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Utvidet sammendrag på norsk 
 
Venter, Z.S., Nowell, M.S., Bakkestuen, V., Ruud, A., Kruse, M., Skrindo, A.B., Kyrkjeeide, M.O. 
& Singsaas, F.T. 2021. Literature review of wetland remote sensing and mapping. NINA Rapport 
2014. Norsk institutt for naturforskning. 
 
 
Det er et nasjonalt mål at alle økosystemer skal ha god tilstand (nasjonalt mål 1 for naturmang-
fold) (Norges miljømål - Miljøstatus for Norge (miljodirektoratet.no)). Dette gjelder også for våt-
mark. Videre har Stortinget vedtatt mål om å restaurere 15% av økosystemer som har forringet 
tilstand, til god økologisk tilstand innen 2025 (Sak - stortinget.no, Meld. St. 14, 2015-2016). For 
å kunne nå nasjonale miljømål samt å prioritere riktig ved restaurering eller andre tiltak, er det er 
det nødvendig med kunnskap om status og utvikling av økosystemenes utbredelse og tilstand. 
Kartlegging, overvåking og  forskning er nødvendig for å gi et godt og solid kunnskapsgrunnlag 
for forvaltningsbeslutninger og politiske prioriteringer.  
 
Kartlegging og overvåking av natur er kostbart, og det er nødvendig å utarbeide effektive meto-
der som gir tilstrekkelig god kunnskap. Bruk av fjernmålte data gir en mer kostnadseffektiv kunn-
skapsinnhenting og det muliggjør innhenting av arealdekkende data med jevne mellomrom (altså 
overvåkingsdata). Dette gir tilgang til store og verdifulle datasett for status og utvikling, gitt at de 
gir tilstrekkelig informasjon om det som skal overvåkes, og gitt at det er bygget opp en datainfra-
struktur og gode kartløsninger for sluttbruker. Bruk av fjernmålte data vil kunne gi norsk natur-
forvaltningen tilgang til et bedre kunnskapsgrunnlag for forvaltning av våtmark. Det gjelder kan-
skje aller mest for naturtyper som myr og annen våtmark som er stadig under press for forring-
else og som i tillegg har vært lite prioritert kartlagt for eksempel i fjellområdene.  
 
I denne rapporten presenterer vi en systematisk litteraturgjennomgang av vitenskapelig litteratur 
kombinert med innhenting av informasjon fra relevante fagmiljøer for kartlegging, overvåking og 
tilstandsvurdering av våtmark fra fjernanalyse. I prosjektet er det gjort en rekke vurderinger som 
grunnlag for forslag  til løsninger og prioriteringer. Forslagene svarer på spørsmålene i spesifi-
kasjonslisten som direktoratet har satt opp for oppdraget, og er gjennomført i samsvar med de 
presiseringer, avgrensninger og definisjoner som ble gjort i samråd med oppdragsgiver.  
 
I tillegg til litteraturgjennomgangen innhentet vi informasjon fra et utvalg av nasjonale og inter-
nasjonale eksperter der vi kartla erfaringer med fjernmåling av våtmark. I tråd med hva Miljødi-
rektoratet ønsket, ble dette gjort for å komplettere funn i litteraturgjennomgangen. 
 
Vi utførte et systematisk litteratursøk ved å bruke prinsipper for beste praksis skissert i Moher et 
al. (2009). Vi brukte Web of Science og SCOPUS-databaser for søk i alle relevante engelsk-
språklige artikler, review-artikler, bok- og konferansekapitler. Søkeordene ble spesifisert i føl-
gende tre kategorier: ‘remote sensing’ (A), ‘wetland’ (B) og ‘mapping methods’ (C), og de ble 
atskilt ved bruk av de boolske operatorene  AND og ELLER. Artikler publisert etter 2015 ble 
inkludert i studiet. Dette for å begrense datastørrelsen slik at vi fikk tid til å behandle dataene gitt 
den korte prosjektperioden. Studier etter 2015 ble også valgt fordi vi la til grunn at de har  brukt 
de nyeste kartteknikkene og dataene for fjernmåling, og de dermed er de mest relevante for 
fremtidig bruk av fjernmåling i kartlegging og overvåking av  våtmark i Norge. 
 
Litteratursøket resulterte i 3235 treff (2059 fra Web of Science, og 2611 fra Scopus med 1435 
duplikater). Vi gjennomgikk titlene for disse publikasjonene og sorterte dem ved bruk av 

https://miljostatus.miljodirektoratet.no/miljomal/miljomal/
https://www.stortinget.no/no/Saker-og-publikasjoner/Vedtak/Vedtak/Sak/?p=64248
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eksklusjonskriterier. Etter dette satt vi igjen med de studiene som omhandlet kartlegging av våt-
mark i innlandet etter 2015 ved bruk av fjernmåling. Tittelscreeningen resulterte i 508 relevante 
publikasjoner. Vi leste alle disse sammendragene (‘abstract’) og vurderte de etter relevans, noe 
som resulterte i vi stod igjen med 137 publikasjoner  for videre bearbeiding. Videre bearbeiding 
innebar å lese hele teksten og registrere relevante variabler som kreves for å identifisere de 
vanligste metodene for fjernmåling (f.eks. sensortype, romlig oppløsning, bakkesannheter) av 
myr som er relevant for Norge. Til slutt la vi til ytterligere 73 publikasjoner fra Mahdianpari et al. 
(2020a) sin metaanalyse av fjernmåling av våtmark i Nord-Amerika. Dataene herfra ble tilpasset 
våre analyser ved blant annet å samle inn tilleggsinformasjon slik at de var i samsvar med de 
dataene vi hadde hentet ut. Totalt bestod  vårt litteratursett deretter av data fra 210 studier. 
 
Vår litteraturundersøkelse viste at de fleste studiene som benyttet fjernmåling til å kartlegge våt-
mark, ble gjennomført i Canada (61), USA (41) og Kina (38). Det var få  studier fra Skandinavia, 
med kun to i Sverige og to studier i Finland. Det er ikke publisert studier i den akademiske inter-
nasjonale litteraturen knyttet til norsk våtmark eller myr og kartlegging av disse fra fjernmåling. I 
disse tallene har vi ikke inkluder nasjonale rapporter og annet grå litteratur. Disse er diskutert 
separat i eget delkapittel.  
 
Våre undersøkelser viser at de fleste studier klassifiserer våtmarker basert på sonering. Sone-
ringen kan bestå i ulike habitater (f.eks. kyst, elvemunning, innlandet), klimasone (f.eks. boreal, 
alpin) eller arealbruk (f.eks. våtmark vs. jordbruk vs. by). Færre studier definerte våtmarker ba-
sert på dominerende arter, struktur, funksjonelle grupper eller temporær dynamikk. Våtmarker 
ble som oftest forhåndsdefinert og kartlagt i motsetning til andre arealklasser. Dette antyder at 
det er nødvendig  også å definere "ikke-våtmark" når man kan definere "våtmark". 
 
Antall klasser varierte noe, men svært få studier hadde mer enn 10 klasser i sitt endelige klassi-
fiseringskart. Medianen var 7 klasser. De fleste studier baserte seg på data fra bakkesannheter 
samlet inn i felt (44 studier), mens 32 studier baserte seg på visuell tolkning av høyoppløselige 
flyfoto og 28 baserte seg på en kombinasjon av feltdata og bildetolkning. Resultatene viste at 12 
studier var avhengige av andre referansedatasett (datasett som ligner på AR5 og N50 i Norge) 
som bakkesannheter. Kun studiene med referansedataene viste en signifikant sammenheng 
mellom nøyaktighet i kartproduktet og antall bakkesannheter. Antall sannhetsdatapunkter var 
lavest for in situ-data (samlet i felt) (median 270 datapunkter), og høyest for referansedatasett 
(median 1570 datapunkter).  
 
Nær halvparten av studiene brukte satellittdata fra mer enn et tidspunkt. Særlig Landsat ble brukt 
i langtidsserier for endringsanalyser. Selv om de fjernmålte dataene ble tatt opp på ulike tids-
punkter, ble de gjerne satt sammen til å skaffe et produkt og ikke en endringsanalyse.  
 
Flertallet av studier kartla våtmark/myr på landskapsnivå (<10km2) eller lokalt (> 10km2 & 
<50000km2), med svært få kartlegging i nasjonale eller kontinentale områder. De som kartla 
våtmarker i nasjonal skala, inkluderer 5 multitemporale studier i Canada ved bruk av optiske 
data, to studier i Kina basert på MODIS multitemporal data samt to ‘single date’ studier i USA 
med PALSAR.  De fleste av studiene (73) baserte seg på Landsat-satellitter for å kartlegge våt-
marker, etterfulgt av RADARSAT og Copernicus Sentinel-satellittene. Disse satellittdataene har 
åpen tilgang. Landsat-bilder har også vært tilgjengelige siden 1970-tallet, noe som gjør det guns-
tig for historiske studier. Av de dyre sensorene (de som koster > $ 30 / km2) er flybåren LiDAR, 
UAV og flyfotografering mest brukt. 
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Når det gjelder typen klassifiseringsmodell, brukte 125 studier pikselbasert bildeklassifisering og 
71 brukte objektbasert. Pikselbaserte klassifiseringsstudier produserte kart med en medianopp-
løsning på 16m, mens objektbaserte kart ga en median på 10m oppløsningskart. Til tross for 
dette, var det svært liten forskjell i kartnøyaktighet mellom de to metodene. Resultatene indikerer 
at antall prediktorvariabler (dvs. bildebånd eller båndindekser) i klassifiseringsmodeller økte kart-
nøyaktigheten for objektbasert klassifisering, men hadde ingen effekt for pikselbasert klassifise-
ring. Imidlertid var det en trend at den objektbaserte klassifiseringen ble forsøkt brukt på vans-
keligere problemstillinger som for eksempel å skille nært beslektede klasser, noe som vi tolker 
dithen at objektbaserte metoder skal løse problemene de pikselbaserte metodene ikke har klart 
hittil. Dette kan forklare at det er liten forskjell mellom nøyaktigheten på metodene selv om de 
objektbaserte metodene ser ut til å gjøre det generelt litt bedre enn de pikselbaserte. Dette gjen-
speiles også i de studiene som sammenligner metodene på like vilkår.  
 
De vanligste metodene for maskinlæring som ble brukt til å generere kart over våtmark/myr, var 
beslutningstrær (f.eks. Random Forest,), etterfulgt av støttevektormaskiner (Support vector ma-
chine). Toppmoderne (state-of-art) nevrale nettverksmodeller ble brukt i 13 av studiene, men 
den anvendte typen maskinlæringsmodell hadde ingen merkbar effekt på kartnøyaktigheten. 
Ingen av studiene hadde dog tatt i bruk TensorFlow. 
 
Svært få av publikasjonene (19) kartla økologisk tilstand eller påvirkningsfaktorer. Av de som 
gjorde det, var de mest kvantifiserte tilstandsfaktorene artssammensetning og oversvømmelses-
område. Den eneste påvirkningsfaktoren som ble kvantifisert i studiene, var endring av arealbruk 
(f.eks. våtmarkskonvertering til jordbruk). 
 
Basert på litteraturgjennomgangen, ekspertbasert spørreskjema og personlig erfaringer som 
forskere i NINA, gir vi følgende anbefalinger for kartlegging og overvåking av våtmark i Norge 
basert på fjernanalyse. Det er viktig å merke seg at disse anbefalingene kan endres betydelig 
avhengig av de nøyaktige spesifikasjonene for kartleggingsprosjektet (f.eks. budsjett, nøyaktig-
hetskrav osv.). 
 
• Våtmarkstypologien som brukes, bør være en forening av NiN-systemet og internasjonale stan-
dardsystemer som det kanadiske Cowardian systemet. Beslutninger om typologi bør tas i sam-
arbeid mellom botanikere og fjernmålerutøvere. Botanikere vil kunne sikre klassifiseringens teo-
retiske integritet, og utøvere av fjernmåling vil gi råd om hva som er og ikke er mulig å se og 
skille på satellittbilder. Basert på  våtmarksklassene som brukes i litteraturen, ser det ut som om 
det er mulig å skille mellom blant annet jordvannsmyr, nedbørsmyr og sump. Det kan derfor 
være urealistisk å prøve å kartlegge mer detaljerte hierarkier som definert i NiN. 
 
• Fusjon ‘fusion’ av optiske data og radardata vil ikke bare gi komplementære data om spektrale, 
strukturelle, strukturelle og dielektriske egenskaper (indikasjoner på fuktighet), men vil også 
kompensere for det frekvente skydekket i Norge. 
 
• Bruke Sentinel-1 og Sentinel-2 som har åpen kildekode og har inntil 10m romlig oppløsning. 
Ettersom begge har polarbaserte baner, er repetisjonstiden mye mindre for land nær polarom-
rådene. Selv om disse satellittene ikke er tilgjengelig langt bak i tid (lansert i 2014 og 2015), har 
de en lang fremtid framover, noe som gjør dem nyttige for overvåking av våtmarker. 
 
• Sentinel-1-data bør anskaffes i dobbel polarisasjonsmodus (HH / HV) med både høy og lav 
innfallsvinkel, der det er mulig. 
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• Høyoppløselige satellittbilder med 2-4 m piksler er foreløpig ikke funnet brukt i regionale eller 
nasjonale kartmodeller for våtmark. Dersom disse vil bli tilgjengelig til lavere kostnad i framtiden 
bør de vurderes som egnete datakilder. 
 
