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20 Abstract

21 1. Understanding species habitat use and factors affecting changes in their distributions are 

22 necessary to promote the conservation of any biological community. We evaluated the changes 

23 in wetland use of the non-breeding waterbird community. Based on long-term citizen-science 

24 data (1988–2020), we tested the hypotheses that wetland use is associated with species diet 

25 and potential range-shift drivers (the tendency to occupy the same sites in consecutive years - 

26 site affinity and the species’ average temperature across its wintering range – STI).

27 2. We analysed species-specific wetland use of 25 species of waterbirds wintering in Czechia 

28 over a period of 33 years. The analyses explained variability in trends in numbers of the studied 

29 waterbird species across four inland wetland types: reservoirs, fishponds, industrial waters 

30 created by flooding of former mining sites, and running waters. 

31 3. Trends in waterbird abundance positively correlated with species´ diet on fishponds, 

32 industrial and running waters. Among the diet groups, invertivores showed the largest increase 

33 in abundances on industrial waters, closely followed by herbivores. Herbivores showed the 

34 largest increase in abundances in fishponds, and piscivores did so in running waters. Regarding 

35 range-shift drivers, species with higher site affinity showed higher abundances on running 

36 waters, while species with low STI (i.e. wintering on average in sites with lower temperature) 

37 were more abundant on reservoirs. The abundance of both warm-dwelling and species with 

38 low site affinity increased on fishponds and industrial waters.

39 4. Our findings suggest that the increased importance of the wetland types considered here for 

40 wintering waterbirds is likely linked to diet related changes in habitat use and changes in 

41 species distributions; and highlight that wintering waterbirds are expected to select sites with 

42 higher availability of food, higher energy content and lower foraging cost.

43 5. Recent and rapid changes in species distributions may lead to a decrease in the effectiveness 

44 of national and international conservation efforts. When planning conservation measures, it 

45 should be kept in mind that, climate change does not only imply large-scale north/north-

46 eastwards shifts of entire waterbird distributions, but can also modify the use of the habitats 

47 by waterbird species inside their traditional wintering range.
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48 Introduction

49

50 Acquiring information regarding habitat use of different species (including temporal changes) 

51 is crucial for proposing effective conservation measures (Pullin, 2002; Angert et al., 2011; 

52 Dawson et al., 2011; Davis et al., 2014). Such information is especially relevant in the context 

53 of ongoing climate-driven changes in species distributions (Maclean et al., 2008; Chen et al., 

54 2011; Podhrázský et al., 2017; Pavón-Jordán et al., 2019).

55 The non-breeding distribution and habitat use of many waterbirds have changed considerably 

56 during recent decades, with new important wintering areas being established in northern and 

57 eastern Europe (Lehikoinen et al., 2013; Nuijten et al., 2020). This phenomenon has been 

58 linked to climate-driven range changes and redistribution of abundances (Maclean et al., 2008; 

59 Thomas et al., 2012; Pavón-Jordán et al., 2015; Musilová, Musil, Zouhar & Adam, 2018a; 

60 Pavón-Jordán et al., 2019).

61 In addition to using newly available northern coastal areas around the Baltic Sea (Lehikoinen 

62 et al., 2013), many wintering waterbirds are progressively using inland waters in east and 

63 central Europe to a greater extent when compared to the 1990s (Musilová, Musil, Zouhar & 

64 Adam, 2018a; see also Guillemain & Hearn, 2017; Pavón-Jordán et al., 2020). Climate 

65 warming is shifting the zero-degree isotherm (i.e. average aerial temperature of 0 °C in 

66 January) and thus increasing also the availability of free-ice inland freshwater wetlands in this 

67 region (Pavón-Jordán et al., 2015, 2019, Musilová, Musil, Zouhar & Adam, 2018a). Some 

68 species are rapidly responding to this phenomenon and increasingly using the newly available 

69 wetlands in central and east Europe by altering their migratory behaviour (Sauter et al., 2010; 

70 Gunnarsson, Waldenström & Fransson, 2012; Adam et al., 2015, Podhrazský et al., 2017). 

71 This has several advantages - for example lowering the high mortality risk and energetic cost 

72 of a long migration (Newton, 2007) as well as reducing energy expenditure for 

73 thermoregulation in regions that were formerly hostile during winter (Ridgill & Fox, 1990; 

74 Musil et al., 2008; Dalby et al., 2013).
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75 Although the most important wintering requirements of food resources and safety from 

76 predation are relatively well known (Snow & Perrins, 1998; Guillemain et al., 2000; 

77 Guillemain et al., 2002; Schummer, Kaminski, Raedeke & Graber, 2010), long-term studies 

78 revealing the drivers of inland wetland use by waterbirds are absent in the literature, especially 

79 in the context of climate-driven changes in distributions. Food supply and availability of ice-

80 free, open water in the wintering grounds are likely the most important limiting factors 

81 (Newton, 1998; Newton, 2013; Lewis et al., 2019) shaping waterbirds wintering distribution 

82 (Dalby et al., 2013; Guillemain et al., 2015), followed by predation and air temperature 

83 (thermoregulation) (Ridgill & Fox, 1990; Maclean et al., 2008; Adam et al., 2015). Hence, 

84 temperature alone does not simply explain the distribution pattern of wintering waterbirds 

85 (Dalby et al., 2013). The competition for food likely increases during winter, when individuals 

86 from low density breeding sites in the vast boreal and tundra areas in Fennoscandia and Russia 

87 congregate in their common wintering grounds further down the flyway (Guillemain et al., 

88 2002; Brochet et al., 2012). This behaviour, thus, presents an ideal opportunity to investigate 

89 how resource availability and competition for food and space drive habitat use by waterbirds 

90 during the wintering season. 

91 In our study, we evaluate species-specific changes in the use of four different wetland types. 

92 We hypothesize that the habitat use of species among the investigated wetland types is driven 

93 by the species diet and that wetland types differ in their food supply (Kloskowski et al., 2009; 

94 Kameníková & Rajchard, 2013; Čížková et al.; 2013; Lewis et al., 2019). We expect a 

95 different speed of change in the use of fishponds by the different diet groups, because this 

96 particular type of wetland is characterised by high density of stocked fish. Thus, we expect a 

97 shift of invertivores from fishponds to other wetland types due to competition for invertebrates 

98 with a high density of fish (esp. Common Carp Cyprinus Carpio). On the other hand, fishponds 

99 constitute a food-rich habitat for piscivorous species (Musil, 2006; Nummi, Väänänen, 

100 Holopainen & Pöysä, 2016).

101 We also defined two species-specific determinants to outline the distribution of species 

102 regarding the four wetland types (later named range shift drivers): (a) a species’ site affinity 
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103 (the tendency to occupy the same sites in consecutive years) and (b) the species temperature 

104 index (STI) as a measure of the species thermal affinity (warm-dwelling or cold-dwelling 

105 species; see description below. See also Devictor et al., 2008; Jiguet et al., 2007). Based on 

106 these two species-specific traits and current climate warming (Hurrel & Deser, 2009), we 

107 predict increasing wintering abundances of species with low site affinity (i.e. species that show 

108 low site fidelity and thus show greater potential to change wintering sites) as well as  species 

109 with high Species Temperature Index (STI; i.e. with high average winter temperature across 

110 its wintering distribution) as the winter weather conditions become more favourable for them 

111 to expand towards these previously unsuitable regions; see e.g. Gaget et al. 2021. 

112

113

114 Methods

115 Study region

116 The study region covers the Czech Republic that lies in central Europe. In total, 1,169 

117 monitored sites were classified according to the four wetland types considered: 68 reservoirs, 

118 443 fishponds, 108 industrial waters and 550 running waters (Fig. 1). 

119 Note that there are only a few small natural glacial lakes in the study region (Tucker & Evans, 

120 1997; Chytil et al., 1999) which are located in mountains; these are usually frozen in winter 

121 and are therefore not included in the monitoring scheme. Thus, the four types included in the 

122 analysis essentially cover all wetland sites available for wintering waterbirds (see Chytil et al., 

123 1999, Musil et al. 2001). The set of available sites in the study region remained unchanged 

124 throughout the whole study period (Fig. 2); all major changes in water bodies brought about 

125 by human activity in the study region had occurred before 1988, the beginning of the study 

126 period. 

127

128 Waterbird monitoring data

129 Site-specific count data of waterbird abundances (in total 492,297 observations) were obtained 

130 from the results of the International Waterbird Census (IWC) in the Czech Republic between 
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131 1988 and 2020. IWC is a worldwide citizen-science census with a standardized methodology 

132 (see further details in Delany, 2005; Delany, 2010) managed by the national coordinator in 

133 each country and globally coordinated by Wetlands International (www.wetlands.org). 

134 Censuses are carried out in mid-January each winter because it is generally the coldest period 

135 of winter when the effect of food resources on waterbird distribution is considered most 

136 apparent due to limited site availability.

137 Waterbird counts were performed on a site during a day according to a complete and 

138 predefined list of species on predetermined dates and sites with the aim to maximize synchrony 

139 in the following years (Gilissen et al., 2002). Census participants also recorded zero counts of 

140 individual species as well as zero counts of all species on a site. About 350 experienced 

141 volunteer birdwatchers contributed annually to the monitoring in Czechia. The most important 

142 element of IWC methodology is standardization: it requires a single count at each site each 

143 winter, optimally conducted by the same person in consecutive winters in order to make the 

144 comparisons between years straightforward and valid. Each site (up to a few km2 of standing 

145 water or a few km of a course of running water) established on the list of sites was defined by 

146 boundaries (such as bridges, weirs or dam on rivers and streams) known by the census 

147 participants. Observers used a telescope or binoculars from the shoreline to look for flocks 

148 and/or individuals of waterbirds, usually moving from one observation site to another by foot. 

149 Running waters were monitored using line transects along the shore. The number of census 

150 participants per site (one, two or a group) and the duration of survey were designated according 

151 to bird abundance on each site, species and size of the water surface area, and weather (Bibby, 

152 Burgess & Hill, 2007; Sutherland, Pullin, Dolman & Knight, 2004). The counts at dawn were 

153 recommended for geese. Observations taken under extreme weather conditions (fog, rain, 

154 snow fall, strong wind) categorised as “strong effect” by the observer and incomplete 

155 observations were excluded from the dataset prior to the analysis. 

156 A repeated scanning of the flocks and shoreline observations were used to increase the 

157 detectability of counted species. Census records were submitted to the national coordinator, 

158 who compiles the submitted records and checks their validity using the participants´ feedback 
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159 if necessary. The quality of the IWC data has been verified in recently published studies (e.g. 

160 Fox et al., 2010; Lehikoinen et al., 2013; Amano et al., 2018; Musilová, Musil, Zouhar & 

161 Adam, 2018a; Musilová et al., 2018b; Pavón-Jordán et al., 2019; Gaget et al., 2020; Pavón-

162 Jordán et al., 2020). Monitoring methodology did not change over the study period.

163 The IWC targets all waterbirds, a group ecologically dependent on wetlands (Delany, 2010), 

164 i.e. swans, geese, ducks, grebes, cormorants, herons, rallids, waders and gulls. However, in 

165 this study, we only include 25 the most common wintering waterbird species, namely those 

166 exceeding 50 individuals in Czechia annually (see also Musil et al., 2011; Musilová et al., 

167 2014; see Table 1 for an overview of the species). We followed Gill & Donsker (2018) for the 

168 species taxonomy.

169

170 Wetland types

171 The wetland types included in this study differ with regard to their origin, age and management 

172 practices (Chytil et al., 1999). Fishponds represent shallow water bodies with a small stream 

173 or canal for water inflow. As commercial subjects aimed at stocking and production of fish 

174 (mostly Carp), fishponds were formed in the Middle Ages (mostly in the 16th century), have 

175 artificially managed water levels, chemistry and nutrient input. Reservoirs have been built 

176 more recently (after 1900) and represent deep waterbodies with inflow from larger rivers 

177 (compared to fishponds). The fish stock in reservoirs are not managed for the purpose of 

178 commercial fisheries but rather managed by angling associations (recreation). The most recent 

179 wetland type are industrial waters, which were created by flooding of former mining, sand-pit 

180 or gravel-pit areas, or are sedimentary pools built in industrial areas since 1960s (Hrdinka, 

181 2007). Among all standing water wetland types described above, there is a gradient of 

182 decreasing probability of complete ice-cover in winter with increasing depth: from fishponds 

183 (the shallowest) to industrial waters and finally to reservoirs (the deepest). High density fish 

184 stocks are most intensively managed in fishponds, followed by reservoirs and the least 

185 managed in industrial waters (Oertli et al., 2005; Musil, 2006, UNEP, 2017).
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186 The trophic state of the wetland types ranges from oligotrophic waters (a low nutrient content), 

187 through mesotrophic and eutrophic waters to hypereutrophic waters, which present 

188 an extremely high nutrient content (Carlson, 1977). Among the four monitored wetland types, 

189 running waters contain the lowest content of nutrients, and fishponds are mostly eutrophic, 

190 sometimes hypertrophic (Chytil et al., 1999; Musil, 2006; Seiche et al., 2012; Čížková et al., 

191 2013). The distribution of the monitored sites is shown in Fig. 1.

