE Project regularly, as 
decreases in AGB are primarily driven by historical and cur-
rent anthropogenic pressures (Brant et al. 2016, Luke et al. 
2017, Riutta et al. 2018, Williamson et al. 2021). We aver-
aged ACD values within a 100 m radius of each of our 
sampling sites (mean samples per site = 3, range = 2–4), for 
use as a quantitative measure of habitat quality. Integrating 
habitat quality over a larger area provides a more appro-
priate metric than a single point estimate as most of the 
species surveyed move and interact with the environment 
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Figure 1. Map of the study location. We collected data from 11 sites at the Stability of Altered Forest Ecosystems (SAFE) experiment in 
Sabah, Malaysian Borneo. Sites were distributed across old-growth forest (OG), logged forest (LF), salvage logged forest (SL) and oil palm 
plantations (OP) to capture a gradient of above-ground carbon density – as denoted by size of markers (range 1.8–110 Mg ha−1).

beyond their immediate surroundings. We also tested the 
effect of averaging ACD over 250 m and 500 m radiuses 
from each site.

Avifaunal and herpetofaunal point counts

Across the 11 sampling sites, we carried out 790 avifaunal 
and 771 herpetofaunal point counts (of which 483 were 
undertaken simultaneously). Each point count lasted 20 min 
and surveys were distributed evenly throughout the 24 hrs of 
the day (Supporting information). There was a mean of 2.99 
point counts per hour per site for avifaunal species (σ = 1.17), 
and 2.92 point counts per hour per site for herpetofaunal 
species (σ = 1.13). During point counts, we recorded all 
visual or aural encounters of avifaunal or herpetofaunal spe-
cies within a 10 m radius of the sampling site. Species were 
cross-referenced with the Global Biodiversity Information 
Facility (GBIF) backbone taxonomy to validate taxonomic 
classifications (GBIF Secretariat 2020).

Occurrence data (presence/absence) was thus acquired for 
175 avifaunal and 53 herpetofaunal species. To ensure we had 
sufficient data to train our models, species present in fewer 
than 50 point counts were removed from the dataset. With 
a reduced threshold we expect to have reduced accuracy, but 
species of conservation concern tend to have low abundance 
and represent an important use case. We therefore set a lower 
threshold of 15 point counts for a separate group of species 
classified as vulnerable or critically endangered by the IUCN 
Red List (Baillie  et  al. 2004). In total this gave us a set of 
32 avifaunal and seven herpetofaunal species (Supporting 
information). Five of the 32 avifaunal species were listed as 

vulnerable or critically endangered, but none of the seven 
herpetofaunal species were.

Audio data and acoustic feature extraction

During each point count a simultaneous 20-min audio record-
ing was made using a Tascam DR-05 recorder mounted at 
chest height (nominal input level −20 dBV, frequency range 
20 Hz–22 kHz). Raw audio data was recorded to a single 
channel at 44.1 kHz in the WAV format.

We calculated learned acoustic features of the audio 
using a pretrained convolutional neural network (CNN), 
‘VGGish’, developed by Hershey et al. (2017). The CNN was 
trained to perform a general-purpose audio classification task 
using an extremely large annotated dataset (Gemmeke et al. 
2017), resulting in a general 128-dimensional acoustic fea-
ture embedding. For full details on the CNN-based feature 
extraction process and other applications of these features in 
an ecological context (Sethi et al. 2020b).

The VGGish CNN takes a 16 kHz log-scaled Mel-
frequency spectrogram as an input – as used by Hershey et al. 
when training the network. First, a spectrogram is computed 
using the magnitudes of the short-time Fourier transform 
with a window size of 25 ms, a window hop of 10 ms and a 
periodic Hann window. The frequencies of the spectrogram 
are mapped to 64 mel-frequency bins covering the range 
125–7500 Hz, and the magnitude values are offset by 0.01 
before taking their logarithm. From the resulting time-fre-
quency representation of the audio (of dimensions 96 × 64), 
the CNN outputs one 128-dimensional feature vector per 
0.96 s of audio.
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Since our raw audio data was recorded at a higher sample 
rate, we pre-processed it (as recommended by the VGGish 
documentation) by down-sampling to 16 kHz using a Kaiser 
window filter to avoid aliasing. During the analysis we also 
investigated how averaging consecutive CNN-derived acous-
tic features over the following longer time periods affected 
our results: 1.92, 2.88, 3.84, 4.80, 5.76, 6.72, 7.68, 8.64, 
9.60, 29.76, 59.52 and 299.52 s.