• De nasjonale LiDAR- og ortofotodatasettene i Norge har foreløpig ikke nådd full dekning og 
utelukker også noen høyalpine områder som kan inneholde våtmarker. Videre oppdateres ikke 
LiDAR- og ortofotodataene årlig, men regelmessig, og tillater derfor ikke årlig operativ overvå-
king. Derfor bør disse datasettene med høy oppløsning brukes til å rengjøre, kvalitetskontrollere 
og muligens bidra med ytterligere bakkesannhetsdata. I tilfelle Miljødirektoratet ønsker et enkelt 
‘baseline’ våtmarkskart over Norge som ikke oppdateres regelmessig, kan det vurdere å bruke 
LiDAR og ortofotoer i klassifiseringsmodellen. 
 
• Data for fjernmåling bør ideelt sett behandles i en skybasert plattform på grunn av nasjonal 
skala som gir store datamengder, spesielt når man fusjonerer sammen mulititemporal og mul-
tisensor-tilnærminger som krever bearbeidelse av en atskillig mengde data. Å bruke Google 
Earth Engine (GEE) som behandlingsplattform er fordelaktig fordi det allerede er vert for Senti-
nel-data og tilgangskopier av Kartverket LiDAR-datas om er lastet opp og er klare for behandling. 
GEE kan brukes til å generere et pilotnasjonalt våtmarkskart, men operativ overvåking i fremti-
den vil kreve evaluering av det kommersielle GEE-programmet som en bærekraftig løsning. 
 
• Bakkesannheter for våtmarker i Norge eksisterer i form av NiN, ANO, AR5 og N50, men defi-
nisjonene og datakvaliteten til våtmark varierer betydelig. Derfor må man bruke betydelig tid på 
å harmonisere disse datasettene og kvalitetskontrollere dem ved hjelp av ortofotoer med høy 
oppløsning (Norge i bilder, norgeibilder.no) og satellittbilder. Hvis tilstrekkelig budsjett er tilgjeng-
elig, bør feltarbeid vurderes for å samle gode treningsdata og for å tilpasse og verifisere nøyak-
tigheten av NiN, AR5, ANO eller N50.  
 
• Spektrale indekser, slik som NDVI, NDWI og NDMI, anbefales for å skille mellom våtmarkstyper 
og for å vurdere tilstanden til våtmarker. 
 
• Vi anbefaler å teste flere metoder før man går i gang med å lage et nasjonalt kart, gjerne 
teknikker som ikke krever enormt mye regnekapasitet og ofte brukes i andre studier. Spesielt 
anbefaler vi å teste både Random Forest beslutningstrær og dyplæring (Fully Convolutional 
Neural Networks – FCNN). Dette er to av de mest brukte modellene som i dag brukes og siteres 
i litteraturen, og gir dermed mest sannsynlig de beste resultatene. Vær oppmerksom på at mo-
dellopplæring og tuning vanligvis er ganske tidkrevende når dette skal gjøres optimalt. 
 
 
Mangelen på studier i Skandinavia gjør at det finnes lite erfaring med slik kartlegging i Norge. 
Dette gjelder også studier på observasjon av økologisk tilstand fra fjernmåling. Det trengs mer 
forskning på dette temaet i Norge. 
 
 
Zander Venter, Norsk institutt for naturforskning (NINA), zander.venter@nina.no 
Megan Nowell, Norsk institutt for naturforskning (NINA), megan.nowell@nina.no 
Vegar Bakkestuen, Norsk institutt for naturforskning (NINA), vegar.bakkestuen@nina.no 
Audun Ruud, Norsk institutt for naturforskning (NINA), audun.ruud@nina.no 
Marion Kruse, Norsk institutt for naturforskning (NINA), marion.kruse@nina.no 
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Abstract 
 
Venter, Z.S., Nowell, M.S., Bakkestuen, V., Ruud, A., Kruse, M., Skrindo, A.B., Kyrkjeeide, M.O. 
& Singsaas, F.T. 2021. Literature review of wetland remote sensing and mapping. NINA Report 
2014. Norwegian Institute for Nature Research. 
 
Mapping and monitoring of nature is expensive but it is necessary to develop knowledge suffi-
cient for data-driven decision making and managing of nature. The use of remote sensing pro-
vides more cost-effective knowledge acquisition and enables the provision of area-wide, spa-
tially-explicit data at regular intervals. This provides access to large and valuable data sets, pro-
vided that they are accurate accounts of the reality on the ground and that uncertainty is quanti-
fied, and that a good data infrastructure and a map solution has been developed for the end 
user. In this report, we present a systematic literature review, combined with data from question-
naire surveys from practitioners, on the mapping, monitoring and condition assessment of wet-
lands using remote sensing. 
 
We used Web of Science and Scopus databases to search all relevant English language articles, 
reviews, book chapters and conference chapters. Relevance was defined by keywords specified 
in three categories including ‘remote sensing’ (A), ‘wetland’ (B) and ‘mapping methods’ (C), sep-
arated by AND and OR boolean operators. Articles published after 2015 were included to limit 
the data size so that we had enough time to process the data given the short project period. 
Studies after 2015 are also likely to adopt the latest mapping techniques and data for remote 
sensing, and are therefore most relevant for future wetland mapping applications in Norway. In 
addition to the literature review, we obtained information from a number of national and interna-
tional experts from whom we mapped experiences with remote sensing of wetlands. In line with 
what the Norwegian Environment Agency wanted, this was done to supplement findings in the 
literature review. 
 
The literature search returned 3235 entries (2059 from Web of Science, and 2611 from Scopus 
with 1435 duplicates). We then screened the publication titles for relevance using exclusion cri-
teria. The title screening resulted in 508 relevant entries which were further screened with ab-
stract and full-text reading resulting in 137 entries left for further processing. Further processing 
involved reading the entire text and registering variables relevant to wetland remote sensing (e.g. 
spatial resolution, sensor type) that are of interest to the Norwegian Environment Agency. Finally, 
we added another 73 publications from Mahdianpari et al. (2020a) meta-analysis of remote sens-
ing of wetlands in North America. These additional data were adapted to our analysis by, among 
other things, collecting additional information so that they were in accordance with our extracted 
data. Thus, in total our literature set consisted of data from 210 studies. 
 
Our literature review showed that most studies using remote sensing to map wetlands were in 
Canada (61), USA (41) and China (38). Overall, few studies were available for Scandinavia, with 
only two in Sweden and two in Finland. No studies were published in the academic international 
literature on Norwegian wetlands or bogs and mapping of these from remote sensing. 
 
Our results revealed that most studies classified wetlands based on a zonal typology defined by 
the spatial context of the wetland (e.g. coastal vs inland). Fewer studies defined wetlands based 
on their dominant species (e.g. grass vs sedge), structure (e.g. basin vs swale), functional group, 
or temporal dynamics. Wetlands were most often defined and mapped in contrast to other land 
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cover classes. This suggests that it is equally important to define “non-wetland” when one is 
mapping “wetland” so as not to produce false-positive wetland predictions. 
 
Studies classified land cover into a median of 7 classes. Very few studies had more than 10 
classes in their final classification map. In terms of the wetland typology used, the wetland sub-
classes were dominated by names from the Canadian wetland typology including fen 
(“jordvannsmyr” på norsk), marsh, swamp (“sump”), and bog (“nedbørsmyr”). 
 
The majority of studies mapped wetlands at landscape (< 10km2) or provincial (>10km2 & < 
50000km2) extents, with very few mapping at national or continental extents. Most studies (73) 
relied on Landsat satellites to map wetlands, followed by RADARSAT, and the Copernicus Sen-
tinel satellites. The most common map resolution was >10m, which included satellites such as 
Landsat, Sentinel-1, PALSAR and RADARSAT. The map accuracy was not significantly related 
to the spatial resolution of the map. There was large variation in map accuracies at both high 
and low spatial resolutions, suggesting that other study-specific factors are more important de-
terminants of accuracy. 
 
Regarding the type of classification model, 125 studies used pixel-based image classification 
and 71 used object-based. Pixel-based classification studies produced maps with a median res-
olution of 16m while object-based maps gave a median of 10m resolution maps. Despite this, 
there was very little difference in map accuracy between the two methods. The results indicate 
that the number of predictor variables (i.e. image bands or band indices) in classification models 
increased the map accuracy for object-based classification, but had no effect for pixel-based 
classification. This may explain why there is little difference between the accuracy of the methods 
even though the object-based methods seem to generally perform a little better than the pixel-
based ones. This is also reflected in the studies that compare the methods on equal terms. 
 
The most common machine learning framework used to generate wetland maps was decision 
trees (e.g. Random Forest), followed by support vector machines (SWM). State-of-the-art neural 
network models were used in 13 of the studies. The type of machine learning model adopted 
had no discernible effect on map accuracy.  
 
Very few of the publications (19) map ecological status or influencing factors. Of those that did, 
the most quantified condition factors were species composition and flood area. The only influ-
encing factor quantified in the studies was the change in land use (e.g. wetland conversion to 
agriculture). The lack of studies in Scandinavia means that there is little experience with such 
mapping in Norway, although a thorough search of the grey literature may change this conclu-
sion. This also applies to studies on observation of ecological condition from remote sensing. 
More research needs to be done on these scientific issues. 
 
Finally, we provide recommendations for generating a national-scale wetland map for Norway 
both in terms of a static base map and an operational workflow to provide such maps at regular 
intervals in the future. 
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1 Introduction 
 
Wetlands are ecosystems that are permanently or periodically saturated or inundated with water 
and cover habitats in the transition between terrestrial and freshwater or marine ecosystems. 
These ecosystems support plants and other organisms that are adapted to a life in wet conditions 
and are often highly productive. Thus, they offer a wide range of ecosystem services including, 
for example, water purification, flood control and carbon sequestration. Wetlands hold the high-
est density of carbon in the soil of all terrestrial ecosystem types (Villa & Bernal 2017). That 
makes them efficient and cost-effective nature-based solutions to climate change as they se-
quester atmospheric carbon and are therefore important in the long-term storage of carbon. De-
spite this, wetlands are constantly under pressure from human activity (Lyngstad et al. 2018, 
Nybø, S. & Evju, M. (eds) 2017). Land use change of wetlands often leads to biodiversity loss 
and as well as net carbon loss, because change in hydrology shifts the carbon cycling and turns 
the ecosystems from sinks to sources of carbon. 
 
Wetland habitats are found throughout Norway, from the coast to the alpine zone, and from south 
to north. A varied topography and large span of climate zones has given rise to a broad variation 
of habitats in Norway. The habitats include mires and peatlands, swamp forests, floodplains, 
marshes and springs. The variation of peatland types in Norway are high and unique even in a 
global context (Moen et al. 2017). The habitat classification system Nature in Norway 2.2.0 (NiN,  
Halvorsen et al. 2020), includes 13 main habitat types in the ecosystem wetland. These are fen 
(V1), bog (V3), peatland forest (V2), swamp forest (V8), snowbed (V6), spring (V4 and V5), arctic 
permafrost wetland (V7), and semi-natural fen (V9) and wet meadow (V10), peat extraction sites 
(V11), drained peatland (V12), and new wetlands (V13). Peatlands are the most common wet-
land type in Norway (accounting for approx. 90% of wetland cover; Bryn et al. 2018). Peatlands 
are peat-forming ecosystems, and are usually defined as having a peat layer of 30 cm or deeper 
(Moen et al. 2011). Habitats that are actively accumulating peat through its vegetation and wa-
terlogged conditions is called a mire, but the type of water supply feeding the system defines the 
type. The two main habitats are bogs and fens. Bogs get water from precipitation, while fens also 
gain water from the surroundings (see examples in figure 1 below). Norwegian wetlands have 
been classified in different ways throughout the last decades. Magnussen et al. (2018) summa-
rizes different classification systems and used eight different types when addressed the ecosys-
tem services for wetlands in Norway.  
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Figure 1. Examples of different bogs and fens in Norway. Upper left: Atlantic raised bog and 
hummocks (V3) in a mixture of nutrient poor coastal heath (T34-C2) at Finnøy municipality, Møre 
og Romsdal, Upper right. Fen (V1) in Rendalen municipality, Innlandet. Lower left: Bog with 
cloudberry (V3), at Torgerstuen in Rendalen municipality, Innlandet. Lower right. Atlantic raised 
bog  (V3) at Gule-Stavmyrane nature reserve in Fræna municipality, Møre og Romsdal. 
 
Wetlands support a wide range of unique, often specialized species, including amphibians, bry-
ophytes, vascular plants, and birds. Altogether 14 wetland habitat types including sump forests 
are Red Listed in Norway (Lyngstad et al. 2018), nine mire types, four sump forest types and 
one spring type. Land use change of wetlands often leads to net carbon loss, because change 
in hydrology shifts the carbon cycling and turns the ecosystems from sinks to sources of carbon. 
Direct human interventions are the biggest threat to wetland habitats, especially in lowland areas 
in southern Norway. Drainage for agriculture and forestry is the main threat to peatlands (e.g. 
Lyngstad et al. 2018), but infrastructure, housing, river modifications, and renewable energy de-
velopments are also among the threats to wetlands habitats. Harvesting peat is not yet forbidden.  
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About 10% of the mainland of Norway is covered by wetlands (Bryn et al. 2018). Peatlands are 
the wetland type with highest coverage in Norway (ca. 9% land cover; Bryn et al. 2018). Despite 
these estimates, the actually aerial coverage of wetlands over Norway remains uncertain be-
cause, depending on the data source used (e.g. AR5 vs N50 vs AR18X18) one will end up with 
different percentage estimates. This is partly because previous mapping efforts are based on 
manual in-situ mapping procedures which require substantial financial investment and adopt dif-
ferent definitions of wetland habitats. Furthermore, employing fieldworkers to digitize habitat 
types introduces a sampler bias which makes the resulting map vulnerable to spatial and tem-
poral inconsistencies (Erikstad et al. 2011). Mapping instructions and methods can also change 
over time and therefore make it difficult to discern whether changes in wetland cover are real or 
merely an artifact of changes in mapping methodology. Wetlands are mapped as a broad group 
and it is not possible to distinguish between most wetland types in existing national maps. Apart 
from mostly single-timepoint aerial coverage estimates, there is even less active monitoring and 
surveillance of wetland condition or changes through time. For example, the Norwegian Nature 
Index contains very few indicators specific to wetlands (Pedersen et al. 2018). Active monitoring 
and annual or biennial mapping of wetlands will become important given the revised manage-
ment plan for restoration of wetlands in 2021 (Norwegian Environmental Agency 2021). 
 