192

193 Species-specific variables

194 All 25 investigated waterbird species were described by the following three species-specific 

195 variables (diet, species temperature index (STI), and site affinity), which could explain the 

196 temporal pattern in the wetland type use.

197 (i) All species were classified into diet groups based on their preferred food items in the 

198 wintering season: piscivorous, invertivorous, omnivorous and herbivorous (based on data 

199 and diet classification in Snow & Perrins, 1998; Kear, 2005; Šťastný & Hudec, 2016).

200 (ii) Species temperature index (STI): The STI (see Devictor et al., 2008; Jiguet et al., 2007 

201 for detailes of STI calculation) reflects the long-term average January temperature (1950-

202 2000) experienced by individuals of any given species across the species’ entire wintering 

203 distribution. Species’ distribution maps were downloaded from BirdLife International & 

204 HBW (2017) and all temperature data from the regions included in each species’ 

205 wintering range (above) were downloaded from www.worldclim.org. For each species, 

206 all grid cells (5x5 degrees) with temperature data within a species’ wintering range 

207 (BirdLife International & HBW 2017) were downloaded and averaged.

208 (iii) For each species, we calculated a measure of year-to-year variation in geographical 

209 distribution of the species across the study region (called site affinity). Thus, the species’ 

210 fidelity to the wintering sites constitutes the basis of the covariate site affinity, which is 

211 bounded between 0 and 1, with the actual range of values being 0.14–0.82 in our data set. 

212 Values close to 1 indicate that the same sites are occupied in successive years, and with 

213 the same intensity; values close to zero imply large year-to-year variation in the selection 
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214 of wintering sites. These values are based on Earth mover’s distance (see Kranstauber, 

215 Smolla & Safi, 2017 for further details).

216 The pairwise correlation of continuous species-specific variables is 0.06, implying there is 

217 little collinearity (Hair, Anderson, Tatham & Black, 1995; Rogerson, 2001). The values of 

218 species-specific variables are listed in Table 1. 

219

220 Statistical analysis

221 Our analyses proceeded in two stages, differing in the level of detail at which the count data 

222 were aggregated. In the first stage, we studied how trends in abundances of different species 

223 vary across wetland types. We first used a log-linear Poisson regression analysis to impute any 

224 missing waterbird count data from the long-term data series (in 1988–2020) using TRends and 

225 Indices for Monitoring data software (TRIM; Statistic Netherlands version 3.52, Pannekoek 

226 & Van Strien, 2005). Regression parameters were estimated using generalized estimating 

227 equations (GEE). Missing data were usually the result of incomplete coverage due to limited 

228 availability of observers in some years. The proportion of missing counts varied between 33% 

229 and 65% in the whole dataset, which is regarded as tolerable (Soldaat et al., 2017).

230 In this first stage, after imputing any missing data, we estimated the species-specific long-term 

231 trends in abundances (i.e. the change in abundance indices from one year to the next) at each 

232 of the four wetland types and assessed differences in these trends between the wetland types 

233 based on the rate of change: a strong increase or decrease (≥ 5% per year); a moderate increase 

234 or decrease (< 5% per year); a stable (trend was not significant and CIs were sufficiently 

235 narrow) or an uncertain trend (see also Fouque et al., 2009; Musil et al., 2011; Musilová et al., 

236 2018b). Then, a Wald test was used to assess the significance of differences in the trends in 

237 the four wetland types. Furthermore, we used wetland type and site as covariates in the linear 

238 trend models (see also Pavón-Jordán et al., 2015; Musilová et al., 2018b).

239 In the second stage, we studied the effect of species-specific variables on population trends at 

240 different wetland types. As in the first step in this species-level analysis (above), we also used 

241 TRIM to fill the gaps in the data due to incomplete monitoring coverage. For each species, we 
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242 obtained the TRIM-imputed total abundance by year and wetland type, producing a dataset of 

243 3,267 observations (25 species, 33 years, 4 wetland types). Velvet Scoter (Melanitta fusca) 

244 was not recorded on fishponds and, therefore, excluded from the analyses.

245 Next, we explained these total abundances estimated with TRIM and their trends with species-

246 specific variables in a regression approach. As the time abundances exhibited substantial 

247 overdispersion, we used negative binomial regression rather than the canonical Poisson 

248 distribution. The fact that observations for a species are repeated across years and wetland 

249 types led us to include species as a random effect in the model, meaning we fitted a 

250 Generalized Linear Mixed Model (GLMM). Moreover, to allow for (i) heteroskedasticity both 

251 between and within species, and (ii) arbitrary correlation within a species’ values, we used 

252 a cluster-robust estimator of the standard errors in statistical inference, clustered at the species 

253 level (Cameron & Miller, 2015). To facilitate coefficient interpretation, all continuous 

254 variables were z-standardized (i.e. centred around the mean and divided by the standard 

255 deviation) prior to running the regressions.

256 For simplicity, our model specification assumes linear time trends in total abundances; we do 

257 nevertheless expect these trends to vary systematically with species-specific characteristics 

258 and across wetland types. Therefore, we included interactions of year and wetland types with 

259 all species-specific variables in our model. All regression models were estimated in Stata 16 

260 (StataCorp, College Station, TX). 

261

262

263 Results

264 492,297 observations from 25 species in 1,169 wetlands between 1988 and 2020 were included 

265 in this study. The mean annual abundance for four diet groups was the following: herbivores 

266 (23,467 ± 2,897 SE), omnivores (219,234 ± 3,264 SE), invertivores (6,295 ± 240 SE) and 

267 piscivores (15,136 ± 933 SE). The first stage of our analysis revealed significant differences 

268 in abundance trends between the four wetland types in 22 out of the 25 investigated species 

269 (Table 2). Prevailing decreasing (10 species) or stable trends (six species) were found in 
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270 running waters while significant increasing trends in the abundance of 15 species were found 

271 in standing waters (reservoirs, fishponds and industrial waters). The significant differences 

272 (according to results of Wald test) in species trends among analysed wetland types were found 

273 in five of six herbivore species, in six of eight omnivore species, in all five invertivore species 

274 and in all six piscivore species. Increasing trend in abundances was found in all herbivores on 

275 reservoirs and in almost all species in industrial waters (Table 2).

276 The results from our GLMM showed that species exhibiting higher site affinity (i.e. low year-

277 to-year variation in geographical distribution of the species across the study region) recorded 

278 the highest total abundances on running waters (Table 3). Similarly, cold-dwelling species 

279 (identified by a lower value of average temperature across its wintering range – STI) were 

280 more abundant in reservoirs (Table 3).

281 The effects of the interaction terms between species-specific variables and year showed the 

282 extent at which the trends in abundances on different wetland types varied with species-

283 specific variables. For instance, the coefficient on year in the reservoirs column (β = 0.056) 

284 implied that the predicted yearly increase in total abundances in an omnivorous species (i.e. 

285 the reference diet group) with average values of site affinity and STI is about 5.6 per cent; the 

286 coefficient on herbivorous × year (β = 0.022) indicated that for a herbivorous species with 

287 average values of site affinity and STI, the annual increase was larger by ca. 2.2 per cent, i.e. 

288 about 8 per cent in total. The species’ diet significantly affected the species trends on 

289 fishponds, industrial and running waters. On fishponds, herbivorous species showed the largest 

290 (positive) trend in total abundances (over 11 per cent per year at average values of site affinity 

291 and STI), followed closely by piscivores. On industrial waters, omnivores increased at the 

292 slowest pace by ca. 7–9 % slower than the other three diet groups. On running waters, 

293 piscivores increased at the fastest rate during the 1990s and early 2000s, followed closely by 

294 herbivores (Figures 3 and 4). Warm-dwelling and species with low site affinity showed the 

295 largest trend on fishponds and industrial waters. 

296 The differences in trends and abundances across diet groups and wetland types are visualized 

297 in Figures 3 and 4. Figure 3 presents the underlying data on total abundances, along with trend 
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298 curves obtained via scatterplot smoothing using LOESS. Figure 4 visualizes the trends 

299 predicted by the regression for different diet groups at different wetland types. The apparent 

300 discrepancies between Figure 3 and 4 are caused by the fact that in the regression that underlie 

301 Figure 4 (i) we estimate a (log-) linear for simplicity (while some trends in Figure 3 show a 

302 substantial degree of nonlinearity) and (ii) the predictions were obtained at fixed values of STI 

303 and site affinity, which otherwise vary between different diet groups. Figure 5 summarizes the 

304 findings in a graphical format.

305

306

307 Discussion

308 To promote the protection of wetland birds, the knowledge of species habitat use and 

309 facilitation of species distribution changes should be considered the cornerstones for effective 

310 adaptive management (Musilová et al., 2018b; see also Pullin, 2002; Sutherland, Pullin, 

311 Dolman & Knight, 2004; Sinclair, Fryxell & Caughley, 2006; Musilová et al., 2015; 

312 Holopainen et al., 2015; Gaget et al., 2020; Pavón-Jordán et al., 2020). This study contributes 

313 to the identification of these cornerstones by demonstrating diet-specific changes in habitat 

314 use, and of species with high probability of range changes (summarized in Fig. 5), based on 

315 long-term nonbreeding data of wintering waterbirds. 

316

317 Changes in habitat use in different diet groups

318 Generally, food supply is of high importance for waterbirds (Guillemain et al., 2015; 

319 Holopainen et al., 2015) due to its subsequent effect on breeding success, adult survival and 

320 also overall flyway population dynamics (Newton, 1998; Newton, 2013; Jørgensen et al., 

321 2016). Use of feeding habitat is a hierarchical process, influencing the species geographical 

322 distribution and the choice of a particular wetland (Green, 1998). Here, we demonstrated long-

323 term changes in wetland type use among diet groups in fishponds, industrial and running 

324 waters, but not in reservoirs. Increased use of industrial waters was found in invertivore 

325 species, which predominantly used running waters in the beginning of the study period and 
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326 progressively switch to industrial waters. Invertebrate biomass, which provides the majority 

327 of the food of invertivores, tend to be highest in early successional wetlands (Nummi & 

328 Holopainen, 2014; Petrie et al., 2016), such are industrial waters. Furthermore, heterogeneity 

329 in the physical characteristics of foraging areas can affect foraging behaviour (Fernández & 

330 Lank, 2008) and therefore affect the species habitat use. Consistent with this, diving ducks 

331 represent most of the invertivore species; they feed at greater depths during the non-breeding 

332 period (Hughes & Green in Kear, 2005) and industrial waters likely provide favourable depths 

333 for their foraging behaviour. Lower foraging costs (Wood et al., 2013a) in industrial waters 

334 compared to higher water velocities in running waters can make foraging more profitable for 

335 invertivores. The same effect could cause increased use of industrial waters in herbivores 

336 (almost in the same degree as in invertivores). 