Predictions of species occurrence

For each species we split point counts in the training dataset 
into two groups; one where the target species was present (pres) 
and the other where it was absent (abs). We fit a Dirichlet-
process Gaussian mixture model (DP-GMM) to acoustic 
features from each group to obtain the probability density 
functions (PDFs) ppres and pabs (Blei and Jordan 2006), using 
an upper bound of 500 components and diagonal covariance 
matrices. Other hyperparameters were left as default using the 
scikit-learn BayesianGaussianMixture implementation.

The PDFs ppres and pabs allow us to identify which regions 
of acoustic feature space (and hence, which sounds) are asso-
ciated with the species being present or absent in a given 
recording. Intuitively, if an audio feature is within a high 
probability region of ppres and a low probability of pabs, this 
indicates that the species is likely to be present (and vice 
versa). A formal description of how we derive classification 
scores from these PDFs is given below.

For each 20-min audio recording, we first split the audio 
into N non-overlapping 0.96 s segments. We defined the set 
S of CNN-derived acoustic feature vectors corresponding to 
each segment as, S = {X1, X2, … XN}. To calculate features rep-
resenting longer timescales than 0.96 s, we averaged consecu-
tive members of S using non-overlapping windows. For each 
feature Xi we calculated a likelihood ratio, Li = log(ppres(Xi)) 
− log(pabs(Xi)), allowing us to define a new set, SL = {L1, L2, … 
LN}. To obtain an overall classification confidence indicating 
the probability of the species being present in the full 20-min 
recording, we looked at four properties of SL; 1) λ1 = max(SL), 
2) λ2 = min(SL), 3) λ3 = mean(SL) and 4) λ4 = P%(SL) (for per-
centiles 10, 20, 30, 40, 50, 60, 70, 80 and 90). We found that 
the 60th percentile metric, λ4 = P60(SL), provided the most 
accurate predictions, and therefore report results only for this 
definition of classification confidence (Supporting informa-
tion). Henceforth λ will be used to refer to λ4.

To assess the extent to which soundscapes can predict spe-
cies occurrence we performed an eleven-fold cross-validation 
classification task for each species. There were only two sites 
for three of the land-use categories (OG, SL, OP). Therefore, 
to ensure a representative test we were unable to train on fewer 
and test on multiple sites at once. In each fold, data from ten 
sites were used as a training set (to fit ppres and pabs), and data 
from the remaining eleventh site was used as a test set to assess 
the model’s accuracy. In this way we ensured that we did not 
report artificially high accuracies by overfitting to site specific 
soundscapes but learned generalisable acoustic characteristics 
that indicated species presence in previously unseen locations. 

We measured the ability of λ to classify a species as present 
in a point count using the area under the receiver operating 
characteristic curve (AUC) metric, which allowed us to avoid 
setting an arbitrary decision threshold on λ. An AUC of 0.5 
represents chance predictions of occurrence, and an AUC 
equal to 1 is the case where perfect predictions are made. 
Mean AUC was calculated for each species across all 11 folds.

For each species we generated null distributions of AUC 
values (those that should be expected if there was no link 
between soundscape features and species occurrence) to cal-
culate statistical significance of predictions. We used acoustic 
features at the 2.88 s timescale, as these features maximised 
mean AUC across all species (Supporting information). We 
randomly shuffled classification confidence scores (λ) 100 
times within each of the 11 folds, and measured AUC using 
the unshuffled occurrence labels. 100 null mean AUC values 
were obtained by averaging across the 11 folds, and we used 
a threshold of p ≤ 0.05 to determine statistical significance.

We performed a similar eleven-fold cross-validation classi-
fication task using above-ground carbon density (ACD) data, 
to compare the predictive power of soundscapes versus ACD, 
a more traditional metric of habitat quality. In each fold, we 
identified the site in the training set with ACD most similar 
(least difference) to the site in the test set. Then, to predict 
species occurrence in each 20-min point count, we used the 
mean species occurrence from point counts at the same time 
of day from the previously identified similar site.