It is often challenging to make clear criteria for classification of habitat types, and wetland types 
are no exception. Hence, particular geographical distribution and accurate location and mapping 
of different types of wetlands are still deficient. This in turn has created challenges in creating 
unambiguous area statistics that can be helpful in the management of these systems, in for 
example assessment of state, condition, changes and area accounts such as carbon storage 
and prioritization for restoration. The environmental administration has accordingly significant 
mapping and monitoring needs, in particular of the status and changes of the habitat types found 
in Norway. This is necessary in order to be able to provide a good basis for targeted management 
and policy-making. 
 
Wetlands have not been monitored in a systematic way in Norway, although some types have 
been included in, for example, the terrestrial monitoring ‘TOV’ (Framstad et al. 2020), the wilder-
ness mapping ‘utmarkskartleggingen’, (AE18x18) and in the Land Forest Assessment (LST) 
(Viken 2018). The area-representative nature monitoring (ANO) (Tingstad et al. 2019) will enter 
its third year in 2021 with full botanical registrations where all types of wetlands can occur in the 
monitored areas. With the development that is taking place in remote sensing and with the in-
creased access to satellite data, and also aerial photography, LiDAR, drone data, etc., the pos-
sibilities will be better than ever to be able to map wetlands with remote sensing methods. How-
ever, there are some important prerequisites that must be in place in order to make the most of 
the available data and tools. 
 
Despite the opportunities that lie in remotely measured products, they also have a number of 
challenges associated with them when it comes to making the products management relevant. 
The management is particularly dependent on nature type map products being accurate with 
regard to the correct classification of areas. This requires for instance access to ground truths of 
sufficient number and spatial distribution and accuracy, knowledge to make the right selection of 
sensors and platforms and knowledge for choosing the optimal statistical classifier and for se-
lecting the right spatial scale for the classification.  
 
An important prerequisite for doing remote sensing on wetlands is access to good ground truths 
data (Loew et al. 2018). This includes also ground truth data on assessments of status, condition 
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and changes in wetland areas over time. Another prerequisite is to have a set of division rules 
that can be applied for separation of wetland and other land cover types from each other by 
means of remote sensed data. In the vegetation ecology, it is common to use indicator species 
to distinguish between for example nutrient-poor and nutrient-rich (e.g. low vs high Nitrogen con-
tent) bog types. The species used by field biologists could be typical and specific, but also small 
and often tiny. Thus, these species might not be dominant at all in the area cover and will there-
fore be very difficult to capture by remote sensing. A remote sensing approach to mapping and 
monitoring must therefore take into account these challenges and other challenges related to 
cost-effectiveness, level of detail, accuracy requirements and more. These are important prereq-
uisites for whether remote sensing can contribute to a better knowledge base for a more com-
prehensive management of wetlands and, for example, evaluation of restoration. At the same 
time, it is important to note that identifying methodological requirements (e.g. required accuracy 
level) is very dependent on the specific purpose of the mapping exercise (Lennert et al., 2019).  
 
In contrast to Norway, countries such as Canada have supplemented in-situ wetland inventories 
and mapping with remote sensing data and machine learning classification workflows. Remote 
sensing workflows typically follow the steps outlined in figure 2. Perhaps the most important 
thing to note is that they are heavily dependent on ground-truth data for calibrating and validating 
the resulting wetland maps. Therefore, remote sensing should never be viewed as a substitute 
for in-situ mapping and fieldwork, but rather as an important supplement for scaling and opera-
tionalizing monitoring. In this context, remote sensing offers some significant advantages over 
in-situ and manual mapping: 1) it is spatially explicit and consistent over both space and time – 
in that sense it is objective; 2) it is scalable because one can extrapolate over time and space 
using machine learning models: 3) it is cost-effective because the cost of remote sensing data is 
generally a fraction of the cost of employing field worker; 4) it is continually updateable and often 
available in near real-time thereby allowing for ongoing monitoring and surveillance.  
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Figure 2. Conceptual framework outlining the typical workflow in remote sensing and mapping 
of wetland ecosystems. 
 
 
In the process of mapping land cover classes like wetland there are some terms that are com-
monly used. We have explained some of these in table 1. 
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Table 1.  Explanation of some commonly used terms in the report  
 

Terms Explanation 
Ground truth Refers to information collected on loca-

tion, could be vectors like points or poly-
gons, or pixels. The aim is to train or vali-
date classification models 

Classifier The method used to assigning a pixel, or 
groups of pixels, of remote sensing image 
to a land cover class 

Training data Is the ground truth you train your classifier 
on. 

Validation data Is the ground truth you use  to assess the 
uncertainties in your results 

Reference data Training or validation data extracted from 
existing maps 

Segmentation  Process of partitioning an image into multi-
ple segments (sets of pixels, also known as 
image objects) 

Image labeling Process of label objects in a segmented im-
age 

Random Forest (RF) A classifier which constructs a multitude of 
decision trees at training. For classification 
tasks, the output of the random forest is 
the class selected by most trees. 

Convoluted Neural Networks (CNN) A classifier that is a type of deep learning 
network, most commonly applied to ana-
lyze visual imagery.  

TensorFlow Free and open-source software library for 
machine learning and deep learning 

 
 
 

1.1 Aims and objectives 
 
The purpose of this study is to assess the advantages and disadvantages of the various meth-
odological approaches and provide recommendations for which remote sensing methods can 
quickly and objectively develop national coverage maps and area estimates. In this report we 
synthesize the national and international literature on wetland remote sensing and mapping. We 
use both a systematic literature review and targeted online questionnaire with relevant experts 
to summarize the state-of-the-art knowledge and methodology in the wetland mapping field.  
 
Below are specific issues that were raised by the Norwegian Environmental Agency and were 
the targets for the literature review. These included the assessment of advantages and disad-
vantages of the following aspects of remote sensing methodology (also outlined in figure 1): 
 

- The basis for classifying wetlands including the wetland typology and its relation to the 
NiN classification system. 
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- The type and amount of ground truth data needed to inform satellite-based classification 
models. 

- The type, spatial and temporal resolution, purchase cost, and scalability of different re-
mote sensing platforms (both airborne and satellite). 

- The statistical methodology used to classify remote sensing imagery into wetland and 
non-wetland classes including the raster processing method (object- vs pixel-based anal-
ysis). Details about the number of explanatory variables and type of machine learning 
model are also of interest. 

- Methods for assessing the accuracy of the resulting wetland map and also the effect of 
the above methodological options on resulting accuracies. 

 
As a part of the project the Norwegian Environmental Agency also asked for advices about scala-
bility of the methods in terms of operational mapping of wetlands in Norway. Finally, they were 
also interested in the application of remote sensing to quantifying the ecological condition of 
wetlands and their influencing factors. 
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2 Materials and methods 
 
This project has carried out a systematic literature review of scientific  literature on remote sens-
ing of habitat types in wetlands. We have done this in combination with obtaining information 
from relevant remote sensing professionals through an online survey. Both the literature review 
and  online questionnaire  with relevant professionals were designed to meet the aims and ob-
jectives outlined above. 
 
 

2.1 Literature search  
 
We performed a systematic literature search using best-practice principles outlined in Moher et 
al. (2009). Firstly, we searched Web of Science and SCOPUS databases for all relevant English 
language articles, review articles, book chapters and conference papers. Relevance was defined 
by search terms specified in three categories including remote sensing (A), wetlands (B), and 
mapping methods (C) (table 2), separated by AND and OR boolean operators. Only records 
published after 2015 were included in order to limit the data size so that we had enough time to 
process the data given the project budget. Studies post-2015 are also likely to use the latest 
mapping techniques and remote sensing data and are therefore most relevant to future wetland 
mapping applications in Norway. 
 
 
Table 2. Search query design used in systematic literature search. 
 

 
 
 
The literature search returned 3235 records (2059 from Web of Science, and 2611 from Scopus 
with 1435 duplicates). We then screened the publication titles for relevance using exclusion cri-
teria defined in table 3. If there was not enough information in the title to decide on exclusion, 
we left the publication for the next processing phase which included full-text assessment. The 
title screening resulted in 508 relevant records. The abstracts and full-texts of these were pro-
cessed for relevance resulting in 137 records left for data extraction. The data extraction involved 
reading the full text and recording relevant variables required to answer the questions specified 
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in the contract with the Norwegian Environment Agency. Finally, we added an additional 73 pub-
lications from Mahdianpari et al. (2020a) meta-analysis of wetland remote sensing in North Amer-
ica. The authors agreed to share their database with us which contained information for each 
study that largely overlapped with our project specifications. The data were processed and ad-
ditional information was collected so that it was commensurate with our extracted data. Finally, 
our literature dataset consisted of data from 210 studies. We also completed qualitative analysis 
of selected, national studies. 
 
 
 
Table 3. Exclusion criteria used in the literature screening before final data extraction. The justi-
fications included: not relevant to the scope of mapping wetlands specifically (A), not relevant to 
Norwegian wetland ecosystems (B), pragmatic decision to allow for data processing within pro-
ject budget allowance (C). 
 
Exclusion criterion 
 

Justification 

Exclude studies already present in the Mahdianpari et al. (2020a) meta-
analysis of wetland remote sensing. 

C 

Exclude general land cover mapping studies that do not have a focus on 
wetlands in the title or abstract. May be included if wetland is mentioned as 
a sub-class in the classification. 

A 

Exclude studies that map single plant species in wetlands or vegetation 
cover, or plant metrics alone. E.g. Phragmites, aquatic vegetation, man-
grove biomass, NDVI. 
 

A, C 

Exclude modelling studies that model ecosystem services from wetlands. 
E.g. Carbon, methane, emission, water regulation. 

A, C 

Exclude studies that map influencing factors alone. C 

Exclude hydrological modelling studies – wetlands are modelled from ter-
rain data instead of remote sensing data. 

A 

Exclude studies mapping wetland water extent alone (i.e. inundation) A 

Exclude studies mapping flood events (i.e. short water flooding in areas 
with vegetation not necessarily adapted to water) 

A 

Exclude studies of agricultural “wetlands” – e.g. rice paddies. B 

Exclude studies mapping soil moisture alone. A 

Exclude studies mapping open water bodies (e.g. rivers, dams, lakes) A 

Exclude poster presentations. C 

Exclude studies on mangrove forests. B 

Exclude coastal wetlands. C 
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2.2 Additional provision of information from experts 
 
In order to gather information from both the academic and non-academic communities and other 
parties who have mapped wetlands with remote sensing, an online questionnaire was created 
and circulated to respondents identified by the research team and the Norwegian Environment 
Agency. The aim of the questionnaire was to obtain information about wetland mapping that is 
not necessarily published in peer-reviewed journals like time and costs for map production and 
other purposes and uses of the map. The request for information was sent as an online ques-
tionnaire to 42 potential respondents in eight countries including Sweden, Denmark, Finland, 
Switzerland and Canada. The questions covered 7 main topics, namely: 
 

1. Information about the respondent 
2. Scale of the map 
3. Ground-truth data 
4. Cost 
5. Data infrastructure 
6. Purpose of map 
7. Lessons learnt 

  
The online questionnaire was open for replies from 19.05.2021 to 26.05.2021.  
20 respondents answered the online questionnaire. Ten answered all questions of the question-
naire while the other ten answered questions selectively. 
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3 Results  
 

3.1 Literature review results 
 
The initial search for published studies meeting our criteria identified a total of 3235 results. Web 
of Science returned 2059 publications and Scopus returned 2611. Of these, 1435 were dupli-
cates. The titles of these results were filtered manually according to the exclusion criteria (table 
3), with 508 chosen for abstract or full-text reading. Of these, 137 were included in the final 
literature database. Furthermore, we included 73 papers from a meta-analysis done by Mah-
dianpari et al. (2020a), which resulted in 210 studies included in this literature review. The 
presentation of the literature results follows the general structure of a typical remote sensing 
workflow introduced in the introduction in figure 1. 
 
The literature survey showed that the majority of studies that utilised remote sensing to map 
wetlands were in Canada (61), USA (41) and China (38) (figure 3). Few studies were available 
for Scandinavia, with two in Sweden and two in Finland. No studies had been published in the 
academic literature on Norwegian wetlands.  
 
 

 
Figure 3. Distribution of studies included in the systematic literature review. Areas in grey were 
not represented in the literature. The colour scale is log-transformed, however the inset graph 
shows the study numbers per country without a log-transformed scale. 
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3.2 Wetland definitions and classifications 
 
Our results revealed that most studies classified wetlands based on a zonal typology (figure 
4A). We define zonal typologies as those that differentiate wetlands based on their spatial con-
text and surrounding habitat (e.g. coastal, estuarine, inland), climate zone (e.g. boreal, alpine), 
or land-use (e.g. wetland vs agriculture vs urban). Fewer studies defined wetlands based on their 
dominant species (e.g. grass vs sedge), structure (e.g. basin vs swale), functional group, or 
temporal dynamics (figure 4A). Wetlands were most often defined and mapped in contrast to 
other land cover classes (figure 5A). This suggests that it is necessary to define “non-wetland” 
and “wetland” simultaneously. Defining “non-wetland” is particularly relevant when collecting 
ground truth data because the classification model needs to be trained on all the possible non-
wetland cases to prevent misclassification.  
 