337 The a priori assumption of a low increase in abundances of invertivores in fishponds was 

338 confirmed. Invertebrates are fundamental to both terrestrial and aquatic food webs, and drastic 

339 decreases have been shown in terrestrial insects on a global level (Dirzo et al., 2014;.Wagner 

340 et al., 2021). Long-term studies on aquatic invertebrates are currently scarce (Gozlan et al., 

341 2019), but some indicate changes in aquatic invertebrate structure (Fried‐Petersen et al., 2020; 

342 Pilotto et al., 2020; van der Lee, Aray-Ajoy, Futter & Angeler, 2021) associated with 

343 increasing levels of eutrophication and brownification as one of the most important driver of 

344 these changes (Jackson, Loewen, Vinebrooke & Chimimba, 2016; Lind et al., 2018; Arzel et 

345 al., 2020). Fishponds are commercial habitats with artificially managed nutrient input that 

346 increase the level of eutrophication (Roy et al., 2020) and are aimed at stocking and breeding 

347 fish (mostly Carp). The artificial nutrient input have resulted in hypertrophy of fishponds, 

348 especially after the World War II (Pechar, 2000; Seiche et al., 2012) and therefore these ponds 

349 exceed the nutrient level of other wetland types in the study region. It has been shown that 

350 high stocks of Carp in fishponds create an environment with extremely high competition for 

351 invertebrate food with invertivorous waterbird species during the breeding season (Musil, 

352 2006). In this study, we show that this effect is also significant during the wintering season by 

353 a lower increase in the use of fishponds by invertivores.
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354 Indeed, herbivores stood out as the most increasing diet group in fishponds, likely keeping 

355 outside the Carp-waterbird food competition. The importance of artificial fishponds as 

356 alternative sites for wintering herbivorous and omnivorous ducks was shown also in Doñana, 

357 Spain (Kloskowski et al., 2009). However, some species of the herbivorous group (geese, 

358 Mute Swan and Eurasian Wigeon) are not strictly feeding inside of wetlands such as 

359 invertivores and piscivores and may feed both aquatically and terrestrially (Jacobsen & 

360 Ugelvik, 1994; Fox et al., 2005; Wood et al., 2013b). Therefore, the changes in wetland type 

361 use are less strongly related to wetland food supply in this group. Especially, due to the 

362 characteristics of the census protocol (dawn counts), variation in geese abundances are likely 

363 to be affected by this daily dynamic between the roosting and feeding sites. In the study region, 

364 geese have traditionally congregated in high numbers during winter and use reservoirs as a 

365 roosting sites and nearby fields as a dominant feeding sites, especially in south-Moravian 

366 lowland (Czech IWC data: http://www.waterbirdmonitoring.cz/vysledky/iwc20/). 

367 Conversely, other herbivorous species are counted during the daylight activities in the 

368 wetlands and thus do not include individuals that have left the wetlands (roosting sites) to 

369 forage in the fields. In addition, some waterbirds may often be feeding at different places 

370 during the night, such as omnivorous Mallards in the Netherlands (Kleyheeg et al., 2017) and 

371 granivorous dabbling ducks feeding on rice fields in the Mediterranean (Guillemain et al., 

372 2010; Brogi, Pernollet, Gauthier-Clerc & Guillemain, 2015; Parejo et al., 2019). Nevertheless, 

373 this nocturnal behaviour is likely difficult to quantify (Tourenq et al., 2001) and any obvious 

374 suitable nocturnal feeding wetlands are not known from the study region.

375 On the species level, prevailing decreasing or stable trends in abundances were found in 

376 running waters, which represent the traditional wintering grounds in the study region (Adam 

377 et al., 2015; Musilová, Musil, Zouhar & Romportl, 2015; Musilová, Musil, Zouhar & Adam, 

378 2018a). It is worth noting that running waters fulfil one of the most important habitat 

379 requirements for wintering waterbirds: to avoid unfavourable winter harshness and destructive 

380 winter extremes in the zero-degree-isotherm area (Musilová, Musil, Zouhar & Romportl, 

381 2015; Musilová, Musil, Zouhar & Adam, 2018a). In recent decades, milder winter conditions 
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382 in Central Europe (IPCC, 2014) likely provide an increased availability of new wintering 

383 areas, i.e. standing waters with reduced ice cover. Still, running waters still remain as suitable 

384 wintering sites, as revealed in this study, especially for piscivores and herbivorous. Recent 

385 climate and land use changes affect the fish assemblages, diversity and distribution (Comte et 

386 al., 2013) as well as diversity and distribution of invertebrates (Haase et al., 2019) with 

387 predicted up and downstream direction of shifts in the fish species in rivers (Radinger et al., 

388 2017), hence the use of rivers by piscivores is likely in accordance with these changes in fish 

389 distribution.

390

391 Wetland type use in species changing distribution

392 Generally, there is a trade-off between the cost and benefit of the wintering site use (Ridgill & 

393 Fox, 1990; Adam et al., 2015; Musilová, Musil, Zouhar & Romportl, 2015). Importantly, there 

394 is a gradient among the four investigated wetland types in the level of the winter harshness 

395 risk, i.e. the sensitivity to cold weather and freezing (running waters considered the most stable 

396 compared to standing waters, see above), in the level of habitat change risk (fishponds 

397 considered the most artificially affected), in the level of succession in freshwater communities 

398 (industrial waters considered as an early successional stages), trophic status (the highest 

399 nutrient content in fishponds); see the methods for details. 

400 The nature of these differences reflected the use of wetland types in species with more or less 

401 probable range shifts and/or distribution changes. Species with high site affinity (i.e. species 

402 with low year-to-year variation in geographical distribution across the study region) revealed 

403 higher use of running waters. Higher stability in cold and extreme weather conditions, low 

404 level of habitat change risk caused by possible management of running waters are likely 

405 important for these species with lower probability of range changes. However, saturation of 

406 traditional wintering grounds was suggested to occur in Czech Republic (Musilová, Musil, 

407 Zouhar & Romportl, 2015) that could increase the competition for resources (Newton, 1998; 

408 Newton, 2013). In addition, higher water velocities in running waters compared to standing 

409 waters increase the foraging costs (Wood et al., 2013a).
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410 Furthermore, our study indicates the high importance of man-made standing wetlands 

411 (fishponds and industrial waters) for species more likely to undergo range shifts, i.e. species 

412 with low site affinity and warm-dwelling (higher average temperature across its wintering 

413 range – high STI –) species. Wintering waterbird populations are clearly changing their 

414 distribution (Lehikoinen et al,. 2013; Pavón-Jordán et al., 2015; Musilová, Musil, Zouhar & 

415 Adam, 2018a; Pavón-Jordán et al., 2019; Pavón-Jordán et al, 2020). These distribution 

416 changes could be associated with changes in ice cover, food availability, habitat and hunting 

417 pressure (Dalby et al., 2013; Newton, 2013; Guillemain et al., 2015; Pavón-Jordán et al, 2020; 

418 this study). Species with low site affinity increase the use of these newly available wetlands 

419 that are also considered less stable as wintering sites (higher winter harshness and habitat 

420 change risk, higher trophy in fishponds and lower succession in industrial waters). It seems 

421 that species with low site affinity grasp the benefits of milder climate in recent decades (Hurrel 

422 & Deser, 2009) and responded by increasingly use these alternative wetlands. The tendency 

423 of species with low site affinity to annually change the wintering sites implies they may be 

424 useful early-warning indicators of changing use of wintering sites (see also Green & Elmberg, 

425 2014).

426 The thermal affinity was determined as an important trait explaining the species distribution 

427 and range changes leading by climate change (Gaget et al., 2020; Devictor et al., 2008). The 

428 changes of nonbreeding distribution of waterbirds seems highly affected by climate warming 

429 (Pavón-Jordán et al., 2015; Gaget et al., 2018). Our study reveals the use of reservoirs by cold-

430 dwelling species (mostly seaducks), while reservoirs represent deeper water bodies with 

431 inflow from larger rivers and have the lowest probability of complete ice-cover in winter 

432 among standing waters. In the light of climate warming, related northeastwards shifts of 

433 species distributions (Lehikoinen et al., 2013; Pavón-Jordán et al., 2015; Gaget et al., 2020; 

434 Pavón-Jordán et al., 2020), and consequent decline and even local extinction of cold-dwelling 

435 species caused by distribution change (Devictor et al., 2008; Tayleur et al., 2016; Gaget et al., 

436 2020), we assume that reservoirs could serve as a refuges for cold-dwelling species in the near 

437 future. Larger stochasticity and frequency of extreme weather events are also predicted by 
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438 most climate change scenarios and thus such deep and large wetlands with stable temperature 

439 conditions suitable for benthic invertebrates will provide the resources required by these 

440 species. However, the overall increase in abundances of cold-dwelling species in the study 

441 region indicate that this issue could be much complex, as temperature is not the only driver of 

442 species distribution changes (Dalby et al., 2013). Conversely, warm-dwelling species increase 

443 the use of both fishponds and industrial waters. The availability of these shallower man-made 

444 wetlands may likely increase due to climate warming (Hurrel & Deser, 2010). The ‘wintering 

445 strategy’ of warm-dwelling species is driven by the geographic avoidance of the zero-degree 

446 isotherm to reduce winter harshness risk (Gaget et al., 2020), therefore warm-dwelling species 

447 likely do not reflect the difference in wetland types in terms of winter harshness risk and 

448 increase the use of industrial waters and fishponds with higher winter harshness risk. 

449 Increasing our knowledge of the habitat use of warm-dwelling species is of high importance  

450 since they are more likely to expand in the coming decades (Devictor et al., 2008; Tayleur et 

451 al., 2016; Gaget et al., 2020). Indeed, we can expect increasing concern of farmers and 

452 fishermen followed by the distribution changes of the warm-dwelling species, while some of 

453 them are already conflict species such as Greylag Goose or herons.

454

455 Conclusion

456 Our study highlight the general pattern that wintering waterbirds are expected to select sites 

457 with higher food availability (Fox et al., 1995; Green, 1998; Green, Fox, Hughes & Hilton, 

458 1999; Guillemain, Fritz & Guillon et al. 2000; Chatterjee, Adhikari, Pal & Mukhopadhyay, 

459 2020), higher energy content (van Eerden, 1984) and lower foraging cost (Wood et al., 2013a) 

460 to balance the costs and benefits of feeding site choice during wintering (Newton, 1998; 

461 Newton, 2013; Aharon-Rotman, Clark, Klaassen & Buttemer, 2016). The effort to meet these 

462 requirements resulted in a considerable change of the habitat use in the given species.

463 Understanding the role of habitat use in the context of changing distributions of different 

464 species is of high importance for conservation (see e.g. Janke et al., 2017), especially since the 

465 climate-driven range changes are already underway (e.g. Lehikoinen et al., 2013; Pavón-
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466 Jordán et al., 2015, Musilová, Musil, Zouhar & Adam, 2018a; Pavón-Jordán et al., 2019; 

467 Pavón-Jordán et al, 2020) and may lead to the decrease of effectiveness of the conservation 

468 efforts (Musilová et al., 2018b). Consistent with this view, increasing use of industrial waters 

469 and fishponds for warm-dwelling and species with low site affinity exhibiting more probable 

470 range shifts and/or distribution changes, and conversely use of reservoirs by cold-dwelling 

471 species and running waters by species with high site affinity indicates importance of individual 

472 wetland types as wintering grounds, which should be considered in future conservation 

473 planning and effective management. The development and implementation of measures to 

474 increase the suitability of existing modified habitats for wildlife appears essential to conserve 

475 biodiversity (Sinclair, Fryxell & Caughley, 2006; Navedo, 2017). The implementation should 

476 be based on the core knowledge of the species habitat use and distribution changes (Musilová 

477 et al., 2018b). Climate-driven changes in species distributions should not necessarily have the 

478 north/eastwards direction (see e.g. Lehikoinen et al., 2013, 2016; Pavón-Jordán et al., 2015; 

479 Pavón-Jordán et al., 2020), but could also modify the use of habitats  within species’ current 

480 ranges.

481
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868 Figure 1. Distribution of monitored wetland sites in the Czech Republic between 1988 and 

869 2020

870

871
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873 Figure 2. Proportion of monitored sites by wetland type and year. Transparent horizontal lines 

874 show the proportion of the given wetland type among all 1169 monitored sites.

875

876

Page 36 of 93Freshwater Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Copy for Review

37

878 Figure 3. Yearly total abundances and their trends (obtained by LOESS smoothing) at 

879 individual wetland types, by diet group.

880

881
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882 Figure 4. Predicted total abundances at individual wetland types and for different diet groups 

883 at mean values of STI and site affinity (based on the regression presented in Table 3).

884

Page 38 of 93Freshwater Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Copy for Review

39

885 Figure 5. Wetland type use according to diet and range shift determinants of the species 

886 (graphical abstract).