Analysis of performance across species

To quantify how temporally structured occurrence patterns 
were for each species, we formulated a contingency table from 
the ground truth point count data with species occurrence as 
one variable (averaged if multiple point counts were performed 
at the same hour at any given site) and hour of day as the other. 
On this contingency table we calculated a χ2 statistic. We then 
calculated Spearman’s correlation coefficient, ρ, between the χ2 
statistic and AUC across all 39 species to test whether accuracy 
of our predictions was correlated with how temporally struc-
tured each species’ occurrence patterns were. We also calculated 
Spearman’s correlation coefficient between the total number of 
point counts in which each species was found and AUC to 
investigate whether rarity of species had an effect on accuracy 
of predictions. Finally, we calculated Spearman’s correlation 
coefficient between the AUC of species occurrence predictions 
and ACD of the site at which these predictions were made. In 
all cases p-values were obtained analytically.

Results

Soundscapes are highly indicative of species occurrence

We were able to predict species occurrence from soundscape 
recordings for four of the seven non-threatened herpetofaunal 
species, all 27 non-threatened avifaunal species, and three of 
the five threatened avifaunal species (p ≤ 0.05, Fig. 2a). Mean 
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AUC across all species was highest using features correspond-
ing to 2.88 s segments of audio (Supporting information), 
although the most accurate classifications for a single species 
was found for the bold-striped tit-babbler Macronus bornensis 
when using 0.96 s per feature (0.87 AUC). Variation in AUC 
between species was larger than the variation for a given spe-
cies across different timescales of features. Even with features 
averaged over almost five minutes, we were able to predict spe-
cies occurrence from soundscapes with AUCs of up to 0.82 
(sooty-capped babbler Malacopteron affine). Spectrograms 
(Supporting information) confirm the intuition that we did 
not learn to identify species vocalisations, but rather the model 
learned indicative characteristics of the soundscape that played 
out over longer timescales than any single species call (i.e. min-
utes rather than seconds). From herein we will only consider 
results using acoustic features at the optimal 2.88 s timescale.

Performance of soundscape based predictions was worse for 
the five Red List threatened avifaunal species compared to the 
other 27 species (T-test on AUCs; p < 0.001). Nevertheless, 
occurrence was still predicted with accuracies better than 
chance (p ≤ 0.05) for three threatened avifaunal species; the 
black hornbill Anthracoceros malayanus (0.69 AUC, n = 15), 
the rhinoceros hornbill Buceros rhinoceros (0.69 AUC, n = 34) 
and the short-toed coucal Centropus rectunguis (0.75 AUC, 
n = 23). Both across all species and within each of the three 
groups of avifaunal, herpetofaunal and threatened avifaunal 
species, we found AUC was not significantly correlated with 
total number of encounters (Spearman correlation; p > 0.05, 
Supporting information).

We found that higher AUCs were attained when species 
were consistently encountered at the same hours of the day 
(Fig. 2b, Spearman correlation; ρ = 0.64, p < 0.001). Non-
threatened avifaunal species had more temporally structured 
occurrence patterns than non-threatened herpetofaunal 

species (T-test on χ2 statistics; p = 0.04), explaining the 
difference in AUCs between the taxonomic groups (T-test 
on AUCs; p < 0.001). Nevertheless, AUCs for four of the 
seven herpetofaunal species were still better than would be 
expected by chance, and reached up to 0.86 for the tree hole 
frog Metaphrynella sundana – possibly due to its unusually 
high χ2 statistic when compared to the other herpetofaunal 
species (Fig. 2).

There was a close relationship between predicted occur-
rence from soundscape data and the pattern of true occur-
rence across habitat types and time of day (Fig. 3, Supporting 
information shows similar visualisations for all 39 species). We 
found that soundscape classification confidence was higher at 
the true times at which a species would be present, whether the 
species was diurnal (Fig. 3a, yellow-vented bulbul Pycnonotus 
goiavier), nocturnal (Fig. 3c, tree hole frog) or found only dur-
ing very specific hours (Fig. 3b, sooty-capped babbler). We 
also found that soundscape predictions reflected true observa-
tions of species habitat niches. For example, the sooty-capped 
babbler (Fig. 3b) and tree hole frog (Fig. 3c) were commonly 
found in forest habitats – either logged or inside protected 
areas – whereas the yellow-vented bulbul was found more 
often in heavily disturbed habitats (salvage logged forest and 
oil palm). In all three cases, classification confidence derived 
from soundscape data reflected these habitat partitioning 
patterns. There was no significant relationship between the 
accuracy of occurrence predictions and the AGB of the site at 
which predictions were made (Supporting information).