Studies classified land cover (including wetland and wetland subclasses) into a median of 7 land 
cover classes (figure 4B). Very few studies had more than 10 classes in their final classification 
map. In terms of the wetland typology used, the wetland sub-classes were dominated by names 
from the Canadian wetland typology including fen (“jordvannsmyr” på norsk), marsh, swamp 
(“sump”), and bog (“nedbørsmyr”) (figure 5B; see Mahdianpari et al., 2020a). 
 

 
Figure 4. Wetland classification types used in studies (A) and the number of land cover classes 
mapped (B).  
 

 
Figure 5. Word clouds for the map classification typologies used in the studies (A). The size of 
the word indicates the frequency of use across studies. Panel B shows the wetland sub-classes 
included in the studies reviewed. 
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3.2.1 Ground truth data 
 
Ground truth data is used to train the classifiers and validate the accuracy of models in remote 
sensing studies. Most studies relied on ground truth data collected in the field (44 studies; figure. 
6A), while 32 relied on visual interpretation of very high-resolution aerial imagery, and 28 relied 
on a combination of field data and image interpretation. The results showed that 12 studies relied 
on other reference datasets as ground truth. These included national land-use maps, wetland 
inventories, or other vector-based spatial data. The amount of ground truth data points collected 
was lowest for in-situ data (median 270 data points), and highest for reference datasets (median 
1570 data points) (figure 6B). However, the amount of ground truth data was unrelated to the 
resulting map classification accuracy (figure 6C) for all data types except for reference data 
(lines are almost flat with exception of the solid purple reference data relationship line in Fig. 5C), 
where accuracy increased with increasing ground truth sample size. The size of ground truth 
datasets generally increased with the spatial scale of the study (figure 6D) with national-scale 
studies having a median of 16000 points (minimum of 300 and maximum of 132 000 points). 
This is probably also the reason why the amount of ground truth is little correlated to accuracy, 
as with increasing extent one usually get more overall variation. 
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Figure 6. The geometry and type of ground truth data included in studies are plotted in A. Ground 
truth data are either collected at point locations or for homogenous polygons, and can be meas-
ured in-situ (i.e. field data) or ex-situ (i.e. image interpretation or reference datasets). The number 
of ground truth points (quantified as labelled image pixels) are plotted in B. The relationship 
between ground truth data size (log-transformed axis) and map classification overall accuracy is 
shown in C, with solid lines showing significant linear relationships. The number of ground truth 
points vs study area is plotted in D. The red and black numbers in B and D represent data means 
and medians, respectively. 
 
On average, 2603 field-data points were used to train models, however this ground truth collec-
tion method was only used in landscape and provincial scale studies. Image labelling saw an 
average of around 5000 points used at landscape and provincial scales, and 66406 points used 
in national-scale classification. Combining image labelling and field-data allowed for considera-
bly more training data to be collected, with an average of 26243 points used. National-scale 
studies using both image labelling and field-data used nearly 39000 points on average. On av-
erage, 2603 field-data points were used to train models, however this method was only used in 
landscape and provincial scale studies. Image labelling saw an average of around 5000 points 
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used at landscape and provincial scales, and 66406 points used in national-scale classification. 
Combining image labelling and field-data allowed for considerably more training data to be col-
lected, with an average of 26243 points used. National-scale studies using both image labelling 
and field-data used nearly 39000 points on average. The relationship between the spatial extent 
of the study area and the source of training data did not show any large differences (table 4). 
 
 
 
Table 4. Relationship between training data source and spatial extent of the study area 

Training data 
source 

National Provincial Landscape Total 

Field data / 88 85 86 
Image labelling 83 88 87 87 
Image labelling + 
field 

83 88 85 87 

Reference data 80 86 84 85 
 
 
 
 
3.2.2 Remote sensing: temporal scope 
 
We limited our review to post-2015 and obtained an even spread of studies between 2015 and 
2020, with 4 studies from 2021 (figure 7A). It should be noted that studies using historical data 
were also included when the data included more recently acquired imagery.  
 
The number of studies that mapped wetlands for a single point in time (109) was very similar to 
the number of studies that mapped wetlands over more than one year (100; figure 7B). Some 
studies mapped wetlands over more than three decades (using historical aerial photos or Land-
sat satellite archive imagery), however most studies mapped a few years centred around 2015 
(figure 7C). The oldest data used was aerial images data from 1952 and Landsat imagery from 
1970. 
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Figure 7. The temporal distribution of publication dates for studies included in our literature re-
view since 2015 is shown in A. Studies either mapped wetlands for a single date, or for multiple 
time points (B). The temporal coverage of mapping studies and their durations are plotted in C. 
Points represent start and end points of wetland mapping. Colours are red for multi-temporal 
studies and greenish for single data studies. 
 
 
3.2.3 Remote sensing: spatial scope and sensors 
 
The majority of studies mapped wetlands at landscape (< 10km2) or provincial (> 10km2 & < 
50000 km2) extents, with very few mapping at national or continental extents (figure 8A). Those 
that mapped wetlands at a national scale included 5 multi-temporal studies in Canada using 
optical data, 2 studies in China based on MODIS multi-temporal data and 2 single date studies 
in the USA using PALSAR. There were also multi-temporal national scale studies in Albania and 
India that both used combined optical and radar data. 
 
Most studies (73) relied on Landsat satellites to map wetlands, followed by RADARSAT, and the 
Copernicus Sentinel satellites (figure 8C). The aforementioned satellite data are open-access, 
which clearly promotes their adoption in wetland mapping. Landsat imagery is also available 
since the 1970s, making it favourable for historical studies. Of the expensive sensors, (costs 
>$30/km2), which happened to be mostly airborne sensors, LiDAR, UAV and aerial photography 
were most commonly used (figure 8C). 
 
The most common map resolution was >10m, which included satellites such as Landsat, Senti-
nel-1, PALSAR and RADARSAT (figure 8C). Of the 12 studies that were mapped at national or 
continental scale, 4 used either Sentinel-1 or Sentinel-2 imagery at 10m resolution, 2 used 30m 
Landsat imagery, one combined IRS and MODIS imagery at 37m resolution, 2 used 50m 
PALSAR data and 2 used 250m MODIS imagery (figure 8A). None of the 12 studies that 
mapped at the national scale used VHR imagery (very high resolution data).   
 
Very high resolution satellite imagery was only used at the provincial and mostly at the landscape 
scale (figure 8A).The map accuracy was not significantly related to the spatial resolution of the 
map (figure 8B). There was large variation in map accuracies at both high and low spatial reso-
lutions, suggesting that other factors are more important determinants of accuracy. Indeed, 



NINA Rapport 2014 

 
29 

comparing accuracy across such a heterogenous range of studies is challenging because we 
cannot control for confounding factors between studies. 
 
 

 
Figure 8. The spatial extent and mapping resolution of studies is shown in A. The relationship 
between map resolution (log-transformed axis) and classification overall accuracy is shown in B 
with a linear regression line plotted. The distribution of studies across remote sensing platforms 
is plotted in C with an estimated acquisition cost per square kilometre of imagery*. *Estimated 
based on ESA (https://business.esa.int/newcomers-earth-observation-guide) and may vary sub-
stantially due to shifts in market value. 
 
 
3.2.4 Classification models: structure and performance 
 
In terms of the type of classification model used,125 studies used pixel-based image classifica-
tion and 71 used object-based. Pixel-based classification studies produced maps at a median 
resolution of 16m whereas object-based maps produced a median of 10m resolution maps (fig-
ure 9A). Despite this, there was very little difference in map accuracy (figure 9B) between the 
two methods. The results indicate that the number of predictor variables (I.e. image bands or 
band indices) in classification models increased the map accuracy for object-based classification 
but had no effect for pixel-based classification (figure 9C). 
 

https://business.esa.int/newcomers-earth-observation-guide


NINA Rapport 2014 

30 

The most common machine learning framework used to generate wetland maps was decision 
trees (e.g. Random Forest, figure 10A), followed by support vector machines. State-of-the-art 
neural network models were used in 13 of the studies. The type of machine learning model 
adopted had no discernible effect on map accuracy (figure 10B). 
 
 

 
Figure 9. Difference in map resolution (A) and map accuracy (B) between pixel- and object-
based classification models. Violine plots show the data distributions and inset boxplots show 
the median (horizontal line) and interquartile (box) values. Relationship between the number of 
predictor variables and classification model overall accuracy is plotted in C. Linear regression 
lines are fitted (significant lines are solid, whereas non-significant lines are dashed). 
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Figure 10. The distribution of studies across machine learning model category and type is shown 
in A. The resulting classification overall accuracy per model category is shown in B. Median and 
interquartile values are shown with centre line and boxes, respectively. 
 
Our literature review revealed that 25% of the wetland studies used both optical and radar data, 
most for provincial scale studies (table 5). The studies that combined optical and radar sensores 
achieved the highest average accuracy at 89 %. 

 

Table 5. Data type, number of studies and average accuracy obtained in the wetland classifica-
tion results. 
 

Data type Number of studies Average accuracy (%) 
LiDAR 4 87 
Optical 106 86 
Optical + LiDAR 8 85 
Optical + Radar 52 89 
Optical + Radar + LiDAR 1 NA 
Radar 38 87 
Total 210  

 
 
3.2.5 Influencing factors and ecological condition 
 
Very few of the publications (19) mapped ecological condition or influencing factors, other than 
the extent of wetland coverage (figure 11). Of those that did, the most commonly quantified 
condition factors were species composition and inundation area. However, only species or com-
position of species that cover larger areas are assumed to classified high certainty from remote 
sensed data. The only influencing factor quantified in the studies was land use change (e.g. 
wetland conversion to agriculture). 
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Figure 11. Number of studies that quantified ecological condition or influencing factors using 
remote sensing. 
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4 Responses to survey 
 
We received 20 responses to our questionnaire of which 14 described themselves as research-
ers/scholars, two were government employee and four were consultants in the private sector. 
Among the 20 respondents, 8 have been directly involved with wetland mapping projects using 
remote sensing. 5 have not been specifically involved, but have experience with landcover 
mapping of other types.  
 
However, not all of the respondents were mapping wetland ecosystems primarily. They were 
among others mapping aquatic environments or sea ice. Therefore, not all questions were an-
swered by all respondents and the results from the questionnaire give limited additional infor-
mation.  
 
11 answers were provided to the question on the collection of ground-truth data. Four did in 
situ field sampling. One did interpretation of areal imagery and 6 did pursue this through other 
existing datasets such as published map data. Others collected ground-thruth data through ele-
vation, peat depth, and single tree measurements. Others again referred to field and high-reso-
lution satellites. Several emphasized a combined use of in-situ (forestry), interpretation of aerial 
imagery (NiN), other sources (FKB, area resource map), but the methods chosen depended on 
the project specific requirements. Sometimes field information and other ground information 
were provided by the purchaser of the study so the choice of in-situ data was neither made de-
liberately by the respondent. All the 11 answering to this question, confirmed that the map is 
once-off product for developing a “basemap”. 
 
Nine responded to the question concerning the spatial scale of the wetland mapping projects. 
Of these, four had a focus on landscape and single wetland, two had a focus on State/prov-
ince/county while nine had a national approach. 
 
Concerning the question “As opposed to processing remote sensing data and making the map, 
what percentage of the project budget did you dedicate to collecting ground-truth data?” we re-
ceived 10 responses  that varied between 0, 10, 15 towards 50 %. One respondent emphasized 
that the time associated with contacting the authorities that hold the data, was very time con-
suming. 
 
We got nine answers on the question ”How long did it take you to produce your wetland map 
from project conception to the delivery of the final map?”.  One person responded that this de-
pends on the request as well as on the spatial resolution. Such projects may take weeks to 
months depending on the requirements. Another emphasized that the mapping of wetland was 
only a small part of the larger project or only a part of a overall project mapping habitat types. 
One responded that such projects may even take months depending on the requirements. 
 
On the question: “Can you estimate the total costs to produce your wetland map? If possible, 
can you divide your estimate into operational costs, and data purchase costs.” We received nine 
answers that were rather different with respect to the degree of specificity. One estimated a 
manpower cost of 180,0000 INR (Indian rupees) which equals 207,409 NOK. Another indicated 
20 Euros/hectare with a 20 cm resolution 3D map of species composition. One respondent indi-
cated 300,000 CHF (Swiss francs) which equals 2,778,941 NOK, while a Norwegian respondent 
indicated 400.000 NOK.  
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Among the eleven respondents answering the question“ what type of data infrastructure was 
used to produce the map?”, eight answered that they used local computers. One did use a cloud 
solution. This answer was further specified with respect to the type of software that were used 
to produce the map: 
 

- eCognition Developer / Server 
- R, Pix4D, ArcGIS Desktop, ArcGIS online, 
- Google Earth Engine 

 
We further asked in our questionnaire “How is your wetland map being used?”. Among the nine 
answers we received, four stated that the wetland maps were only used for research purpose. 
Three of the answers did refer to public service. Of other uses, references were made to impact 
quantification and on land cover types that had been replaced by aquaculture ponds and thus 
where biodiversity is at threat. One referred to research and management. Another wrote that it 
was used by customer who requested the map for their own, undisclosed purposes. One referred 
to an official national map. 
 