887
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888 Table 1. List of investigated species and its species-specific variables (diet, species 

889 temperature index and site affinity)

Species Diet
Species 
temperature 
index

Site affinity

Mute Swan Cygnus olor herbivore 1.27 0.771

Tundra Been Goose Anser serrirostris herbivore -2.51 0.139

White-fronted Goose Anser albifrons herbivore 2.53 0.462

Greylag Goose Anser anser herbivore 4.47 0.516

Eurasian Wigeon Mareca penelope herbivore 16.53 0.468

Gadwall Mareca strepera herbivore 11.73 0.468

Eurasian Teal Anas crecca omnivore 12.72 0.572

Mallard Anas platyrhynchos omnivore -0.02 0.747

Northern Pintail Anas acuta omnivore 16.9 0.412

Common Pochard Aythya ferina omnivore 11.34 0.576

Tufted Duck Aythya fuligula invertivore 10.45 0.816

Greater Scaup Aythya marila invertivore 0.43 0.487

Velvet Scoter Melanitta fusca invertivore 0.69 0.366

Common Goldeneye Bucephala clangula invertivore -1.11 0.627

Smew Mergellus albellus piscivore -1.58 0.515

Common Merganser Mergus merganser piscivore -0.50 0.643

Little Grebe Tachybaptus ruficollis invertivore 3.54 0.689

Great Crested Grebe Podiceps cristatus piscivore 3.70 0.486

Great Cormorant Phalacrocorax carbo piscivore 3.25 0.612

Great Egret Ardea alba piscivore 5.41 0.543

Grey Heron Ardea cinerea piscivore 4.32 0.757

Common Moorhen Gallinula chloropus omnivore 5.61 0.775

Eurasian Coot Fulica atra omnivore 5.86 0.758

Black-headed Gull Chroicoceph. ridibundus omnivore 6.58 0.691

Mew Gull Larus canus omnivore 1.62 0.294

890 Notes: Species temperature index: the long-term average January temperature (1950–2000) 
891 experienced by individuals of any given species across the species’ entire wintering 
892 distribution (Devictor et al., 2008; Jiguet et al., 2007). Site affinity: a measure of year-to-year 
893 variation in geographical distribution of the species across the study region. The measure is 
894 bounded between 0 and 1, with the actual range of values being 0.14–0.82 in our data set.See 
895 species-specific variables in methods for details.

Page 40 of 93Freshwater Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Copy for Review

41

896 Table 2. Changes in abundances of individual species in four wetland types (the overall area is also included)

Species

Reservoirs 
(overall 
slope±SE) trend

Fishponds 
(overall 
slope±SE) trend

Industrial 
waters (overall 
slope±SE) trend

Running waters 
(overall 
slope±SE) trend

All wetlands 
(overall 
slope±SE) Trend

Difference in  
wetl.types trends 
(Wald test) 

Mute Swan 0.04±0.01 MI** -0.01±0.00 S 0.03±0.01 MI* -0.04±0.00 MD** -0.03±0.00 MD** 200.65***
Tundra Been Goose 0.01±62.66 U 0.09±0.11 U  -0.06±0.05 U -0.04±0.02  MD* 0.02±0.02 S 0.00 ns.
White-fronted Goose 0.20±4.75 U 0.24±0.51 U  0.23±0.05 SI** 0.08±0.02 MI** 0.16±0.02 SI** 676.92***
Greylag Goose 0.16±0.44 U 0.19±0.06 SI* 0.09±0.03 MI** 0.01±0.01 S 0.13±0.00 SI** 334.18***
Eurasian Wigeon 0.07±0.07 U 0.14±0.09 U 0.16±0.03 SI** 0.02±0.018 MI** 0.07±0.01 SI** 170.32***
Gadwall 0.20±0.11 U 0.15±0.04 SI* 0.28±0.21 U 0.13±0.02 SI** 0.16±0.02 SI** 320.61***
Eurasian Teal 0.00±0.03 U 0.01±0.01 S 0.07±0.02 MI** -0.01±0.01 MD* 0.00±0.00 S 2.24 ns.
Mallard 0.01±0.01 S 0.01±0.00 MI** -0.04±0.01 MD** -0.01±0.00 S 0.00±0.00 S 2.23 ns.
Northern Pintail 0.06±0.07 U 0.11±0.16 U 0.03±0.04 U -0.01±0.02 S 0.04±0.01 MI* 19.85***
Common Pochard 0.03±0.07 U -0.08±0.01 SD* 0.11±0.027 SI** -0.14±0.02 SD** -0.05±0.00 MD** 284.35***
Tufted Duck 0.11±0.03 SI* 0.00±0.01 S 0.10±0.02 SI** -0.03±0.00 MD** 0.01±0.00 MI* 4.10*
Greater Scaup 0.17±0.13 U 0.01±0.09 U 0.13±0.08 U -0.03±0.03 U 0.06±0.02 MI** 33.99***
Velvet Scoter 0.11±0.09 U - 0.07±0.05 U -0.10±0.20 U 0.06±0.02 MI** 31.97***
Common Goldeneye 0.09±0.02 SI** 0.05±0.02 MI** 0.11±0.02 SI** -0.01±0.00 MD* 0.05±0.00 MI** 203.16***
Smew 0.05±0.07 U 0.03±0.07 U 0.13±0.04 MI** 0.00±0.01 S 0.03±0.01 MI** 18.18***
Common Merganser 0.03±0.01 MI** 0.07±0.01 SI* 0.07±0.01 MI** 0.02±0.00 MI** 0.03±0.00 MI** 151.26***
Little Grebe 0.03±0.02 U -0.03±0.02 MD* 0.01±0.02 S 0.01±0.00  MI** 0.01±0.00 MI** 40.12***
Great Crested Grebe 0.05±0.01 MI** 0.08±0.04 MI* 0.07±0.02 MI** -0.03±0.01 MD* 0.05±0.01 MI** 133.15***
Great Cormorant 0.04±0.01 MI** 0.08±0.01 SI* 0.08±0.01 SI* 0.04±0.00 MI** 0.05±0.00 MI** 296.69***
Great Egret 0.22±0.23 U 0.14±0.01 SI** 0.19±0.03 SI** 0.11±0.01 SI** 0.14±0.01 SI** 795.25***
Grey Heron -0.02±0.01 MD** 0.03±0.00 MI** 0.02±0.01 S -0.01±0.00 MD* 0.01±0.00 MI** 13.81***
Common Moorhen 0.02±0.04 U 0.02±0.01 MI* 0.05±0.02 MI* -0.01±0.01 S 0.00±0.00 S 7.22**
Eurasian Coot 0.07±0.01 SI* 0.01±0.01 S 0.08±0.01 SI** -0.07±0.00 SD** -0.02±0.00 MD** 129.51***
Black-headed Gull 0.07±0.04 U -0.01±0.01 S -0.06±0.01 MD** -0.02±0.002 MD** -0.01±0.00 MD** 19.73***
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Mew Gull 0.06±0.07 U 0.01±0.02 U 0.02±0.01 S  0.02±0.01 S 0.04±0.01 MI** 85.90***

897 Notes: (i) * p < 0.05, ** p < 0.01, *** p < 0.001. (ii) Categories of trends: SI – strong increase, MI – moderate increase, S – stable, MD – moderate decrease, 
898 SD – strong decrease, U – uncertain. 
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899 Table 3. Results of a random-effects negative binomial regression explaining total 

900 abundances.  

Diet Reservoirs Fishponds Industrial Running

Herbivores –0.202 0.895 –0.635 0.370
(0.866) (1.227) (1.118) (0.928)

Omnivores ref. ref. ref. ref.

Invertivores –0.898 –1.996** 0.282 0.113
(0.731) (0.740) (0.570) (0.725)

Piscivores –0.597 0.172 0.549 0.593
(0.746) (1.138) (1.059) (0.978)

Site affinity
(standardized)

0.206 0.627 0.360 1.290**

(0.423) (0.521) (0.511) (0.444)
STI (standardized) –0.914* –0.248 –0.0483 –0.415

(0.370) (0.485) (0.447) (0.352)
Year (base = 2020) 0.0557* 0.0147 0.0232 –0.0226

(0.0270) (0.0218) (0.0199) (0.0150)
Diet × year
Herbivores × year 0.0220 0.0967* 0.0882** 0.0456

(0.0357) (0.0377) (0.0280) (0.0298)
Invertivores × year 0.0155 –0.0113 0.0847* 0.000531

(0.0327) (0.0225) (0.0393) (0.0172)
Piscivorous × year –0.00951 0.0714* 0.0718** 0.0504*

(0.0374) (0.0308) (0.0244) (0.0222)
Site affinity × year 0.000514 –0.0204* –0.0238* 0.00214

(0.0171) (0.0103) (0.0114) (0.0103)
STI × year –0.000489 0.0198* 0.0275** 0.00853

(0.0124) (0.00967) (0.0103) (0.00814)
Constant 6.448*** 5.694*** 5.765*** 5.918***

(0.624) (0.888) (0.921) (0.725)
log(α) –0.0724 –0.0724 –0.0724 –0.0724

(0.121) (0.121) (0.121) (0.121)
var(species random effect) 4.088*** 4.088*** 4.088*** 4.088***

(1.041) (1.041) (1.041) (1.041)
Observations 3267 3267 3267 3267
p(Different trends by diet) 0.63292 0.00002 0.00512 0.01802

901 Notes: (i) The model specification contains the interactions of wetland type with all other 
902 covariates.  To enhance readability, coefficients are presented in four columns, each related to 
903 one wetland type; moreover, the coefficients have been transformed to show the covariate 
904 effects on the given wetland type. (ii) Robust (Huber-White sandwich) standard errors in 
905 parentheses. (iii) * p < 0.05, ** p < 0.01, *** p < 0.001.
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2

20 Abstract

21 1. Understanding species habitat use and factors affecting changes in their distributions are 

22 necessary to promote the conservation of any biological community. We evaluated the changes 

23 in wetland use of the non-breeding waterbird community. Based on long-term citizen-science 

24 data (1988–2020), we tested the hypotheses that wetland use is associated with species diet 

25 and potential range-shift drivers (the tendency to occupy the same sites in consecutive years - 

26 site affinityconservatism and the species’ average temperature across its wintering range – 

27 STI).

28 2. We analysed species-specific wetland use of 25 species of waterbirds wintering in Czechia 

29 over a period of 33 years. The analysesdata explained variability in trends in numbers of the 

30 studied waterbird species across four inland wetland types: reservoirs, fishponds, industrial 

31 waters created by flooding of former mining sites, and running waters. 

32 3. Trends in waterbird abundance positively correlated with sSpecies´ diet significantly 

33 correlated with their trends in numbers on fishponds, industrial and running waters. Among 

34 the diet groups, iInvertivores showed the largest increase in abundancesnumbers among the 

35 diet groups oin industrial waters, closely followed by herbivores. Herbivores showed the 

36 largest increase in abundancesnumbers in fishponds, and piscivores did so in running waters. 

37 Regarding range-shift drivers, sSpecies with higher site affinityconservatism showed higher 

38 abundancesnumbers on running waters, while cold-dwelling species with low STI (i.e. 

39 wintering on average in sites with lower temperature) were more abundant on reservoirs. The 

40 abundancenumber of both warm-dwelling and less conservative species with low site affinity 

41 increased on fishponds and industrial waters.

42 4. Our findings suggest that the increased importance offor the inland wetland typess 

43 considered here for wintering waterbirds is likely linked to diet relatedfood-driven changes in 

44 habitat use and changes in species distributions; and highlight the general pattern that 

45 wintering waterbirds are expected to select sites with higher availability of food, higher energy 

46 content and lower foraging cost.
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3

47 5. Recent and rapid changes in species distributions may lead to a decrease in the effectiveness 

48 of national and international conservation efforts. When planning conservation measures, it 

49 should be kept in mind that, climate change does not only imply only large-scale north/north-

50 eastwards shifts of entire waterbird distributions, but can also modify the use of the habitats 

51 and their use by waterbird species inside their wintering traditional wintering range.

52

53

54 Introduction

55 The extent of wetland habitats of natural origin has decreased worldwide, especially during 

56 the last century (Davidson, 2014; Kingsford, Basset & Jackson, 2016; O´Hare et al., 2018). In 

57 Europe, for example, two thirds of all natural wetlands have disappeared in the past century 

58 (Čížková et al., 2013). Although the loss of natural inland wetlands has been partially offset 

59 by the creation of man-made inland freshwater wetlands such as fishponds, reservoirs, and 

60 industrial waters (including gravel lakes, sandpit lakes, flooded areas after mining, and settling 

61 ponds), these differ in their physical and ecological characteristics (Tucker & Evans, 1997).

62 The importance of inland freshwater wetlands is increasing because climate warming is 

63 shifting the zero-degree isotherm (i.e. average aerial temperature of 0 °C in January) (Pavón-

64 Jordán et al., 2015, 2019, Musilová, Musil, Zouhar & Adam, 2018a). Some species are rapidly 

65 responding to this phenomenon by altering their migratory behaviour (Sauter et al., 2010; 

66 Gunnarsson, Waldenström & Fransson, 2012; Podhrazský et al., 2017, Adam et al., 2015) to 

67 adjust to the new environmental conditions, consequently reducing the high mortality risk and 

68 energetic cost of a long migration (Newton, 2007) to minimise energy expenditure for 

69 thermoregulation during winter (Ridgill & Fox, 1990; Musil et al., 2008; Dalby et al., 2013a). 