Soundscapes predict occurrence more accurately 
than above-ground carbon density

We found that soundscape features predicted species occur-
rence more accurately than a comparison model based on 

Figure 2. Soundscape features reliably predict species occurrence. We measured how predictive soundscapes were of species presence across 27 
non-threatened avifaunal species (blue), five threatened avifaunal species (brown) and seven non-threatened herpetofaunal species (green). (a) 
We found soundscapes features across a wide range of timescales were predictive of species occurrence for 34 species (dotted lines indicate 
species for which p > 0.05) – using area under the receiver operating characteristic curve (AUC) as a metric of model accuracy. (b) The accu-
racy of occurrence predictions was significantly correlated with a χ2 statistic measuring how correlated hour of day was with species occurrence 
(p < 0.001). In both panels we highlight results from four indicative taxa chosen to reflect the variety of species included in this study.
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above-ground carbon density (ACD) data, a metric often 
used as a proxy for tropical forest habitat quality (Fig. 4, 
paired T-test on AUCs; p < 0.001). The soundscape-based 
model produced increased AUCs for 34 of the 39 species 
surveyed, including for all five threatened avifaunal species. 
Mean accuracy of occurrence predictions for the non-threat-
ened avifaunal group was increased by 0.08 AUC, for the 
threatened avifaunal group by 0.11 AUC and for the non-
threatened herpetofaunal group by 0.04 AUC. This followed 
the trends noted earlier, as avifaunal species which exhibited 
strong temporal occurrence patterns benefited the most from 
the soundscape based approach. Per species there was a mean 
percentage increase in AUC of 12% across all 39 species sur-
veyed. The figures reported are using ACD averaged over a 
100 m radius from each sampling point, but soundscapes also 
performed better than ACD when averaging over a 250 m 
(p < 0.001) and 500 m (p < 0.001) radius from each point.

Discussion
We investigated whether soundscapes could indicate the occur-
rence patterns of 39 species across two taxonomic groups. Our 
results demonstrate this is indeed feasible, and that the most 
accurate indications could be obtained for species with strong 
temporal occurrence patterns. We found no significant cor-
relation between rarity of species and accuracy of predictions 
and were even able to predict occurrence for the black hornbill 
Anthracoceros malayanus (0.68 AUC) with just 15 observations 
across 790 point counts. Performance was lower for species 
listed as vulnerable or endangered by the IUCN Red List, but 
these are not the only ones of conservation interest. Species 
which are particularly good indicators of habitat quality, those 
that have a disproportionate ecological impact on their envi-
ronment, or those that fulfil important economic functions 
are often referred to as ‘keystone species’ (Mills et al. 1993). 
Whilst these species are sometimes also endangered, this is not 
always the case. For example, within the ‘non-threatened’ spe-
cies, we had the rough guardian frog Limnonectes finchi, a spe-
cies only ever found close to suitable water sources (Inger and 
Voris 1988). We also had the white crowned shama Copsychus 
stricklandii which due to their unique singing ability is threat-
ened by a high rate of unsustainable trade in Southeast Asia 
(Leupen et al. 2018). We were able to predict occurrence for 
both species accurately with AUCs of 0.76 and 0.77, respec-
tively. Furthermore, we found our approach worked equally 
well across the whole degradation gradient – demonstrating 
that soundscapes can be used to accurately predict species 
occurrence across a variety of habitat types typically found in 
and around tropical rainforests.

We found that our model was most accurate when using 
shorter timescale acoustic features – with features represent-
ing individual seconds rather than averaged over minutes of 
audio. This may simply be a matter of resolution – with lon-
ger timescale features the details of how soundscapes move 
between different modes are lost. The average of shorter fea-
tures over these long time periods will therefore only provide 
a crude overview of the overall soundscape, leading to less 
accurate predictions of occurrence. Nonetheless, there was 
still significant predictive information contained within long 
timescale features, indicating that a coarse acoustic overview 
is often all that is required.

Figure 3. Soundscapes predict occurrence for species with varying habitat and temporal niches. Median classification scores, λ, from dark 
blue (low) to white (high) are shown for occurrence predictions from soundscapes for three species: (a) yellow-vented bulbul, (b) sooty-
capped babbler and (c) tree hole frog. Overlaid in red is true occurrence data, where circle sizes indicate how often the species was found at 
that site and hour during the manual point counts. Sites are ordered by land-use type with low-quality habitats at the top and high-quality 
habitats at the bottom (the Supporting information provides the same visualisation for all 39 species).