Then we asked:  What best describes the purpose of the wetland map. Among the ten answers, 
three referred to testing remote sensing techniques. None referred to mapping wetland types, 
one referred to monitoring wetland conditions and three referred to landcover mapping that in-
cluded wetland as a class option. Among other purposes, the following were mentioned: Impact 
quantification of pond creation, long term monitoring of vegetation changes at 20 cm resolution, 
but several emphasized that the purpose varies depending on the request. 
 
We also asked for input on how to develop an accurate wetland map at a national scale and 
specifically we asked: “what do you think are the most important “ingredients” to produce an 
accurate wetland map at a national extent?”. We received nine answers that were distributed in 
the following way: 
 

- Six emphasized ground truth data 
- One referred to the remote sensing sensor used 
- Two stated that the machine learning model is the most important ingredient 
- None referred to the data infrastructure 

 
In addition, we asked for further comments and got the following answers: Accurate wetland 
maps can be made with the combination of high resolution satellite data and ground truth data, 
which are both equally important. Medium resolution satellite data can cover larger areas, but 
then accuracy might decrease. Good data and good software that include both machine learning 
and several hundred other functions, are crucial. All mentioned “ingredients” are important, it’s 
the combination of them that matters.  Another reference was made to the combination of auto-
mated and semi-automated interpretation and the use of existing data and LiDAR with good 
penetration properties. It was suggested one should not go for single-photos. One respondent 
stated that machine learning model and remote sensing sensor, data selection and prepro-
cessing is crucial. Both ground-truth and remote sensing data are equally important. The sensor 
has to be able to observe the characteristics (or the proxies) while the ground-truth is necessary 
to calibrate and validate the models. Finally, one stated that all the above will be needed to work 
together to develop an accurate map. The more data, the more context and therefore more ac-
curacy can be provided. 
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5 Discussion 
 

5.1 Lessons from national-scale mapping studies 
 
Of the handful of national scale studies, three had a classification accuracy of 85% or higher. 
The study by Clewley et al. (2015) produced a wetland map of Alaska (approximately 1.6 million 
km2) with a classification accuracy of 85% for wetland classes. This study used PALSAR data 
and a random forest classifier. It was a pixel-based classification with 100 000 training points. 
The resulting map was produced with a spatial resolution of 50m for a single date in 2007. Clew-
ley et al. based the wetland classes on the Cowardin classification system (Appendix A), which 
separates wetlands based on vegetation type and major wetland systems (i.e.- estuarine, river-
ine, lacustrine and palustrine). Wetland traits, such as water regime were used to augment the 
basic classes, resulting in 23 classes. Due to difficulty distinguishing between some of these 
classes, they were aggregated post-classification. The final classification consisted of 12 clas-
ses, of which 8 were wetland classes, namely: estuarine emergent, estuarine scrub-shrub, estu-
arine forested, riverine emergent, lacustrine emergent, palustrine moss-lichen, palustrine emer-
gent, palustrine scrub-shrub, palustrine forested. The authors note the importance of including 
non-wetland classes in the training data to avoid confusion. One of the limitations of this study 
was that the authors used national-scale reference maps to produce training data. These had a 
level of error associated and were 30-40 years old, which may have resulted in inaccuracies. As 
random forest is relatively robust to outliers and noise in the training data, the authors compen-
sated by using a large amount of training data (100 000 pixels). The wetland map of Alaska will 
continue to be updated in the future as new methods and SAR data become available, allowing 
them to improve the classification accuracy. In particular, the authors are exploring geographic 
object-based image analysis (GEOBIA) for classification. 
 
The study by Xing et al. (2017) used MODIS imagery to map and monitor the status of 20 Ramsar 
sites in China between 2001 and 2013. The wetlands were all greater than 11 579 ha in size. 
The authors used a support vector machine (SVM) to classify 9 classes, namely: open water, 
permanent marshes, seasonal marshes, flood plain wetlands, rice field, forest or shrub, grass, 
human-made cover or bare land, and drylands. Xing et al. included 3 spectral indices in their 
features. These were the normalised difference water index (NDWI), the normalised difference 
moisture index (NDMI) and the normalise difference vegetation index (NDVI). The inclusion of 
NDMI was found to improve the classification accuracy. Validation data were created using im-
age-labelling of 1624 points. The final map had a spatial resolution of 250m and overall classifi-
cation accuracies of 85% for 2001 and 87% for 2013. The authors also measured the wetland 
landscape integrity index (capturing the range in variability associated with the structure, com-
position and function of wetlands) and the disturbance and degradation of wetland ecosystems 
index (indicator of transformation to other land cover types). A limitation of these two indices is 
that they do not capture the quality of the wetland. The authors suggest including other remote 
sensing derived indices such as biomass, the fraction of absorbed photosynthetically active ra-
diation, evapotranspiration and vegetation height. A disadvantage of using MODIS imagery is 
that the spatial resolution is very coarse, meaning only large wetlands can be mapped and mon-
itored. 
 
Mahdianpari et al. (2019) on the other hand, achieved an 88% accuracy at 10m resolution. The 
authors compared Sentinel-1 (radar) and Sentinel-2 (optical) data for mapping wetlands and 
found that combining both achieved the highest classification accuracy. They used a random 
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forest classifier to produce a map of wetlands for Newfoundland in Canada, an area approxi-
mately 106 000km2. The resulting map contained 8 classes, of which 4 are specific wetland types 
and 2 classes describe water depth. The classes included: bog, fen, marsh, swamp, shallow 
water, deep water, upland and urban. The wetland classes are derived from the Canadian Wet-
land Classification System (CWCS, Appendix B). The authors used object-based classification 
with in-situ data collected via an extensive field campaign between 2015-2017. A total of 1200 
wetland and non-wetland sites were visited during this period, contributing to a robust wetland 
training sample. In addition to four bands from the optical data (red, green, blue, near-infrared), 
NDVI, NDWI and MSAVI2 were included as features, along with the backscatter data from the 
radar. Google Earth Engine (GEE), the cloud computing platform, was used for the classification. 
The authors found that using the combined optical and radar data improved the classification of 
individual wetland classes, but bog and fen were the least discernible. A limitation of the study 
was that the Sentinel-2 imagery available on GEE were not atmospherically corrected at the time 
of the study. Another limitation was that mosaicking over a long time period was necessary due 
to cloud cover, which may have resulted in classification errors and the overlooking of season-
ality. This is probably a challenge for Norwegian approaches as well. To reduce this, only sum-
mer imagery were included in the mosaic. In terms of upscaling their methodology to the whole 
of Canada, the authors state the following challenges. Cloud cover limits the availability of optical 
data, but this could potentially be mitigated by using both Landsat and Sentinel-2 imagery. The 
biggest challenge identified was that of collecting sufficient, high quality training data. 
 
Our results show that remote sensing has seldomly been used for national scale wetland map-
ping. This may be attributed to a lack of infrastructure to support the scale of processing in the 
past. Recent cloud-based platforms like Google Earth Engine, hold much potential for large scale 
mapping because not only do they host libraries of imagery and data, but also allow for resource-
intensive processing. Recent studies, like that of Mahdianpari et al. (2019) demonstrate how 
cloud-based processing can be used to map wetlands for large areas.  
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5.2 Technical discussion 

 
5.2.1 Sensor type 
 
There are three main remotely sensed data types, which are optical data (passive remote sens-
ing such as satellite imagery or aerial photographs), Synthetic Aperture Radar (SAR, measures 
backscatter from pulses of light), and LiDAR (laser scanning which creates point clouds of data). 
The choice of sensor type is determined by the size of the area (and thereby also the time and 
cost) and the objective of the study.  
 
Satellite imagery, like aerial photography, use sensors to capture reflectance. While traditional 
aerial photography generally only captures information on the red, green and blue wavelengths 
of light (and occasionally also near-infrared), satellite imagery capture a wider range of the elec-
tromagnetic spectrum, including reflectance that is not visible to the human eye. Satellite imagery 
are taken along set paths and rows meaning scenes are repeated at set intervals, an important 
consideration for monitoring studies. How often an image is taken of the same site varies de-
pending on the satellite mission, with some as often as every 2-5 days (e.g. Sentinel-2) and 
others every 16 days (e.g. Landsat). There can be considerable variation in the spatial resolution 
of the imagery, ranging from 0,5m (Pléiades) to 250m (MODIS).  Similarly, there is also much 
variation in the number of bands and the cost of acquisition. Sentinel-2 (10m resolution), Landsat 
(30m) and MODIS (250m) imagery are available free of charge and contain between 7 and 36 
bands. Sentinel-2 contains 3 red-edge bands in addition to near-infrared which make it especially 
suited to vegetation mapping, however it should be noted that the red-edge bands are at 20m 
spatial resolution. Landsat contains a thermal band (100m resolution) which has been explored 
for studying wetland dynamics (e.g. Kaplan et al. 2019, Zhao et al. 2019). The Satellite-based 
Wetland Observation Service (SWOS) generates information on wetland ecosystems using the 
possibilities offered by freely available satellite data (https://www.swos-service.eu) (accessed 
11.06.2021). They also give overview over what sensors are used for what purpose in wetland 
monitoring. An advantage of satellite imagery is that large areas can be covered in a single scene 
making it much less costly and time consuming over large areas than aerial photography (Oz-
esmi & Bauer 2002). The limitations of satellite imagery is that the spatial resolution can make it 
challenging to identify very small or narrow wetlands. It is also difficult to distinguish between 
types of wetlands because their spectral signatures may overlap (Ozesmi & Bauer 2002). When 
water levels are low, wetlands can be misclassified as upland areas. One of the most significant 
disadvantages of satellite imagery is cloud-cover. Presence of cloud in an image makes inter-
feres with the reflectance of the land cover below and cloud pixels need to undergo further pre-
processing to substitute them with other from different dates. The United States Nation Wetland 
Inventory project (began in 1975) decided to use aerial photography over satellite imagery be-
cause 1) fluctuating water levels change the reflectance of vegetation, 2) fire scars can be mis-
classified as open water, 3) periphyton masses in certain seasons can influence the classifica-
tion, and 4) certain species (Typha spp.) complicated image classification because of changing 
growth patterns (Ozesmi & Bauer 2002). Despite these disadvantages, satellite imagery has 
major advantages for monitoring over time and are especially well-suited to large geographic 
areas. Ozesmi & Bauer (2002) suggest that in national scale maps, satellite imagery be used to 
identify where changes are occurring and where more detailed maps should be prioritized for 
updates. However, all optical approaches can suffer for wetland in forests, so for ecosystem and 
climate accounts it could be a problem to have those areas underrepresented. 
 

https://www.swos-service.eu/
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Radar data are complementary and supplementary to optical and thermal data because they 
operate in the microwave portion of the electromagnetic spectrum (Henderson & Lewis 2008, 
Ozesmi & Bauer 2002). Synthetic Aperture Radar (SAR) is an active form of remote sensing 
where the backscatter from pulses of light are captured by sensors at different wavelengths. 
The backscatter provides information about surface roughness and the moisture content of soil 
and vegetation. A significant advantage of radar data is that it can penetrate cloud and is there-
fore not greatly influenced by weather (Brisco 2015). Like optical data, SAR also has bands 
that represent the length of the wavelength being captured. In wetland mapping, previous re-
views of the literature (e.g. Hess et al. 1990, Kasischke et al. 1997) have found that the L-band 
is most suited to mapping wetlands in forested areas. This is because the longer wavelength of 
the L-band is able to penetrate the tree canopy and has a double-bounce effect from the water 
below the trees, resulting in a unique signature. The C-band is appropriate for mapping herba-
ceous wetlands and performs best when there is low biomass and leaf-off conditions (Hender-
son & Lewis 2008). Because of the challenge of differentiating between wetland types (Brisco 
2015), Henderson & Lewis (2008) conclude that multiple wavelengths are needed for con-
sistent and accurate mapping of wetlands using SAR. With regard to polarization, dual- 
(HH/HV) is preferable to single- (VV) with multipolarized imagery outperforming single polariza-
tion. Mahdianpari et al. 2019 mention that being near the Polar regions is an advantage be-
cause both HH/HV) and VV polarized data are available from Sentinel-1. Another consideration 
with SAR data is the incidence angle. Some studies suggest that steep incidence angles are 
better suited to mapping water bodies under vegetation (Mahdavi et al. 2017), however the lit-
erature is inconclusive and studies suggest using varying incidence angles (Henderson & 
Lewis 2008). Some disadvantages of using SAR data are that the processing can be more 
time-consuming because of the need for multiple bands and varying incidence angles, and that 
speckle sometimes can hinder image segmentation and classification (Henderson & Lewis 
2008; Mahdavi et al. 2017).  Another challenge is that training data must be much larger than 
that required for optical data to compensate for speckle (Mahdavi et al. 2017).  
 
Mahdianpari et al. (2019) explain that optical and radar data can be synergistic because optical 
data provides information on the reflective and spectral characteristics of wetlands, while radar 
provides information on the structural, textural and dielectric characteristics. Several studies 
have demonstrated the potential of this data fusion for wetland classification, including Whyte 
et al. 2018, Bwangoy et al. 2010, van Beijma et al. 2014 and Mahdianpari et al. 2019. 
 
LiDAR is similar to radar in that it is an active form of remote sensing. LiDAR measures the 
distance to objects on the ground using the time it takes for a sensor to detect the light pulses 
sent out by a laser. LiDAR has enough power to penetrate vegetation and therefore provides 3D 
topographic information of the Earth’s surface. This data is used to predict the location and dis-
tribution of wetlands. LiDAR is mostly used as ancillary data in wetland mapping in addition to 
optical or radar data (Mahdavi et al. 2018). LiDAR is normally derived from an airborne laser 
scanner which provides high spatial resolution data, but is also amongst the most expensive 
data sources.  
 