70 This is especially evident in central European inland wetlands (both natural and of man-made 

71 origin), which have become increasingly important for wintering waterbirds in recent decades 

72 (Fox et al., 2010; Musil, Musilová, Fuchs & Poláková, 2011; Beekman et al., 2019), due to 

73 the redistribution of the abundance of many species (Ridgill & Fox 1990, Rainio et al., 2006, 

74 Podhrázský et al., 2017; Pavón-Jordán et al., 2019) and range shifts (Lehikoinen et al., 2013) 
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75 probably linked to the above-mentioned behavioural changes in response to climate change. 

76 These wetlands attract about four million waterbirds every winter (Wetlands International, 

77 2018; see also http://iwc.wetlands.org). Moreover, wintering waterbird numbers have 

78 increased in this region in the past decades (Keller, 2011; Musil, Musilová, Fuchs & Poláková, 

79 2011; Wetlands International, 2018). Hence, recent changes in central European winter 

80 weather creates favourable conditions that likely provide adequate foraging and safety 

81 opportunities throughout the wintering period (Švažas et al., 2001; Nilsson, 2008).

82 Acquiring Iinformation regarding habitat use of different species (including and the temporal 

83 changes)  taking place in the habitat use is crucial for  proposing effective conservation 

84 measures (Pullin, 2002; Angert et al., 2011; Dawson et al., 2011; Davis et al., 2014). Such 

85 information is especially The relevantce in the context of ongoing of thise issue knowledge of 

86 habitat use increases, especially now when species are undergoing climate-driven changes in 

87 species distributions changes (Maclean et al., 2008; Chen et al., 2011; Podhrázský et al., 2017; 

88 Pavón-Jordán et al., 2019).

89 The non-breeding distribution and habitat use of many waterbirds have changed considerably 

90 during recent decades, with new important wintering areas being established in northern and 

91 eastern Europe (Lehikoinen et al., 2013; Nuijten et al., 2020). It is assumed that tThis 

92 development phenomenon has been is linked to climate-driven range changes and 

93 redistribution of abundances (Maclean et al., 2008; Thomas et al., 2012; Pavón-Jordán et al., 

94 2015; Musilová, Musil, Zouhar & Adam, 2018a; Pavón-Jordán et al., 2019).

95 In addition to using newly available northern coastal areas around the Baltic Sea (Lehikoinen 

96 et al., 2013), many wintering waterbirds are progressively using inland waters in east and 

97 central Europe to a greater extent when compared to the 1990s (Musilová, Musil, Zouhar & 

98 Adam, 2018a; see also Guillemain & Hearn, 2017; Pavón-Jordán et al., 2020). Climate 

99 warming is shifting the zero-degree isotherm (i.e. average aerial temperature of 0 °C in 

100 January) and thus increasing also the availability of free-ice The increased use of importance 

101 of inland freshwater wetlands is now feasibleincreasing because  in this region climate 

102 warming is shifting the zero-degree isotherm (i.e. average aerial temperature of 0 °C in 
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103 January) (Pavón-Jordán et al., 2015, 2019, Musilová, Musil, Zouhar & Adam, 2018a). Some 

104 species are rapidly responding to this phenomenon and increasingly using the newly available 

105 wetlands in central and east Europe by altering their migratory behaviour (Sauter et al., 2010; 

106 Gunnarsson, Waldenström & Fransson, 2012; Adam et al., 2015, Podhrazský et al., 2017, 

107 Adam et al., 2015). This has several advantages - for example lowering to adjust to the new 

108 environmental conditions, consequently reducing the high mortality risk and energetic cost of 

109 a long migration (Newton, 2007) as well as to reducingminimise energy expenditure for 

110 thermoregulation during winter in regions that were formerly hostile during winter (Ridgill & 

111 Fox, 1990; Musil et al., 2008; Dalby et al., 2013a).

112  even Although the most important wintering requirements of food resources and safety from 

113 predation are relatively well known (Snow & Perrins, 1998; Guillemain et al., 2000; 

114 Guillemain et al., 2002; Schummer, Kaminski, Raedeke & Graber, 2010), long-term studies 

115 revealing . In spite of the rapidity of these distribution changes, Ddetailed long-term studies 

116 revealing the drivers of inland wetland use by waterbirds in light of their recent distribution 

117 change during the non-breeding season are absent in the literature, especially in the context of 

118 climate-driven changes in distributions.remain scarceeven though the most important 

119 wintering requirements of food resources and safety from predation are relatively well known 

120 (Snow & Perrins, 1998; Guillemain et al., 2000; Guillemain et al., 2002; Schummer, 

121 Kaminski, Raedeke & Graber, 2010).  

122 Food supply and availability of ice-free, open water in the wintering grounds are likely the 

123 most important limiting factors (Newton, 1998; Newton, 2013; Lewis et al., 2019) shaping 

124 waterbirds wintering distribution (Dalby et al., 2013; Guillemain et al., 2015), followed by p. 

125 Predation and air temperature (thermoregulation) are also be important factors affecting 

126 waterbird distribution (Ridgill & Fox, 1990; Maclean et al., 2008; Adam et al., 2015). 

127 HoweverHence, temperature alone does not simply explain the distribution pattern of 

128 wintering waterbirds (Dalby et al., 2013a). The competition for food likely increases during 

129 winter, when individuals from low density breeding sites in the vast boreal and tundra areas in 

130 Fennoscandia and Russia congregate in their common wintering grounds further down the 
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131 flyway (Guillemain et al., 2002; Brochet et al., 2012). This behaviour, thus, presents an ideal 

132 opportunity to investigate how resource availability and competition for food and space drive 

133 habitat use by waterbirds during the wintering season. 

134 In our study, we evaluate species-specific changes in the use of four different wetland types., 

135 including man-made wetlands. We hypothesize that the habitat use distribution of species 

136 among the investigated wetland types is driven by the species diet and that wetland types differ 

137 in their food supply (Kloskowski et al., 2009; Kameníková & Rajchard, 2013; Čížková et al.,; 

138 20193; Lewis et al., 2019). We expect a different speed of change in the use of fishponds by 

139 individual the different diet groups, because this particular type of wetlandey which isare 

140 characterised by high density of stocked fishes stock. Hence, with increasing fish density, TIn 

141 fishponds,hus, we expect a shift of invertivores from fishponds to other wetland types habitats 

142 due to higher level of competition for invertebrates with a high density of fish stock (esp. 

143 Common Carp Cyprinus Carpio). On the other hand, fishponds constitute a food-rich habitat  

144 and on the contrary higher food availability for piscivorous species (Musil, 2006; Nummi, 

145 Väänänen, Holopainen & Pöysä, 2016).

146 We also defined two species-specific determinants to outline the distribution of species in 

147 regard toregarding man-madethe four wetland types (later named range shift drivers): (a) a 

148 species’ site affinityconservatism (the tendency to occupy the same sites in consecutive years) 

149 and (b) the species temperature index (STI) as a measure of the species thermal affinity (warm-

150 dwelling or cold-dwelling species; see description below. See also Devictor et al., 2008; Jiguet 

151 et al., 2007)). Based on these two species-specific traits and current climate warming (Hurrel 

152 & Deser, 201009), wWe predicted that the changes in use of different wetland types differ 

153 according to range shift drivers, i.e. an increasing wintering abundancesnumbers probability 

154 of wintering in recently ice-free standing waters ofin  species with low site affinity (i.e. species 

155 that show low site fidelity and thus show greater potential to change wintering sites) andas 

156 well as warm-dwelling  species with high Species Temperature Index (STI; i.e. with high 

157 average winter temperature across its wintering distribution) as the winter weather conditions 

158 become more favourable for them to expand towards these previously unsuitable regions; see 
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159 e.g. Gaget et al. 2021. species species with more probable range shifts and/or distribution 

160 changes (i.e. low-conservative and warm-dwelling species) as a consequence of climate 

161 warming (Hurrel & Deser, 2010). .  

162

163

164 Methods

165 Study region

166 The study region covers the Czech Republic that lies in central Europe. In total, 1,169 

167 monitored sites were classified according to the four wetland types considered: 68 reservoirs, 

168 443 fishponds, 108 industrial waters and 550 running waters (Fig. 1). Running waters include 

169 rivers and streams; they were defined as river sections with well-defined boundaries, such 

170 as bridges, weirs or dams (see Chytil et al., 1999, for the list of wetland habitats in the Czech 

171 Republic).

172 Note that there are only a few small natural glacial lakes in the study regionarea (Tucker & 

173 Evans, 1997; Chytil et al., 1999) which are located in mountains; these are usually frozen in 

174 winter and are therefore not included in the monitoring scheme. Thus, the four types included 

175 in the analysis essentially cover all wetland sites available for wintering waterbirds (see Chytil 

176 et al., 1999, Musil et al. 2001). The set of available sites in the study arearegion remained 

177 unchanged throughout the whole study period (Fig. 2); all major changes in water bodies 

178 brought about by human activity in the study regionarea had occurred before 1988, the 

179 beginning of the study period. 

180

181 Waterbird monitoring data

182 Site-specific count data of waterbird abundancesnumbers (in total 492,297 observations) were 

183 obtained from the results of the International Waterbird Census (IWC) in the Czech Republic 

184 between 1988 and 2020. IWC is a worldwide citizen-science census with a standardized 

185 methodology (see further details in Delany, 2005; Delany, 2010) managed by the national 

186 coordinator in each country and globally coordinated by Wetlands International 
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187 (www.wetlands.org). Censuses are carried out in mid-January each winter because it is 

188 generally the coldest period of winter when the effect of food resources on waterbird 

189 distribution is considered most apparent due to limited site availability.

190 The counts of wWaterbird numbers counts wereare performed on a site during a day according 

191 to a complete and predefined list of species on predetermined dates and sites with the aim to 

192 maximize synchrony in the following years (Gilissen et al., 2002). Census participants also 

193 recorded zero counts of individual species as well as zero counts of all species on a site. About 

194 350 experienced volunteer birdwatchers contributed annually to the monitoring in Czechia. 

195 The most important element of IWC methodology is standardization: it requires a single count 

196 at each site each winter, optimally conducted by the same person in consecutive winters in 

197 order to make the comparisons between years straightforward and valid. Each site (up to a few 

198 km2 of standing water or a few km of a course of running water) established on the list of sites 

199 iswas defined by boundaries (such as bridges, weirs or dam on rivers and streams) known by 

200 the census participants. Observers used a telescope or binoculars from the shoreline to look 

201 for flocks and/or individuals of waterbirds, usually moving from one observation site to 

202 another by foot. Running waters weare monitored using line transects along the shore. The 

203 number of census participants per site (one, two or a group) and the duration of survey arwere 

204 designated according to bird abundance on each site, species and size of the water surface area, 

205 and weather (Bibby, Burgess & Hill, 2007; Sutherland, Pullin, Dolman & Knight, 2004). The 

206 counts at dawn arweree recommended for geese. Observations taken under extreme weather 

207 conditions (fog, rain, snow fall, strong wind) categorised as “strong effect” by the observer 

208 and incomplete observations were excluded from the dataset prior to the analysis. 

209 A repeated scanning of the flocks and shoreline observations arewere used to increase the 

210 detectability of counted species. Census records arewere submitted to the national coordinator, 

211 who compiles the submitted records and checks their validity using the participants´ feedback 

212 if necessary. The quality of the IWC data has been verified in recently published studies (e.g. 