Figure 4. Soundscape features are a better indicator of species occur-
rence than above-ground carbon density (ACD). We compared 
occurrence predictions using soundscapes to a comparison model 
using ACD data. Lines connect AUC metrics for the same species, 
with threatened avifaunal species in brown, non-threatened avifau-
nal species in blue and non-threatened herpetofaunal species in 
green. In black is the mean and standard error for AUC across all 39 
species for each model.
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Our model learned to identify soundscape features that 
were uniquely found when the species of interest was present. 
We investigated a few point counts and found that high clas-
sification confidences did not correlate with vocalisations – in 
contrast with how audio data is typically used to infer species 
occurrence (Diwakar et al. 2007). Instead, soundscapes typi-
cal to the habitat type or time of day that the species was likely 
to be found led to predictions of species presence. We believe 
the model learned to pick up on these broad soundscape level 
fluctuations in acoustic features due to the relatively low num-
ber of vocalisations present in the dataset, together with the 
high overall temporal and spatial variability of soundscapes 
across all of our audio recordings. In many ways, this is analo-
gous to considering the soundscape as an indirect metric of 
habitat suitability, much as landscape elevation models or 
predator prey networks have been used as indirect measures 
of habitat suitability (Store and Jokimäki 2003, Hirzel and 
Lay 2008). Whilst all species surveyed in this study produce 
vocalisations, basing predictions on soundscapes as a whole 
means that our approach may allow audio data to be used to 
predict the occurrence of completely silent species.

Equally tantalisingly, there is a possibility that with a less 
heterogenous, larger dataset a similar approach to ours may 
enable automated discovery of species vocalisations. Whilst it 
wasn’t the case in our study, this situation would occur if the 
predominant distinguishing acoustic features between present 
and absent samples was the sound of the species vocalising. 
In this case, acoustic features with the highest classification 
confidences would correspond to the species’ vocalisations. 
Automatically extracting vocalisations from passive record-
ings made in the wild may even allow us to discover calls and 
behaviours that cannot be reproduced with the same species 
in a more controlled environment.

Other types of data, beyond audio, can be used to pre-
dict species occurrence at a given place and time. Measuring 
the standing density or biomass of woody matter has been 
used extensively as a habitat quality indicator at the field site 
we surveyed (Brant et al. 2016, Luke et al. 2017, Riutta et al. 
2018, Williamson  et  al. 2021). In this study, however, we 
showed that soundscapes were in fact better predictors of spe-
cies occurrence for 31 of the 39 species surveyed than a simple 
model based on above-ground carbon density. Furthermore, 
acquiring high resolution airborne LiDAR data from planes or 
satellites (as used to derive ACD in this study) can be prohibi-
tively expensive, is sampled infrequently, and is not a viable 
option in every field site (Lefsky et  al. 2002, Popescu et  al. 
2011). By contrast, our audio recording protocol only involved 
using an inexpensive handheld recorder deployed to gather a 
24 h acoustic record per site. Recordings of this type could 
be made rapidly and sampled regularly from a large number 
of sites, providing wide coverage with minimal capital outlay.

The link between habitat suitability and species occurrence 
data is clear – species are more likely to be found in habitats that 
are able to sustainably support their needs (Hirzel et al. 2006). 
Thus, by showing that occurrence for a wide range of species 
can be accurately predicted by soundscapes, this opens up a new 
avenue for assessing habitat suitability from audio data. One 

use-case may be in assisting the identification of areas of high 
conservation value within agricultural landscapes, as required 
by certification agencies such as the roundtable for sustainable 
palm oil (Brown et al. 2013). Additionally, as collaborative eco-
acoustic datasets continue to grow (Baker et al. 2015), we may 
be able to harness soundscape data to produce large-scale habi-
tat suitability maps, and identify those species that are most at 
risk from mounting global pressures (Walther et al. 2002).

Conclusion

In this study we have demonstrated that soundscapes can 
be used to predict species occurrence across a wide range of 
species in tropical forests. We found that the most accurate 
predictions could be made for species with strong temporal 
occurrence patterns, including for species of specific conser-
vation concern, and that soundscape-based predictions out-
performed those based on a more traditional metric of habitat 
quality, ACD. Future work could scale our approach to global 
datasets to produce models which infer species occurrence 
data with a higher accuracy and across diverse biomes. Our 
findings indicate a new route for audio data to be used as an 
impactful, scalable and widely applied conservation tool.
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