The availability of cloud-free imagery is a challenge for countries like Norway. There are methods 
of creating cloud-free mosaics by substituting pixels based on specific criteria, for example se-
lecting the greenest pixel. In this regard, radar imagery is useful because it penetrates clouds. 
Similarly, LiDAR is not affected by clouds, however LiDAR is limited in the information it can 
provide on wetland classes. Many studies combine optical data with either radar or LiDAR.  
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5.2.2  Ground truth data 
 
Training data is used to tell the remote sensing model what spectral, textural, structural and 
dielectric characteristics correspond to specific wetland classes. There are three main tech-
niques for collecting training data, namely in-situ field data, image labelling and reference data. 
The term ‘reference data’ is here synonymously used for extracting training data from existing 
maps such as vegetation maps, land cover maps in different resolutions, cadastral maps etc. In 
Norway reference data can be collected from N5, AR5, N50 and so on. Generally speaking, 
collecting field data is the most expensive, time-consuming and highest quality source, and ref-
erence data is the cheapest, fastest and lowest quality. However, this is related to the purpose 
of which the data has been collected for. Our results showed that the most common source of 
training data is from field-data (36%), however it should be noted that 89 of the 210 studies did 
not report their source of training data. Image labelling was the next most common method with 
30% of the studies where information was available, using this method. Combining field data and 
image labelling data was also a common method (24%). Of the national-scale studies, 3 used 
this combination, 3 used image labelling, 1 used reference data and 4 didn’t document the source 
of their training data.  
 
There is broad agreement that an increasing amount of training points gives better classification 
results (Foody 2002, Loew et al. 2017). However, when this is not always the case, as we see 
in our results with the exception of reference data, this may be due to several things such as 
imbalanced training data. Bakkestuen & Venter (2021) mentions six dimensions of data quality 
that are important in collecting ground truths as training points are. These six requirements are 
(i) general requirements for statistical interpretation of ground truth that meet the requirements 
of modern sampling methodology also in terms of representative samples, (ii) meet the homo-
geneity requirement for ground truth, (iii) meet the area requirement for minimum size for ground 
truth, (iv) meets the requirement for a sufficient number, (v) has the built-in ability to capture rare 
area types and (vi) that ground truth is freely available machine-readable on the web. The vast 
majority struggle, among other things, to meet requirements (ii) homogeneity and (iii) sufficient 
minimum area (d'Andrimont et al. 2020). An additional challenge are timeliness of the data (tem-
poral match with the imagery).  
 
Accuracy of classifications is also given in slightly different ways. The two most common were 
either on the basis of a confusion matrix and kappa statistics. Both of these methods have their 
advantages and disadvantages and there are no correct answers as to which is best because 
the starting points for the different studies are so different in terms of number of classes and type 
of classes, area, distributions and so on. For further discussion of confusion matrix and kappa 
statistics, see the section on validation below. 
 
There were many studies that had placed great emphasis on meeting the requirement for a 
representative selection of training points. Therefore our results also show that the number of 
training points is probably not the bottleneck for achieving higher or desired accuracy on the 
classification product as we did not get a significant relationship between accuracy and the num-
ber of training points, although image labelling and combined image labelling and field-data per-
formed slightly better than reference data at national-scales. However, we must acknowledge 
that comparing accuracy levels across different studies with different spatial extents and wetland 
typologies is difficult because various confounding factors can influence single relationships. 
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Ideally one would perform a pilot study to test the relationship between ground truth sample size 
and classification accuracy. For instance, Venter and Sydenham (2021) found that classification 
accuracy of land cover types in Europe is not linearly related to the size of ground truth samples. 
In the case of LUCAS ground truth data, they found that accuracy gains plateau after approx. 
10K points so that the difference in accuracy between 5K and 50K LUCAS points is only 3%. 
There is much theory written about ground truth, for instance see Beleites et al. (2013) and Loew 
et al. (2017). 
 
There were quite a few of the studies that acquired the training data from fieldwork where the 
data were collected using traditional botanical analyses, such as relevés that usually serve a 
very different purpose. In such cases, the accuracy of the classification is unlikely to increase 
with more training data. The advantages of making intensive registrations in the field versus 
interpreting aerial photographs are also not seen to be significant in our results, which in turn 
may be caused by this violation of the area and homogeneity requirement. Lack of literature 
where the collection of ground truths was fully satisfactory makes it difficult to fully confirm our 
assumptions.  
 
Reference data, such as land use maps in vector format has already been through a process 
where the person or persons who made this has made some guidelines for how much variation 
is allowed within each polygon before dividing it and how large the minimum size is. Thus, those 
who have access to reference data will also inherently have access to training data where the 
two requirements regarding size of area and homogeneity in some way have been accounted 
for. It can be highly probable that it what give us a significant relationship between the amount 
of "reference data" and classification results. 
 
The way models are validated can also affect how good the accuracy of the author's results is. 
Kappa statistics and statistics from a confusion matrix are two common ways to report accuracy. 
A confusion matrix is often based on points or pixels and on whether these are correctly or in-
correctly classified by the model (Loew et al. 2017). A known fault that occurs when using sta-
tistics from a confusion matrix is that validation points can be assigned the correct classification 
by pure chance. This error can be amplified if the model consists of large area-covering classes 
where there is a high probability that a completely random point can hit this class. The kappa 
statistic is used to control only those instances that may have been correctly classified by chance. 
This can be calculated using both the observed (total) accuracy and the random accuracy. Kappa 
can be calculated as: Kappa = (total accuracy – random accuracy) / (1- random accuracy). It was 
sometimes difficult to understand which statistics for accuracy were given in the articles, often 
where several methods, sensors and data sets were used in addition. 
 
It was also often common to collect both training and validation points at the same time with the 
same methodology. In this way, points could be distributed randomly between training and vali-
dation.  
 
 
5.2.3  Processing infrastructure 
 
There has been a major shift in recent years to cloud-based computing platforms for geospatial 
and remote sensing analyses. The main paradigm shift with the free availability of large amounts 
of data is to move algorithms to where the data is located. Cloud-based platforms allow users to 
scale remote sensing workflows over larger areas because one can simply purchase more 
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computing power and storage space without having to install any hardware or local infrastructure. 
While some government and private institutions are concerned about data privacy and protection 
with third-party cloud service providers (like Google, Microsoft or Amazon), many research insti-
tutes have decided to acknowledge these agreements and now rely on these services. A com-
plex analysis regarding the use of “big-data” in public authorities in Norway is given by Kommu-
nal- og moderniseringsdepartementet (2016) which also covers e.g. possibilities for establishing 
cloud services for the public sector in Norway. The few national-scale wetland mapping studies 
reported on in our review did use cloud-based platforms. The most notable platform for remote 
sensing workflows is Google Earth Engine (GEE). GEE has both a Python and JavaScript API 
and provides access to petabytes of open-access satellite data. GEE has allowed for many na-
tional to global mapping studies and has significantly advanced the state-of-the-art in remote 
sensing research (Tamiminia et al., 2020). The most important contribution is probably better 
opportunities for large extent studies even in areas with low bandwidth and limited financial re-
sources. However, it is important to note that there are many alternative cloud platforms available 
that are specific to remote sensing analysis. The disadvantages of GEE is that the server-side 
backend is not open access or transparent and therefore the user is restricted to utilizing the 
functions and processing structures provided by Google. Furthermore, GEE is meant for re-
search and development purposes and it may not be used in an operational manner for com-
mercial purposes. However, GEE is developing a commercial programme which may allow for 
adoption in the governmental and private sectors. Alternative cloud platforms to GEE include 
Sentinel Hub, Open Data Cube (ODC), System for Earth Observation Data Access, Processing 
and Analysis for Land Monitoring (SEPAL), JEODPP, pipsCloud and DIAS. Each has its own 
advantages and disadvantages which has recently been reviewed by Gomes et al. (2020)  (table 
6). There has also been Norwegian initiatives (in particular NBS).  Blumentrath et al. (2019) 
adresses Norwegian infrastructure in particular. 
  

https://www.regjeringen.no/no/dep/kmd/id504/
https://www.regjeringen.no/no/dep/kmd/id504/
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Table 6. Capacities of the platforms for big EO data management and analysis (after Gomes et al. 2020)  
 

CAPABILITY    ODC GEE  SEPAL  JEODPP PIPSCLOUD OPENEO   SH 

DATA ABSTRACTION High: Product 
and Dataset 

High: Image, 
ImageCollection, Feature and 
FeatureCollection 

Low: Direct file 
handling 

Low: Direct file 
handling 

Low: Direct file 
handling 

High: Collection and 
Granule 

High: Data Source, 
Instances and Layers 

PROCESSING 
ABSTRACTION 

Medium: Xarray  
and celery 

Medium: Predefined pixel-
wise functions 

Low: User runs his own 
code 

Low: User runs his 
own code 

Low: User runs his 
own code 

Medium: User-Defined 
Functions, Process 
graphs and Jobs 

Medium: Custom scripts 
(Evalscripts) layers perform 
pixel-wise processing 

PHYSICAL 
INFRASTRUCTURE 
ABSTRACTION 

Medium: Only 
data storage 
infrastructure 
infrastructure 

High: Both data storage and 
processing infrastructure 

Medium: Only data 
storage infrastructure 

Medium: Only 
data storage 
infrastructure 

Medium: Only data 
storage 
infrastructure 

High: Both data storage 
and processing 
infrastructure 

High: Both data storage 
and processing 
infrastructure 

OPEN GOVERNANCE High: Defined 
governance 
process 

Low: Proprietary software, 
closed source software 

Medium: Only open 
source repository 

Low: Proprietary 
software, closed 
source software 

Low: Proprietary 
software, closed 
source software 

Medium: Only open 
source repository 

Low: Proprietary closed 
source software 

REPRODUCIBILITY OF 
SCIENCE 

Low: Without any 
ease 

Medium: Data links and 
scripts shareable without 
guarantee to be reproducible 

Low: Without any ease Low: Without any 
ease 

Low: Without any 
ease 

Low: Without any ease Low: Without any ease 

INFRASTRUCTURE 
REPLICABILITY 

High: Open 
source code, 
docker 
containers and 
documentation 
available 

Low: Proprietary closed 
source software 

Medium: Open source 
code with basic 
documentation 
available 

Low: Proprietary 
closed source 
software 

Low: Proprietary 
closed source 
software 

Undefined: Dependent 
on the backend used 

Low: Proprietary closed 
source software 

PROCESSING 
SCALABILITY 

Medium: A 
template 
application 
available (Python 
and Celery) 

High: Code automatically 
executed in parallel using a 
MapReduce approach 

Low: User runs his own 
code 

Medium: 
HTCondor 

Medium: A template 
application available 
(C++ and MPI) 

Undefined: Dependent 
on the backend used  

High: Closed solution 

STORAGE SCALABILITY High: Distributed 
File System, S3 
and HTTP 

High: Google storage services High: Google storage 
services 

High: Distributed 
File System 

High: Distributed 
File System 

Undefined: Dependent 
on the backend used  

High: Closed solution 

DATA ACCESS 
INTEROPERABILITY  

High: OGC 
Services 

Medium: Tile service  Low: Without any ease Low: Without any 
ease 

Low: Without any 
ease 

High: OGC Services High: OGC Services 

EXTENSIBILITY  High: Open 
source and 
modular code 

Low: Proprietary closed 
source software 

High: Open source Low: Proprietary 
closed source 
software 

Low: Proprietary 
closed source 
software 

Medium: open source 
software integrated with 
proprietary software 

Low: Proprietary closed 
source software 
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5.2.4 Spectral indices and spectral-temporal metrics 
 
In addition to the satellite bands, spectral and temporal indices have been used in wetland clas-
sification and are often referred to as artificial bands. Spectral indices are equations that are 
applied to two or more bands to provide additional information and are commonly used in remote 
sensing applications. An advantage of using spectral indices is that they stabilise noise in the 
data caused by differences in illumination or cloud shadows. Many different spectral indices ex-
ist. One of the most well-known for vegetation studies is NDVI (normalised difference vegetation 
index) which is based on differences in the red and near-infrared bands. NDVI is a good indicator 
of plant productivity and biomass, and is often used for vegetation classification. A limitation of 
NDVI is that it is sensitive to atmospheric affects like clouds, shadows and soil brightness (Xue 
& Su 2017). NDWI (normalised difference water index) is often used in wetland studies to meas-
ure vegetation water. NDWI is less affected by atmospheric scattering than NDVI and can be 
used to predict canopy water stress and plant productivity (Adam et al. 2010). NDWI can also be 
useful in distinguishing wetlands from uplands. MSAVI (modified soil-adjusted vegetation index) 
was used by Mahdianpari et al. (2019) to compensate for the limitations of NDVI in areas with a 
lot of exposed soil. Mahdianpari et al. (2019) found that spectral indices were far better at distin-
guishing wetland classes than the original bands alone. In addition to spectral indices, modern 
remote sensing methods frequently quantify spectral-temporal metrics which define the change 
in spectral response over time. For instance, when mapping wetlands for a given year, one can 
calculate the minimum, maximum, median and standard deviation in the NDVI signal over all the 
satellite images available during that year. This is particularly important for distinguishing wetland 
types which have a strong phenological signal. 
 