213 Fox et al., 2010; Lehikoinen et al., 2013; Amano et al., 2018; Musilová, Musil, Zouhar & 
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214 Adam, 2018a; Musilová et al., 2018b; Pavón-Jordán et al., 2019; Gaget et al., 2020; Pavón-

215 Jordán et al., 2020). Monitoring methodology did not change over the study period.

216 The IWC targets all waterbirds, a group ecologically dependent on wetlands (Delany, 2010), 

217 i.e. grebes, cormorants, herons, swans, geese, ducks, grebes, cormorants, herons, rallids, 

218 waders and gulls. However, in this study, we only include 25 the most common wintering 

219 waterbird species, namely those exceeding 50 individuals in Czechia annually (see also Musil 

220 et al., 2011; Musilová et al., 2014; see Table 1 for an overview of the species). We followed 

221 Gill & Donsker (2018) for the species taxonomy.

222

223 Wetland types

224 The wetland types included in this study differ with regard to their origin, age and management 

225 practices (Chytil et al., 1999). Fishponds represent shallow water bodies with a small stream 

226 or canal for water inflow. As commercial subjects aimed at stocking and production of fish 

227 (mostly Carp Cyprinus carpio), fishponds were formed in the Middle Ages (mostly in the 16th 

228 century), have artificially managed water levels, chemistry and nutrient input. Reservoirs have 

229 been built more recently (after 1900) and represent deep waterbodies with inflow from larger 

230 rivers (compared to fishponds). The fish stock in reservoirs are not managed for the purpose 

231 of commercial fisheries but rather managed by angling associations (recreation). The most 

232 recent wetland type are industrial waters, which were created by flooding of former mining, 

233 sand-pit or gravel-pit areas, or are sedimentary pools built in industrial areas since 1960s 

234 (Hrdinka, 2007). Among all standing water wetland types described above, there is a gradient 

235 of decreasing probability of complete ice-cover in winter with increasing depth: from 

236 fishponds (the shallowest) to industrial waters and finally to reservoirs (the deepest). High 

237 density fFish stocks are most intensively managed in fishponds, followed by reservoirs and 

238 the least managed in industrial waters (Oerthli et al., 2005; Musil, 2006, UNEP, 2017).

239 The trophic state of the wetland types ranges from oligotrophic waters (a low nutrient content), 

240 through mesotrophic and eutrophic waters to hypereutrophic waters, which present 

241 an extremely high nutrient content (Carlson, 1977). Among the four monitored wetland types, 
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242 running waters contain the lowest content of nutrients, and fishponds are mostly eutrophic, 

243 sometimes hypertrophic (Chytil et al., 1999; Musil, 2006; Seiche et al., 2012; Čížková et al., 

244 20193). The distribution of the monitored sites is shown in Fig. 1.

245

246 Species-specific variables

247 All 25 investigated waterbird species were described by the following three species-specific 

248 variables (diet, species temperature index (STI), and site affinityconservatism), which could 

249 explain the temporal pattern in the wetland type use. The values of species-specific variables 

250 are listed in Table 1. We followed Gill & Donsker (2018) for the species taxonomy.

251 (i) All species were classified into diet groups based on their preferred food items in the 

252 wintering season: piscivorous, invertivorous, omnivorous and herbivorous (based on data 

253 and diet classification in Snow & Perrins, 1998; Kear, 2005; Šťastný & Hudec, 2016).

254 (ii) Species temperature index (STI): The STI (see Devictor et al., 2008; Jiguet et al., 2007 

255 for detailes of STI calculation) reflects the long-term average January temperature (1950-

256 2000) experienced by individuals of any given species across the species’ entire wintering 

257 distribution. Species’ distribution maps were downloaded from BirdLife International & 

258 HBW (2017) and all temperature data from the regions included in each species’ 

259 wintering range (above) were downloaded from www.worldclim.org. For each species, 

260 all grid cells (5x5 degrees) with temperature data within a species’ wintering range 

261 (BirdLife International & HBW 2017) were downloaded and averaged.

262 (iii) For each species, we calculated a measure of year-to-year variation in geographical 

263 distribution of the species across the study regionarea (called site affinityconservatism 

264 hereafter). Considering the nature of this variableThus, the species’ fidelity to the 

265 wintering  sites fidelity of individuals constitutes the basis serves as a main driver of the 

266 covariate site affinity, which. The measure is bounded between 0 and 1, with the actual 

267 range of values being 0.14–0.82 in our data set. Values close to 1 indicate that the same 

268 sites are occupied in successive years, and with the same intensity; values close to zero 

269 imply large year-to-year variation in that the selection of wintering sites varies a lot over 
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270 time. These values aree calculation is based on Earth mover’s distance; (see (Kranstauber, 

271 Smolla & Safi, 2017see Zouhar, Musil, Musilová, in prep.) for further details).

272 The Ppairwise correlations of continuous species-specific variables were all below 0.30is 0.06, 

273 implying there is little collinearity (Hair, Anderson, Tatham & Black, 1995; Rogerson, 2001). 

274 Hence all variables were included in our regression analysis (see e.g. Lehikoinen et al., 2016). 

275 The values of species-specific variables are listed in Table 1. 

276

277 Statistical analysis

278 Our analyses proceeded in two stages, differing in the level of detail at which the monitoring 

279 count data were aggregated. In the first stage, we studied how the trends in abundancesnumber 

280 of different species vary across wetland types. We first used a log-linear Poisson regression 

281 analysis to impute any missing waterbird count data from the long-term data series (in 1988–

282 2020) using TRends and Indices for Monitoring data software (TRIM; Statistic Netherlands 

283 version 3.52, Pannekoek & Van Strien, 2005). Regression parameters were estimated using 

284 generalized estimating equations (GEE). Missing data were usually the result of incomplete 

285 coverage due to limited availability of observers in some seasonsyears. The proportion of 

286 missing counts varied between 33% and 65% in the whole dataset, which is regarded as 

287 tolerable (Soldaat et al., 2017). Consequently, we obtained the trend in numbers of adult 

288 individuals for each investigated species for each wetland type.

289 In this first stage, after imputing any missing data, we estimated the species-specific long-term 

290 trends in abundancesnumbers (i.e. the change in abundance indices from one year to the next) 

291 at each of the four wetland types and assessed differences in these trends between the four 

292 wetland types based on the rate of change: a strong increase or decrease (≥ 5% per year); a 

293 moderate increase or decrease (< 5% per year); a stable (trend was not significant and CIs were 

294 sufficiently narrow) or an uncertain trend (see also Fouque et al., 2009; Musil et al., 2011; 

295 Musilová et al., 2018b). Then, a Wald test was used to assess the significance of differences 

296 in the trends rate of changes in numbers in the four wetland types. We also used the imputed 

297 counts – referred to as time totals in TRIM – in our figures. Furthermore, we used wetland 
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298 type and site as covariates in the linear trend models (see also Pavón-Jordán et al., 2015; 

299 Musilová et al., 2018b).

300 In the second stage, we studied the effect of species-specific variables on population trends at 

301 different wetland types. As in the first step in this species-level analysis (above), we also used 

302 TRIM to fill the gaps in the data due to incomplete monitoring coverage. For each species, we 

303 obtained the TRIM-imputed total abundancetime totals or yearly total abundance (later termed 

304 total numbers) by year and wetland type, producing a dataset of 3,267 observations (25 

305 species, 33 years, 4 wetland types). Velvet Scoter (Melanitta fusca) was not recorded on 

306 fishponds and, therefore, excluded from the analyses.

307 Next, we explained these total abundancesnumbers estimated with TRIM and their trends with 

308 species-specific variables in a regression approach. As the time abundances totals (i.e. total 

309 number of individuals)exhibited substantial overdispersion, we used negative binomial 

310 regression rather than the canonical Poisson distribution. The fact that observations for a 

311 species are repeated across years and wetland types led us to include species as a random effect 

312 in the model, meaning we fitted a Generalized Linear Mixed Model (GLMM). Moreover, to 

313 allow for (i) heteroskedasticity both between and within species, and (ii) arbitrary correlation 

314 within a species’ values, we used a cluster-robust estimator of the standard errors in statistical 

315 inference, clustered at the species level (Cameron & Miller, 2015). To facilitate coefficient 

316 interpretation, all continuous variables were z-standardized (i.e. centred around the mean and 

317 divided by the standard deviation) prior to running the regressions.

318 For simplicity, our model specification assumes linear time trends in total 

319 abundancesnumbers; we do nevertheless expect these trends to vary systematically with 

320 species-specific characteristics and across wetland types. Therefore, we included interactions 

321 of year and wetland types with all species-specific variables in our model. All regression 

322 models were estimated in Stata 16 (StataCorp, College Station, TX). 

323

324

325 Results
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326 492,297 observations from 25 species in 1,169 wetlands between 1988 and 2020 were included 

327 in this study. The mean annual abundance for four diet groups was the following: herbivores 

328 (23,4667.8 ± 2,8976.9 SE), omnivores (219,234.0 ± 3,264.4 SE), invertivores 

329 (6,295.2 ± 240.2 SE) and piscivores (15,1365.5 ± 933.2 SE). The first stage of our analysis 

330 revealed significant differences in abundance trends between the four wetland types in 22 out 

331 of the 25 investigated species (Table 2). Prevailing decreasing (10 species) or stable trends 

332 (six species) were found in running waters while significant increasing trends in the abundance 

333 of 15 species were found in standing waters (reservoirs, fishponds and industrial waters). The 

334 significant differences (according to results of Wald test) in species trends among analysed 

335 wetland types were found in five of six herbivore species, in six of eight omnivore species, in 

336 all five invertivore species and in all six piscivore species. Increasing trend in abundances was 

337 found in all herbivores on reservoirs and in almost all species in industrial waters (Table 2).

338 The results from our GLMM showed that species exhibiting higher site affinityconservatism 

339 (i.e. low year-to-year variation in geographical distribution of the species across the study 

340 region) recorded the highest total abundancesnumbers on running waters (Table 3). Similarly, 

341 cold-dwelling species (identified by a lower value of average temperature across its wintering 

342 range – STIspecies temperature index) were more abundant in reservoirs (Table 3).

343 The effects of the interaction terms between species-specific variables and year showeds the 

344 extent at which the trends in abundancesnumbers on different wetland types varied with 

345 species-specific variables. For instance, the coefficient on year in the reservoirs column (β = 

346 0.056) implieds that the predicted yearly increase in total abundancesnumbers in an 

347 omnivorous species (i.e. the reference diet group) with average values of site 

348 affinityconservatism and STI is about 5.6 per cent; the coefficient on herbivorous × year (β = 

349 0.022) indicatesd that for a herbivorous species with average values of site 

350 affinityconservatism and STI, the annual increase iswas larger by ca. 2.2 per cent, i.e. about 8 

351 per cent in total. The species’ diet significantly affected the species trends on fishponds, 

352 industrial and running waters. On fishponds, herbivorous species showed the largest (positive) 

353 trend in total abundancesnumbers (over 11 per cent per year at average values of site affinity 
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354 conservatism and STI), followed closely by piscivores. On industrial waters, omnivores 

355 increased at the slowest pace by ca. 7–9 % slower than the other three diet groups. On running 

356 waters, piscivores increased at the fastest rate during the 1990s and early 2000s, followed 

357 closely by herbivores (Figures 3 and 4). Warm-dwelling and less conservative species with 

358 low site affinity showed the largest trend on fishponds and industrial waters. 

359 The differences in trends and abundancesnumbers across diet groups and wetland types are 

360 visualized in Figures 3 and 4. Figure 3 presents the underlying data on total 

361 abundancesnumbers, along with trend curves obtained via scatterplot smoothing using 

362 LOESS. Figure 4 visualizes the trends predicted by the regression for different diet groups at 

363 different wetland types. The apparent discrepancies between Figure 3 and 4 are caused by the 

364 fact that in the regression that underlie Figure 4 (i) we estimate a (log-) linear for simplicity 

365 (while some trends in Figure 3 show a substantial degree of nonlinearity) and (ii) the 

366 predictions arewere obtained at fixed values of STI and site affinityconservatism, which 

367 otherwise vary between different diet groups. Figure 5 summarizes the findings in a graphical 

368 format.

369

370

371 Discussion

372 To promote the protection of wetland birds, the knowledge of species habitat use and 

373 facilitation of species distribution changes areshould be considered the cornerstones for 

374 effective adaptive management (Musilová et al., 2018b; see also Pullin, 2002; Sutherland, 

375 Pullin, Dolman & Knight, 2004; Sinclair, Fryxell & Caughley, 2006; Musilová et al., 2015; 

376 Holopainen et al., 2015; Gaget et al., 2020; Pavón-Jordán et al., 2020). This study contributes 

377 to the identification of these cornerstones by demonstrating diet-specific changes in habitat 

378 use, and of species with high probability of range changes (summarized in Fig. 5), based on 

379 long-term nonbreeding data of wintering waterbirds. 