 
5.2.5 Object-based or pixel-based 
 
Image classification is done by these two techniques: pixel based and object based. The Pixel-
based approaches work on each individual pixel and extract information from remotely sensed 
data based on spectral information only (Gupta and Bhadauria 2014). The increased variability 
that comes naturally with high spatial resolution imagery confuses traditional pixel based classi-
fiers resulting in lower accuracies (Aggarwal et al. 2016). The problems faced by pixel based in 
high resolution imagery approaches are overcome by the Object Based image classification. 
Object-Based information interprets an image not only by single pixel but also in meaningful 
image objects and their mutual relationships (figure 13). Object-based information extraction not 
only depends upon spectrum character, but also on geometry and structure information (Ag-
garwal et al. 2016).  
 
A concept scheme of pixel versus object based classification is shown in figure 12 and an ex-
ample is shown in figure 13. 
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Figure 12. Taken from Crommelinck et al. (2016). Pixel-based and object-based feature extrac-
tion approaches aim to derive low-level (only pixels) and high-level features (includes aggrega-
tion of pixels) from images. Object-based approaches may include information provided by low-
level features that is used for high-level feature extraction 
 

 
 
Figure 13. Taken from Xiaoxiao, L and Guofan, S. (2014). A comparison between pixel-based 
and object-based classification results. The first row shows the image of original images with 
RGB band combination display. The second row of images is the pixel-based classification re-
sults. The third row of image is the object-based classification results. Each column shows the 
same location on the map.  
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Object-based image analysis adds an extra dimension to image classification by reducing noise 
and small variation, and by including form of objects, such as skeleton and width, as additional 
variables. One is no longer so dependent on the actual values in the single pixel giving unique 
signals. Neighboring pixels tend to be similar even if they have a slightly different combination of 
values in different bands (image segmentation aims at internal homogeneity and difference to 
neighboring objects). In deep learning it is thus the composition of pixel values in a larger neigh-
borhood that counts. By using these neighborhoods, it should in principle be easier to find struc-
tures or patterns that allow the computer to separate classes such as wetlands through the deep 
learning process. This is in accordance (Aggarval et al. 2016) which observed that the object-
based techniques shows higher accuracy in classification process than the pixel-based tech-
nique because pixel based can’t satisfy the high resolution satellite data properties and it pro-
duced data redundancy  
 
In several of the articles that compare object-based versus pixel bases models, the object based 
model gives the best result and achieves the highest accuracies (Aggarval et al. 2016, Mah-
dianpari et al. 2019). No paper stated that the pixel based model was superior of the object 
based. In a similar literature study of ours, object-based classifications were found to be superior 
to pixel-based classifications using optical (~6.5% improvement) and SAR (~6% improvements) 
imagery in comparative cases in the study by (Mahdianpari et al. 2020a). However, the opposite 
was reported in several other papers. So, the literature is inconclusive when either the one or 
the other is used. Generally, pixel-based classifications are used on coarse resolution imagery 
(greater than 30m pixel resolution), but object-based classifications are used on high resolution 
imagery (lower than 10m pixel resolution). Therefore one would expect object-based classifica-
tions to be more accurate when incorporating aerial imagery, drone or LiDAR data, but when 
using Landsat or Sentinel data, pixel-based classification may be as accurate. This of course 
depends on the size of the mapping units one is aiming at. If you want to capture small or narrow 
wetlands, segmentation of 10m pixels will likely be just too coarse. But if you want to get the 
larger wetland areas at national scale even segmenting 10m pixels can be suitable. Experience 
so far is that deep learning models give better results than traditional methods, but it must be 
emphasized that the method is still new in remote sensing contexts (Mahdianpari et al. 2020a). 
 
5.2.6 Classifier 
 
Remote sensing data and ground-truth data are used to train and validate a model which classi-
fies the study area into wetland (or other land cover) classes. There are a range of classifier 
types used in the literature, but the majority are some type of machine learning model. The most 
used classifiers are decision tree models, followed by support vector machines and then neural 
networks (figure 10). We noted that the most common singular model used was the Random 
Forest classifier (Breiman 2001) which is a flexible decision tree model. There is no clear differ-
ence in mapping accuracy between these classifiers based on our literature review, however the 
lack of difference may be confounded by other factors such as the remote sensing data used or 
the ground-truth data size etc. Nevertheless it is insightful to note that many studies compared 
different classifiers within their mapping case studies before they generated a final wetland map. 
It is relatively quick to deploy different modelling frameworks using the same remote sensing and 
ground-truth data to test the effect on accuracy for your given study area. Furthermore, some 
modelling frameworks such as Neural Networks and Random Forests can output a heatmap of 
wetland probability scores per class. This continuous variable output is often more relevant be-
cause in reality nature exists on a continuum and not discrete categories. Collection of training 
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data for deep learning models should however consist of neighborhood pixels that are marked 
("tagged") with the correct class or area type. Validation ground truths, on the other hand, can 
be objects or pixel-based as before.  
 
 
5.2.7 Time consumption of different methods  
 
Most studies did not report on the time it took to create a wetland map, however based on the 
results from the expert online questionnaire and one study that did describe how long it took, it 
appears that collecting training data is the most time-consuming part of the process. Mahdianpari 
et al. (2019) spent 3 field-seasons collecting training data for 1200 wetland and non-wetland 
sites. A respondent from the expert online questionnaire  reported a similar amount of time spent 
mapping landcover in Antartica. Of the various techniques used to collect training data, in-situ is 
the most time-consuming, taking up to years to capture sufficient data on the range of wetlands 
and other land cover types. Image labelling is considerably less time-consuming because it does 
not require visiting sometimes inaccessible areas. This technique is not season dependent 
meaning data can be captured at any time of the year since it relies on aerial photographs or 
high-resolution satellite imagery from dates with ideal conditions. Furthermore, there are many 
image labelling Software packages that facilitate this task and provide an accuracy assessment 
of the training data to ensure quality. The time required for image labelling ranges from days to 
months depending on the size of the study area and the number of classes. The fastest way to 
collect training data is by using points or polygons extracted from reference maps, however this 
is often also the lowest quality training data, but yet this depends on collection purpose and how 
well maintained the dataset is. To compensate for inaccuracies in the reference data, a very 
large number of training data are required, which makes the classification process including 
training and tuning, more resource-intensive. 
 
 
5.2.8 Costs of different methods 
 
Not much information on costs was provided by the literature review because it is uncommon to 
report such details in academic papers. The answers from the questionary varied significantly, 
but several emphasized that it is hard to estimate costs for university research involving interna-
tional collaboration and student theses. Another referred to the fact that this depends dramati-
cally on the request as well as the spatial resolution. One respondent wrote that they did not 
purchase any data. Only the salary and computer costs of a post doc, were included. A final 
respondent answered that since the wetlands was only one part of a land cover mapping project, 
a quick answer could not be given. A respondent’s estimate that could be comparable to Norwe-
gian costs indicated 300,000 CHF (Swiss francs) which equals 2,778,941 NOK, while an another 
Norwegian respondent indicated 400,000 NOK. The overall cost of a wetland mapping project 
will depend on the amount of existing ground-truth data available and the quality of the data. If 
new ground-truth data is required or if image interpretation is required to clean and supplement 
existing data, then project costs can quickly increase significantly. An important factor will also 
be timeliness required for the analysis. How quick changes in nature will and can occur defines 
also how often data needs to be updated 
 
Costing of satellite data will also vary substantially over time given market fluctuations and tech-
nological advancements, however, we have attempted to provide a rough overview of costs in 
figure 8C. In summary, satellite data at spatial resolutions of 10m or coarser (I.e. Sentinel and 
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Landsat) are free, but very high resolution satellite data (< 5m) and airborne remote sensing is 
very expensive at a national scale. In the future, is a possibility that Norway can access this type 
of data via Copernicus.  However, in Norway LiDAR and Orthophotos are available for the coun-
try for mapping and research purposes so it may be feasible to incorporate them into national 
mapping. However, they are supposed to be in every fifth year and the question is if this is fre-
quent enough for operational monitoring. Lyndstad & Davidsen (2021) mapped wetlands using 
visual interpretation of stereo aerial photographs. However, this approach suffers from the same 
problem of not being able to monitor operationally over time because it is expensive for larger 
areas. They report that they can map areas at a rate of between 20 and 50km2 per hour. Given 
that Norway covers approx. 380 000 km2, this manual approach would take about 70 person 
months to generate a complete map of bogs over the country. Financial budgets of that magni-
tude could rather be directed to purchasing 3-5m satellite imagery from companies like Planet. 
Norway’s Ministry of Climate and Environment recently awarded an international contract to 
Kongsberg Satellite Services for 405M NOK to provide Planet satellite imagery over tropical for-
ests. If Norway can direct similar funds to purchasing imagery over Norway itself, then there are 
many more possibilities for ecosystem mapping and monitoring. 
 
 
5.2.9 Ecological condition and influencing factors 
 
Few studies in our literature review measured the ecological condition of wetlands or their influ-
encing factors. Rather, most studies focussed on mapping the wetland extent alone. It therefore 
appears as though remote sensing of wetland condition and its influencing factors is still in its 
infancy and there is scope for more research in this direction. This is particularly important given 
the strong coupling between climate and ecosystem disturbance from anthropogenic develop-
ment. By mapping infrastructure development and wetland disturbance over time, we can more 
accurately quantify carbon emissions and the effects on climate change. 
 
In order to map and monitor the condition or dynamics of the wetland (e.g. vegetation productiv-
ity, vegetation stress or nutrient cycles) the biochemical and biophysical properties of the wetland 
are needed (Adam et al. 2010). Leaf water content and biomass are amongst the most important 
biochemical and biophysical properties of wetland vegetation. Biomass is directly linked to plant 
productivity and carbon sequestration. It has been estimated using the near-infrared band and 
spectral indices. A study by Moreau et al. (2003) found that the growing season is the best time 
to estimate biomass using remote sensed data. There has been very little research on estimating 
water stress on vegetation in wetlands because it is very challenging to distinguish between 
vegetation water content and atmospheric vapour, however Adam et al. (2010) describe studies 
that show potential for using red-edge data, NDWI (normalised difference water index) or WI 
(water band index). The Leaf Area Index (LAI) is an important indicator of photosynthesis, evap-
otranspiration, primary productivity and respiration (Adam et al. 2010). Vegetation indices, such 
as NDVI have a strong linear relationship with LAI and can therefore be used to estimate carbon 
sequestration (Xue & Su 2017).  
 
Only five studies actually quantified human impact on wetland ecosystems through remote sens-
ing. This was done by mapping the change in wetland extent over time and the agent of change 
was defined based on the land-use replacement (e.g. wetland conversion to cropland is an an-
thropogenic disturbance). Breili et al (2020) used LiDAR data in Norway to map flood risk along 
the coastline – an example of mapping the human-nature interface. Although this was not fo-
cussed on wetlands, a similar approach may be applied to mapping wetland condition or the 
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impact of human infrastructure on wetland flooding dynamics. However, they report a root-mean-
square error of 26cm for the LiDAR data which may introduce too much uncertainty in some 
wetland cases where water level changes are smaller than this. The report by Blumentrath et al. 
(2019) contains a simple and relative reliable example of identifying ditches in LiDAR terrain 
models. 
 
5.2.10 Area estimates and time series  
 
Wetlands may cover as much as 9% of the Earth's surface. Peatlands may represent up to one-
third of the world's wetlands, occupying more than 400 million hectares. Ten countries have over 
2 million hectares of peatlands alone, with Canada leading at nearly 130 million hectares (repre-
senting about 18% of the country) followed by the former USSR at 83 million hectares (Tiner 
2009). demonstrates the area of Canada occupied by different wetland and non-wetland classes. 
Amani et al. (2019) estimated however in their study by using remote sensing that 36% and 64% 
of the total area of Canada (3,650,798 km2 and 6,459,990 km2, respectively) are covered by 
wetlands and non-wetlands, respectively. The most dominant wetland classes were marsh and 
swamp covering approximately 12% and 8% of Canada, respectively. Peatlands (i.e., bog and 
fen), which are important for carbon storage, also cover a large portion of Canada (about 10%). 
Lidberg et al. (2020) state that comparisons between field data and available maps show that 
64% of wet areas in the boreal landscape in Sweden are missing on current maps, and that 
forested wetlands and wet soils near streams and lakes are those primarily missing . 
 
Coverage of wetlands over Norway remains uncertain because different data source used (e.g. 
AR5 vs N50 vs AR18X18) ends up with different percentage estimates. It is though a common 
understanding that also wetland coverage (10 %) in Norway are underestimated, particular in 
the mountains and on the west coast. 
 