380

381 Changes in habitat use in different diet groups
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382 Generally, food supply is of high importance for waterbirds (Guillemain et al., 2015; 

383 Holopainen et al., 2015) due to its subsequent effect on breeding success, adult survival and 

384 also overall flyway population dynamics (Newton, 1998; Newton, 2013; Jørgensen et al., 

385 2016). Use of feeding habitat is a hierarchical process, influencing the species geographical 

386 distribution and the choice of a particular wetland (Green, 1998). Here, we demonstrated long-

387 term changes in wetland type use among diet groups in fishponds, industrial and running 

388 waters, but not in reservoirs. Increased use of industrial waters was demonstrated found in 

389 invertivoreous species, which predominantly used running waters in the beginning of the study 

390 period and progressively switch to industrial waters. Invertebrate biomass, which provides the 

391 majority of the food of invertivores, tend to be highest in early successional wetlands (Nummi 

392 & Holopainen, 2014; Petrie et al., 2016), such are industrial waters. Furthermore, 

393 heterogeneity in the physical characteristics of foraging areas can affect foraging behaviour 

394 (Fernández & Lank, 2008) and therefore affect the species habitat use. Consistent with this, 

395 diving ducks represent most of the invertivoreous species; they feed at greater depths during 

396 the non-breeding period (Hughes & Green in Kear, 2005) and industrial waters likely provide 

397 favourable depths for their foraging behaviour. Lower foraging costs (Wood et al., 2013a) in 

398 industrial waters compared to higher water velocities in running waters can make foraging 

399 more profitable for invertivores. The same effect could cause increased use of industrial waters 

400 in herbivores (almost in the same degree as in invertivores). 

401 Assumed The a priori assumption of a low increase in abundancesnumbers of invertivores in 

402 fishponds was confirmed in fishponds. In invertebrates are fundamental to , an important 

403 element of both terrestrial and aquatic food webs, and drastic decreases have beenwas shown 

404 in terrestrial insects on a global level (Dirzo et al., 2014;.Wagner et al., 2021). Long-term 

405 studies on aquatic invertebrates are currently scarce (Gozlan et al., 2019), but some indicate 

406 changes in aquatic invertebrate structure (Fried‐Petersen et al., 2020; Pilotto et al., 2020; van 

407 der Lee, Aray-Ajoy, Futter & Angeler, 2021) associated with increasing levels of 

408 eutrophication and brownification as one of the most important driver of these changes 

409 (Jackson, Loewen, Vinebrooke & Chimimba, 2016; Lind et al., 2018; Arzel et al., 2020). 
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410 Fishponds are commercial habitatssubjects with artificially managed nutrient input that 

411 increase the level of eutrophication (Roy et al., 2020) and are aimed at stocking and breeding 

412 fish (mostly Carp). The artificial nutrient input have been resulted in hypertrophy of fishponds, 

413 especially after the World War II (Pechar, 2000; Seiche et al., 2012) and therefore these ponds 

414 exceed the nutrient level of other wetland types in the study regionarea. It is noteworthyhas 

415 been shown that high stocks of Carp in fishponds create an environment with extremely high 

416 competition cause the competition for invertebrate food with invertivorous waterbird species 

417 induring the breeding season (Musil, 2006). In this study, we show that, whereas this effect is 

418 also noticeable significant in this study during the wintering season by a lower increase in the 

419 use of fish ponds by invertivores.

420 Indeed, herbivores stood outrevealed as the most increasing diet group in fishponds, likely 

421 keepingstanding outside the Carp-waterbird food competition. The alternative importance of 

422 artificial fishponds as alternative sites for wintering herbivorous and omnivorous ducks was 

423 shown also in Doñana National Park, Spain (Kloskowski et al., 2009). However, some species 

424 of the herbivorous group (geese, Mute Swan and Eurasian Wigeon) are not strictly feeding 

425 inside of wetlands such as invertivores and piscivores and may feed both aquatically and 

426 terrestrially (Jacobsen & Ugelvik, 1994; Fox et al., 2005; Wood et al., 2013b). Therefore, the 

427 changes in wetland type use are less stronglyaccurate related to wetland food supply in this 

428 group. Especially, due to the characteristics of the census protocol (dawn counts), variation in 

429 geese abundancesnumbers are more likely to be affected by this daily dynamic this issue due 

430 to dawn counts onbetween the roosting and feeding sites the roost sites. In the study regionarea, 

431 geese have traditionally congregated in high numbers during winter and use the traditional 

432 wintering grounds of high aggregations of geese are reservoirs as a roosting sites and nearby 

433 fields as a dominant feeding sites, especially in south-Moravian lowland (Czech IWC data - : 

434 http://www.waterbirdmonitoring.cz/vysledky/iwc20/). Conversely, other herbivorous species 

435 are counted during the daylight activities in the wetlands and thus do not include individuals 

436 that leave have left the wetlands (roosting sites) to forage in the fields. In addition, some 

437 waterbirds may often be feeding at different places during the night, such as omnivorous 
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438 Mallards in the Netherlands (Kleyheeg et al., 2017) and granivorous dabbling ducks feeding 

439 on rice fields in the Mediterranean (Guillemain et al., 2010; Brogi, Pernollet, Gauthier-Clerc 

440 & Guillemain, 2015; Parejo et al., 2019). Nevertheless, this nocturnal behaviour is likely 

441 difficult to quantify (Tourenq et al., 2001) and any obvious suitable nocturnal feeding wetlands 

442 are not known from the study arearegion.

443 On the species level, prevailing decreasing or stable trends in abundancesnumbers were found 

444 in running waters, which represent the traditional wintering grounds in the study regionarea 

445 (Adam et al., 2015; Musilová, Musil, Zouhar & Romportl, 2015; Musilová, Musil, Zouhar & 

446 Adam, 2018a). It is worth noting that running waters fulfil one of the most important habitat 

447 requirements for wintering waterbirds: to avoid unfavourable winter harshness and destructive 

448 winter extremes in the zero-degree-isotherm area (Musilová, Musil, Zouhar & Romportl, 

449 2015; Musilová, Musil, Zouhar & Adam, 2018a). In recent decades, milder winter conditions 

450 in Central Europe (IPCC, 2014) likely provide an increased availability of new wintering 

451 areas, i.e. standing waters with reduced ice cover. ConverselyStill, running waters still remain 

452 as suitable wintering sites, as revealed in this study, especially for piscivores and herbivorous. 

453 Recent climate and land use changes affect the fish assemblages, diversity and distribution 

454 (Comte et al., 2013) as well as diversity and distribution of invertebrates (Haase et al., 2019) 

455 with predicted up and downstream direction of shifts in the fish species in rivers (Radinger et 

456 al., 2017), hence the use of rivers by piscivores is likely in accordance with these changes in 

457 fish distribution.

458

459 Wetland type use in species changing distribution

460 Generally, there is a trade-off between the cost and benefit of the wintering site use (Ridgill & 

461 Fox, 1990; Adam et al., 2015; Musilová, Musil, Zouhar & Romportl, 2015). Importantly, there 

462 is a gradient among the four investigated wetland types in the level of the winter harshness 

463 risk, i.e. the sensitivity to cold weather and freezing (running waters considered the most stable 

464 compared to standing waters, see above), in the level of habitat change risk (fishponds 

465 considered the most artificially affected), in the level of succession in freshwater communities 
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466 (industrial waters considered as an early successional stages), trophic statusy (the highest 

467 nutrient content in fishponds); see the methods for details. 

468 The nature of these differences reflected the use of wetland types in species with more or less 

469 probable range shifts and/or distribution changes. High-conservative sSpecies with high site 

470 affinity (i.e. species with lower year-to-year variation in geographical distribution across the 

471 study arearegion) revealed higher use of running waters. Higher stability in cold and extreme 

472 weather conditions, low level of habitat change risk caused by possible management and high 

473 level of succession of running waters are likely important for these conservative species with 

474 lower probability of range changes. However, saturation of traditional wintering grounds was 

475 suggested to occur in Czech Republic (Musilová, Musil, Zouhar & Romportl, 2015) that could 

476 increase the competition for resources (Newton, 1998; Newton, 2013). In addition, higher 

477 water velocities in running waters compared to standing waters increase the foraging costs 

478 (Wood et al., 2013a).

479 ConverselyFurthermore, our study indicates the high importance of man-made standing 

480 wetlands (fishponds and industrial waters) for species with more likely to undergo probable 

481 range shifts, i.e. species with low site affinity low-conservative and warm-dwelling (higher 

482 average temperature across its wintering range – high STI –) species. Wintering waterbird 

483 populations are clearly changing their distribution (Lehikoinen et al,. 2013; Pavón-Jordán et 

484 al., 2015; Musilová, Musil, Zouhar & Adam, 2018a; Pavón-Jordán et al., 2019; Pavón-Jordán 

485 et al, 2020). These distribution changes could be associated with changes in ice cover, food 

486 availability, habitat and hunting pressure (Dalby et al., 2013; Newton, 2013; Guillemain et al., 

487 2015; Pavón-Jordán et al, 2020; this study). Low-conservative sSpecies with low site affinity 

488 increase the use of these newly available wetlands that are also considered less stable as 

489 wintering sites (higher winter harshness and habitat change risk, higher trophy in fishponds 

490 and lower succession in industrial waters). It seems that low conservative species with low site 

491 affinity grasp the benefits of milder climate in recent decades (Hurrel & Deser, 2009) and 

492 responded by increasingly use these alternative wetlands. The tendency of less conservative 

493 species with low site affinity to annually change the wintering sites implies they may be useful 
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494 early-warning indicators as a pilot species to indicateof changing use of wintering sites (see 

495 also Green & Elmberg, 2014).

496 The thermal affinity was determined as an important trait explaining the species distribution 

497 and range changes leading by climate change (Gaget et al., 2020; Devictor et al., 2008). The 

498 changes of nonbreeding distribution of waterbirds seems highly affected by climate warming 

499 (Pavón-Jordán et al., 2015; Gaget et al., 2018). Our study reveals the use of reservoirs by cold-

500 dwelling species (mostly seaducks), while reservoirs represent deeper water bodies with 

501 inflow from larger rivers and have the lowest probability of complete ice-cover in winter 

502 among standing waters. In the light of climate warming, related northeastwards shifts of 

503 species distributions (Lehikoinen et al., 2013; Pavón-Jordán et al., 2015; Gaget et al., 2020; 

504 Pavón-Jordán et al., 2020),  and consequent decline and even local extinction of cold-dwelling 

505 species caused by distribution change (Devictor et al., 2008; Tayleur et al., 2016; Gaget et al., 

506 2020), we assume that reservoirs could serve as a refuges for cold-dwelling species in the near 

507 future. Larger stochasticity and frequency of extreme weather events are also predicted by 

508 most climate change scenarios and thus such as a deep and large wetlands with stable 

509 temperature conditions suitable forfor survival of benthic invertebrates will provide the 

510 resources required by these species. However, the overall increase in abundancesnumbers of 

511 cold-dwelling species in the study regionarea indicate that this issue could be much 

512 complicatedcomplex, as temperature is not the only driver hence the temperature do not simply 

513 explain theof species distribution changes (Dalby et al., 2013). Conversely, warm-dwelling 

514 species increase the use of both fishponds and industrial waters. The availability of these 

515 shallower man-made wetlands may likely increase in recent years due to climate warming 

516 (Hurrel & Deser, 2010). The ‘wintering strategy’ of warm-dwelling species is driven by the 

517 geographic avoidance of the zero-degree isotherm to reduce winter harshness risk (Gaget et 

518 al., 2020), therefore warm-dwelling species likely do not reflect the difference in wetland types 

519 in terms of winter harshness risk and increase the use of industrial waters and fishponds with 

520 higher winter harshness risk. Increasing our knowledge of the habitat use of warm-dwelling 

521 species habitat use is of high importance due to its forecasted since they are more likely to 
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522 expandincrease in the coming decades (Devictor et al., 2008; Tayleur et al., 2016; Gaget et 

523 al., 2020). Indeed, we can expect increasing concern of farmers and fishermen followed by the 

524 distribution changes of the warm-dwelling species, while some of them are already conflict 

525 species such as Greylag Goose or herons.

526

527 Conclusion

528 Our study highlight the general pattern that wintering waterbirds are expected to select sites 

529 with higher food availability (Fox et al., 1995; Green, 1998; Green, Fox, Hughes & Hilton, 

530 1999; Guillemain, Fritz & Guillon et al. 2000; Chatterjee, Adhikari, Pal & Mukhopadhyay, 

531 2020), higher energy content (van Eerden, 1984) and lower foraging cost (Wood et al., 2013a) 

532 to balance the costs and benefits of feeding site choice during wintering (Newton, 1998; 

533 Newton, 2013; Aharon-Rotman, Clark, Klaassen & Buttemer, 2016). The effort to meet these 

534 requirements resulted in a considerable change of the habitat use in the given species.

535 Based on the flyway-level waterbird data, dramatic changes in relative abundances are 

536 expected (see e.g. Pavón-Jordán et al., 2020) with temperature-dependent inter-annual and 

537 long-term north-eastwards shift of the species distribution (Pavón-Jordán et al., 2019). 

538 Understanding the role of habitat use in theis context of changing distributions of different 

539 species is of high importance for conservation (see e.g. Janke et al., 2017), especially since the 

540 climate-driven range changes are already underway (e.g. Lehikoinen et al., 2013; Pavón-

541 Jordán et al., 2015, Musilová, Musil, Zouhar & Adam, 2018a; Pavón-Jordán et al., 2019; 

542 Pavón-Jordán et al, 2020) and may lead to the decrease of effectiveness of the conservation 

543 efforts (Musilová et al., 2018b). Consistent with this view, increasing use of industrial waters 

544 and fishponds for warm-dwelling and low-conservative species with low site affinity 

545 withexhibiting more probable range shifts and/or distribution changes, and conversely use of 

546 reservoirs by cold-dwelling species and running waters by high-conservative species with high 

547 site affinity indicates importance of individual wetland types as wintering grounds, which 

548 should be considered in future conservation planning and effective management. The 

549 development and implementation of measures to increase the suitability of existing modified 
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550 habitats for wildlife appears essential to conserve biodiversity (Sinclair, Fryxell & Caughley, 

551 2006; Navedo, 2017). The implementation should be based on the core knowledge of the 

552 species habitat use and distribution changes (Musilová et al., 2018b). CThe climate-driven 

553 changes in the species distributions should not necessarily have the north/eastwards direction 

554 (see e.g. Lehikoinen et al., 2013, 2016; Pavón-Jordán et al., 2015; Pavón-Jordán et al., 2020), 

555 but climate changes could also modify the use of habitats and their use withininside the  

556 species’ current ranges.

557
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949 Figure 1. Distribution of monitored wetland sites in the Czech Republic between 1988 and 

950 2020

951

952
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954 Figure 2. Proportion of monitored sites by wetland type and year. Transparent horizontal lines 

955 show the proportion of the given wetland type among all 1169 monitored sites.

956

957
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959 Figure 3. Yearly total abundances and their trends (obtained by LOESS smoothing) at 

960 individual wetland types, by diet group.

961

962
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963 Figure 4. Predicted time totals abundances at individual wetland types and for different diet 

964 groups at mean values of STI and site affinityconservatism (based on the regression presented 

965 in Table 3).

966
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967 Figure 5. Wetland type use according to diet and range shift determinants of the species 

968 (graphical abstract).

969
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970 Table 1. List of investigated species and its species-specific variables (diet, species 

971 temperature index and site affinity conservatism)

Species Diet
Species 
temperature 
index

Site 
affinityconservatism

Mute Swan Cygnus olor herbivore 1.27 0.771

Tundra Been Goose Anser serrirostris herbivore -2.51 0.139

White-fronted Goose Anser albifrons herbivore 2.53 0.462

Greylag Goose Anser anser herbivore 4.47 0.516

Eurasian Wigeon Mareca penelope herbivore 16.53 0.468

Gadwall Mareca strepera herbivore 11.73 0.468

Eurasian Teal Anas crecca omnivore 12.72 0.572

Mallard Anas platyrhynchos omnivore -0.02 0.747

Northern Pintail Anas acuta omnivore 16.9 0.412

Common Pochard Aythya ferina omnivore 11.34 0.576

Tufted Duck Aythya fuligula invertivore 10.45 0.816

Greater Scaup Aythya marila invertivore 0.43 0.487

Velvet Scoter Melanitta fusca invertivore 0.69 0.366

Common Goldeneye Bucephala clangula invertivore -1.11 0.627

Smew Mergellus albellus piscivore -1.58 0.515

Common Merganser Mergus merganser piscivore -0.50 0.643

Little Grebe Tachybaptus 
ruficollis

invertivore 3.54 0.689

Great Crested Grebe Podiceps cristatus piscivore 3.70 0.486

Great Cormorant Phalacrocorax 
carbo

piscivore 3.25 0.612

Great Egret Ardea alba piscivore 5.41 0.543

Grey Heron Ardea cinerea piscivore 4.32 0.757

Common Moorhen Gallinula chloropus omnivore 5.61 0.775

Eurasian Coot Fulica atra omnivore 5.86 0.758

Black-headed Gull Chroicoceph. 
ridibundus

omnivore 6.58 0.691

Mew Gull Larus canus omnivore 1.62 0.294

972 Notes: Species temperature index: the long-term average January temperature (1950-–2000) 
973 experienced by individuals of any given species across the species’ entire wintering 
974 distribution (Devictor et al., 2008; Jiguet et al., 2007). Site affinity: a measure of year-to-year 
975 variation in geographical distribution of the species across the study region. The measure is 
976 bounded between 0 and 1, with the actual range of values being 0.14–0.82 in our data set.See 
977 species-specific variables in methods for details.
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978 Table 2. Changes in abundancesnumbers of individual species in four wetland types (the overall area is also included)

Species

Reservoirs 
(overall 
slope±SE) trend

Fishponds 
(overall 
slope±SE) trend

Industrial 
waters (overall 
slope±SE) trend

Running waters 
(overall 
slope±SE) trend

All wetlands 
(overall 
slope±SE) Trend

Difference in  
wetl.types trends 
(Wald test) 

Mute Swan 0.04±0.01 MI** -0.01±0.00 S 0.03±0.01 MI* -0.04±0.00 MD** -0.03±0.00 MD** 200.65***
Tundra Been Goose 0.01±62.66 U 0.09±0.11 U  -0.06±0.05 U -0.04±0.02  MD* 0.02±0.02 S 0.00 ns.
White-fronted Goose 0.20±4.75 U 0.24±0.51 U  0.23±0.05 SI** 0.08±0.02 MI** 0.16±0.02 SI** 676.92***
Greylag Goose 0.16±0.44 U 0.19±0.06 SI* 0.09±0.03 MI** 0.01±0.01 S 0.13±0.00 SI** 334.18***
Eurasian Wigeon 0.07±0.07 U 0.14±0.09 U 0.16±0.03 SI** 0.02±0.018 MI** 0.07±0.01 SI** 170.32***
Gadwall 0.20±0.11 U 0.15±0.04 SI* 0.28±0.21 U 0.13±0.02 SI** 0.16±0.02 SI** 320.61***
Eurasian Teal 0.00±0.03 U 0.01±0.01 S 0.07±0.02 MI** -0.01±0.01 MD* 0.00±0.00 S 2.24 ns.
Mallard 0.01±0.01 S 0.01±0.00 MI** -0.04±0.01 MD** -0.01±0.00 S 0.00±0.00 S 2.23 ns.
Northern Pintail 0.06±0.07 U 0.11±0.16 U 0.03±0.04 U -0.01±0.02 S 0.04±0.01 MI* 19.85***
Common Pochard 0.03±0.07 U -0.08±0.01 SD* 0.11±0.027 SI** -0.14±0.02 SD** -0.05±0.00 MD** 284.35***
Tufted Duck 0.11±0.03 SI* 0.00±0.01 S 0.10±0.02 SI** -0.03±0.00 MD** 0.01±0.00 MI* 4.10*
Greater Scaup 0.17±0.13 U 0.01±0.09 U 0.13±0.08 U -0.03±0.03 U 0.06±0.02 MI** 33.99***
Velvet Scoter 0.11±0.09 U - 0.07±0.05 U -0.10±0.20 U 0.06±0.02 MI** 31.97***
Common Goldeneye 0.09±0.02 SI** 0.05±0.02 MI** 0.11±0.02 SI** -0.01±0.00 MD* 0.05±0.00 MI** 203.16***
Smew 0.05±0.07 U 0.03±0.07 U 0.13±0.04 MI** 0.00±0.01 S 0.03±0.01 MI** 18.18***
Common Merganser 0.03±0.01 MI** 0.07±0.01 SI* 0.07±0.01 MI** 0.02±0.00 MI** 0.03±0.00 MI** 151.26***
Little Grebe 0.03±0.02 U -0.03±0.02 MD* 0.01±0.02 S 0.01±0.00  MI** 0.01±0.00 MI** 40.12***
Great Crested Grebe 0.05±0.01 MI** 0.08±0.04 MI* 0.07±0.02 MI** -0.03±0.01 MD* 0.05±0.01 MI** 133.15***
Great Cormorant 0.04±0.01 MI** 0.08±0.01 SI* 0.08±0.01 SI* 0.04±0.00 MI** 0.05±0.00 MI** 296.69***
Great Egret 0.22±0.23 U 0.14±0.01 SI** 0.19±0.03 SI** 0.11±0.01 SI** 0.14±0.01 SI** 795.25***
Grey Heron -0.02±0.01 MD** 0.03±0.00 MI** 0.02±0.01 S -0.01±0.00 MD* 0.01±0.00 MI** 13.81***
Common Moorhen 0.02±0.04 U 0.02±0.01 MI* 0.05±0.02 MI* -0.01±0.01 S 0.00±0.00 S 7.22**
Eurasian Coot 0.07±0.01 SI* 0.01±0.01 S 0.08±0.01 SI** -0.07±0.00 SD** -0.02±0.00 MD** 129.51***
Black-headed Gull 0.07±0.04 U -0.01±0.01 S -0.06±0.01 MD** -0.02±0.002 MD** -0.01±0.00 MD** 19.73***
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Mew Gull 0.06±0.07 U 0.01±0.02 U 0.02±0.01 S  0.02±0.01 S 0.04±0.01 MI** 85.90***

979 Notes: (i) * p < 0.05, ** p < 0.01, *** p < 0.001. (ii) Categories of trends: SI – strong increase, MI – moderate increase, S – stable, MD – moderate decrease, 
980 SD – strong decrease, U – uncertain. 
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981 Table 3. Results of a random-effects negative binomial regression explaining total 

982 abundancesnumbers.  

Diet Reservoirs Fishponds Industrial Running

Herbivores –0.202 0.895 –0.635 0.370
(0.866) (1.227) (1.118) (0.928)

Omnivores ref. ref. ref. ref.

Invertivores –0.898 –1.996** 0.282 0.113
(0.731) (0.740) (0.570) (0.725)

Piscivores –0.597 0.172 0.549 0.593
(0.746) (1.138) (1.059) (0.978)

Site affinityconservatism
(standardized)

0.206 0.627 0.360 1.290**

(0.423) (0.521) (0.511) (0.444)
STI (standardized) –0.914* –0.248 –0.0483 –0.415

(0.370) (0.485) (0.447) (0.352)
Year (base = 2020) 0.0557* 0.0147 0.0232 –0.0226

(0.0270) (0.0218) (0.0199) (0.0150)
Diet # × year
Herbivores ×# year 0.0220 0.0967* 0.0882** 0.0456

(0.0357) (0.0377) (0.0280) (0.0298)
Invertivores ×# year 0.0155 –0.0113 0.0847* 0.000531

(0.0327) (0.0225) (0.0393) (0.0172)
Piscivorous ×# year –0.00951 0.0714* 0.0718** 0.0504*

(0.0374) (0.0308) (0.0244) (0.0222)
Site affinityconservatism ×# 
year

0.000514 –0.0204* –0.0238* 0.00214

(0.0171) (0.0103) (0.0114) (0.0103)
STI ×# year –0.000489 0.0198* 0.0275** 0.00853

(0.0124) (0.00967) (0.0103) (0.00814)
Constant 6.448*** 5.694*** 5.765*** 5.918***

(0.624) (0.888) (0.921) (0.725)
log(α) –0.0724 –0.0724 –0.0724 –0.0724

(0.121) (0.121) (0.121) (0.121)
var(species random effect) 4.088*** 4.088*** 4.088*** 4.088***

(1.041) (1.041) (1.041) (1.041)
Observations 3267 3267 3267 3267
p(Different trends by diet) 0.63292 0.00002 0.00512 0.01802

983 Notes: (i) The model specification contains the interactions of wetland type with all other 
984 covariates.  To enhance readability, coefficients are presented in four columns, each related to 
985 one wetland type; moreover, the coefficients have been transformed to show the covariate 
986 effects on the given wetland type. (ii) Robust (Huber-White sandwich) standard errors in 
987 parentheses. (iii) * p < 0.05, ** p < 0.01, *** p < 0.001.
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