A time-series trend analysis performed by Nhamo et al. (2017) on the delineated wetlands in 
South Africa shows a declining tendency from 2000 to 2015, which could worsen in the coming 
few years if no remedial action is taken. Wetland area declined by 19% in the study area over 
the period under review. A time series investigation by Mahdianpari et al. (2020b) showed that 
bog, followed by swamp and fen, were the most common wetland classes across all time periods 
generally, and marsh wetlands were the least common wetland classes across all time periods 
respectively. Wulder et al. (2017) combined a time series of land cover maps derived from Land-
sat data at 30-m resolution to inform on spatial and temporal changes to non-treed and treed 
wetland extents over Canada’s forested ecosystems (>650 million ha) from 1984 to 2016. Over-
all, for the period, 1984 to 2016, they found the extent of wetlands  in Canada’s forested ecosys-
tems to be stable, with some regional variability, often resulting from offsetting decreases and 
increases within a given ecozone 
 
 
 

5.3 Grey and overlooked literature 
 
We reviewed some grey literature Norwegian reports: Kylling et al. (2021), Lyngstad & Davidsen 
(2021), Joosten et al. (2015) and Lauknes et al. (2012). In addition we added on Swedish paper 
that was not covered by our literature search.  
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Kylling et al. (2021) explores what opportunities that Sentinel-5P can provide to develop products 
for annual national coverage maps with area estimates with emphasis on the greenhouse gas 
methane. The possibility of detecting emissions from three systems was assessed: wetlands 
(bogs), areas in the Arctic with permafrost, and oil and gas activities on land and in the sea. With 
the sensitivity of the Sentinel-S5P, they conclude it will only be possible to observe large individ-
ual discharges in connection with accidents at land-based oil and gas operations given favorable 
observation conditions. Generation of annual national coverage maps for methane was consid-
ered possible. Lyngstad & Davidsen mapped raised bogs in the Nordland county of Norway by 
digitizing them from aerial photographs in stereo model on screen. While this approach does use 
remote sensing imagery, it is a manual classification which is very time consuming. Neverthe-
less, such methodologies can be used to supplement field-based ground truth data for training 
and calibrating machine learning models. Joosten et al. (2015) did a review of the possibilities of 
monitoring greenhouse gas fluxes from remote sensing. They concluded back in 2015 that sen-
sors used in remote sensing did not yet have good enough resolution to monitor greenhouse gas 
flux accurately. However they stated that rapid improvements were expected, but so far neither 
instruments nor planned instruments were good enough. Lauknes et al. (2012) did a pilot study 
on using remote sensing including aerial photographs, high resolution satellite imagery and syn-
thetic aperture radar imagery for monitoring of palsa peatlands in northern Norway. They found 
the method useful and showed changes in different palsa formations (e.g. reduced area of palsas 
and increased number of water ponds). New palsas could also be detected, but they might also 
be confused with ordinary lawn fens. 
 
 
A study by Ågren et al. 2014 ‘Evaluating digital terrain indices for soil wetness mapping – a 
Swedish case study’ did not show up among the papers in our literature review. They use digital 
terrain indices from high resolution LiDAR digital elevation models to predict soil wetness. The 
found that topographic wetness index (TWI) and the newly developed cartographic depth-to-
water index (DTW) were the best soil wetness predictors. This is potential very useful ecological 
base map for mapping wetlands in Norway as well because Norway also has good coverage of 
LiDAR data. However, as the LiDAR data is seldom updated which make this approach less 
useful for time series predictions.  
 
Also a study by Lidberg et al. (2021) was overlooked. They modelled missing wet areas in Swe-
den from high-resolution digital elevation models, using indices such as topographical wetness 
index and depth to water. By using soil moisture data from the National Forest Inventory of Swe-
den as a training dataset, they showed that it was possible to combine information from several 
indices and thresholds, using machine learners, to improve the mapping of wet soils 
(kappa = 0.65). In addition, the national wetland inventory of Sweden (VMI) has during a 25 year 
period surveyed the wetlands of Sweden below the mountain range (Gunnarsson and Löfroth 
2014). They found that in Sweden only about 20% of the wetlands are untouched. In the whole 
country 11% of the wetlands were assigned to the highest nature conservation class (class 1), 
24% to class 2 (high nature conservation values), 51% to class 3 (from high to low nature con-
servation values) and 14% to class 4 (low values). A changed hydrology caused by drainage 
systems are the most common impact on wetlands, followed by clear-cuttings and road con-
structions. 
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5.4 Limitations and opportunities for further research 
 
Due to time and budget constraints, we took a pragmatic approach to the literature review and 
questionnaire survey by focussing on wetland mapping studies since 2015 that passed a number 
of exclusion criteria outlined in table 3. As a result, we did not cover the literature focussing 
specifically on mapping ecological condition (e.g. carbon storage) or influencing factors (e.g.  
technical interventions / infrastructure). To adequately cover these topics one would need to 
perform a separate literature review for each, where the search terms are focussed on concepts 
including infrastructure, buildings and roads, trenching / drainage, overgrowth and woody plant 
encroachment, cultivation, fertilization and variables relevant to the assessment of climate 
change impacts. Concerning ecological status variables there was little information to gain from 
the current literature regarding assessments of which ones of these that can be implemented 
immediately: biomass and volume above ground, water saturation, shrub and wood layers.  
 
Another pragmatic decision we made was to replicate the literature search terms adopted by 
Mahdianpari et al (2020a) so that we could build on to their meta-analysis dataset from North 
America. However, we acknowledge that their search terms specifically included “Landsat” and 
“Sentinel” which may have biased our results to having less representation of other satellite or 
airborne sensors. 
 
Due to the variety of wetland classification systems, it is difficult to translate them directly to the 
suggested classes summed up in Magnussen et al. (2018) or into NiN (Halvorsen et al. 2020). 
But it is possible that this can be done when designing a remote sensing project in Norway using, 
for example, the Canadian typology as a guideline for what level of classification detail is realistic 
to map. 
 
It is also worth noting that we excluded studies that mapped mangrove forests and coastal wet-
lands due to time constraints and the fact that they are not as relevant to the Norwegian context 
as inland peatlands. Coastal wetlands in Norway were also recently covered by Haarpainter et 
al. (2020). However, a further reading of this literature may be beneficial because, for example, 
methods to map inundation in mangrove wetlands using radar satellites may be useful for map-
ping wetlands in Norway that are overgrown by trees. It is also worth mentioning that the habitat 
classification system Nature in Norway includes 13 main wetland habitat types. This is about 
double the median number of classes in found in our literature study. So our literature study does 
not provide much information on how to deal with such a large variety of wetland sub-classes 
which are likely to have very similar spectral signatures and therefore be difficult to map accu-
rately. 
 
Finally, we did not perform a systematic screening of the grey literature. This is perhaps why we 
did not find many wetland mapping studies from Norway  
 
 
 

5.5 Recommendations for Norway 
 
Based on the literature review, expert online questionnaire, and personal experience as re-
searchers at NINA, we provide recommendations for a Norwegian wetland inventory. It is im-
portant to note that these recommendations may change significantly depending on the exact 
specifications of the mapping project (e.g. budget, accuracy requirement etc.).  
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• The wetland typology used should be a fusion of the NiN system and international stand-
ard systems such as the Cowardian system. The decision on the typology should be 
made in collaboration between botanists and remote sensing practitioners. Botanists will 
ensure the theoretical integrity of the classification, and remote sensing practitioners will 
advise on what is/isn’t possible to distinguish with satellite imagery. Based on the fre-
quency of wetland classes used in the literature (figure 5), it appears as though it is 
possible to distinguish fens (“jordvannsmyr” på norsk), marsh, swamp (“sump”), and bog 
(“nedbørsmyr”). It may therefore be unrealistic to try map more detailed hierarchies as 
defined in NiN. 

• Fusing optical and radar data will not only provide complementary data on the spectral, 
structural, textural and dielectric characteristics, but also compensate for the frequent 
cloud-cover in Norway. 

• Sentinel-1 and Sentinel-2 are open-source data, available at 10m spatial resolution. As 
both are polar-orbiting satellites, the repeat time is much less for countries near the Polar 
regions. While these satellites do not have a long historical record (launched in 2014 and 
2015), they do have a long future ahead, making them useful for monitoring wetlands. 

• Sentinel-1 data should be acquired in dual polarization mode (HH/HV) with both high and 
low incidence angles, where possible. HH and HV measure the horizontal and vertical 
radar waves returned by the earth’s surface. The information in each is different. Sur-
faces like trees, shrubs, dry and rough soils are likely to cause change in polarization are 
often characterized by volume scattering. The distribution of volume scattering over the 
image can be compared with HH and HV. The incidence angle can significantly affect 
the response in HH and HB particularly for vertically oriented structures like trees or 
mountains. Given the above, it is important to collect information in HH and HV at multiple 
incidence angles so that the machine learning algorithm has enough information to 
“learn” what a wetland “looks like” from a SAR sensor. This will improve the classification 
accuracy. 

• The national LiDAR and orthophoto datasets in Norway have not yet reached full cover-
age and also excludes some high alpine areas which may contain wetlands. Further-
more, the LiDAR and orthophoto data is not updated annually, however though regularly, 
and therefore does not allow annual operational monitoring. Therefore, these high reso-
lution datasets should be used to clean, quality-check, and possibly contribute additional 
ground-truth data, but cannot be used in the overall classification model. In the case that 
the Norwegian Environment Agency want a single baseline wetland map of Norway that 
is not regularly updated, then they can consider using the LiDAR and orthophotos within 
the classification model. 

• Remote sensing data should ideally be processed in a cloud-based platform because of 
the scale of the map and the amount of data, especially when fusing multitemporal and 
multisensor approaches which require processing of a significant amount of data. Using 
GEE as the processing platform is advantageous because it already hosts Sentinel data 
and private-access copies of the Kartverket LiDAR data have been uploaded and are 
ready for processing. GEE can be used for generating a pilot national wetland map, how-
ever operational monitoring into the future would require evaluating the GEE commercial 
programme as a sustainable solution. GEE is meant for research and development pur-
poses and it may not be used in an operational manner for commercial purposes. How-
ever, GEE is developing a commercial programme which may allow for adoption in the 
governmental and private sectors. Alternatively other cloud-based remote sensing plat-
forms should be considered. 
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• Ground-truth data for wetlands in Norway exists in the form of NiN, ANO, AR5 and N50, 
however the wetland definitions and data qualities vary substantially. Therefore one will 
need to invest significant time into harmonizing these ground-truth datasets and quality 
checking them using very high resolution orthophotos (Norge i bilder, norgeibilder.no) 
and satellite imagery. If budget is available, fieldwork should be performed to visit a num-
ber of wetlands sites to verify the accuracy of these photo-interpreted datasets.  

• Spectral indices, such as NDVI, NDWI and NDMI are recommended for distinguishing 
between wetland types and for assessing the condition of wetlands. More importantly, 
spectral-temporal indices (e.g. standard deviation in NDVI over the year) give information 
on the phenology and seasonality of land cover which is an important factor in distin-
guishing wetlands. 

• We recommend testing several classifiers before performing the wetland inventory, a 
technique that is not computationally intensive and is often done in other studies. Partic-
ularly, we recommend testing both Random Forest decision trees and Fully Convolu-
tional Neural Networks. These are two of the most progressive models currently used in 
the literature and are thus most likely to yield best results. Note that model training and 
tuning is usually quite time consuming when done carefully. 

• Sufficient training data should be collected such that a portion can be kept aside and only 
used for final validation of the wetland map. 

• We recommend following the Canadian wetland classifiction: fen (“jordvannsmyr” på 
norsk), marsh, swamp (“sump”), and bog (“nedbørsmyr”) (see example from Canada in 
figure 14). 

• For ecological condition and influencing factors we recommend that we need more re-
search before they can be mapped at a national extent. Importantly, Norway need to 
invest in collecting ground-truth data on ecological condition parameters. 
 

 
 
Figure 14. First Canada-wide wetland map (taken from Amani et al. 2019). 
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6 Conclusion 
 
Wetland remote sensing at national to continental extents is still in its infancy. The literature is 
largely focused on methods development at landscape scales with little information on opera-
tional mapping solutions. However, we synthesize information from the literature and expert 
online questionnaire to provide recommendations for developing a national wetland map of Nor-
way. As a disclaimer, we emphasize that our recommendations may change significantly de-
pending on the specifications of the mapping project. The remote sensing methodologies used 
are largely dependent on the project budget, spatial scale, desired accuracy and intended use 
(baseline map vs operational monitoring). Therefore our recommendations are generalizations 
informed both by the consensus in the literature and the experience of NINA researchers. In the 
case of a wetland baseline map, our recommendations would be to combine Sentinel 1 and 2, 
together with LiDAR and possibly aerial photography to form the basis (a ‘stack’) for classification 
of a single time-point base map of wetlands in Norway. In the case of an operational and annually 
updateable wetland mapping, we recommend only including Sentinel 1 and 2 data in the classi-
fication due to their spatial and temporal availability and consistency. However, aerial photos will 
be required to collect sufficient ground truth data and to clean and quality assure existing field 
inventory data from AR5, NiN and N50. Landsat and historical aerial photos can be used for 
information about historical wetland coverage, however accuracies will be reduced for this retro-
spective analysis and conclusions drawn about ecological condition (e.g. carbon emissions or 
storage) will need to be done with caution. We recommend using Google Earth Engine as a 
processing platform, at least for prototyping a production workflow, although there are many 
alternative platforms available on the market. Recommended inputs to machine learning models 
include optical bands, radar backscatter and indices such as NDVI, NDWI and NDMI. A resolu-
tion of 10m can be ideal for a nationwide model for wetlands in Norway such that smaller wet-
lands can be detected. It is recommended to use both pixel-based and object-based methods in 
combination in order to leverage the advantages of each. The pixel-based methods can be used 
to 'remove' area types that are not related to wetlands such as snow, ice, bare rock and so on. 
Object-based methods can be used to separate wetlands from the remaining area types. Surface 
models from LiDAR can be used, among other things, to separate wooded areas from open 
areas. LiDAR data can also be used to create derived terrain variables such as slope and terrain 
aspect which can be important predictors, especially in mountain areas. 
 
The lack of studies in Scandinavia means that there is little experience with mapping of wetlands 
by using remote sensing in Norway. This also applies to studies on the observation of ecological 
condition and human disturbances from remote sensing. More research needs to be performed 
in this direction before remote sensing methods can be adopted to operationally monitor these 
factors at a national extent. 
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8 Appendix 
 

 

Appendix A. Description of the Cowardin classification system used in the USA (1979). The 
figure is takes from the review of remote sensing for wetland classification by Mahdavi et al. 
(2017). 



NINA Rapport 2014 

 
59 

 
 

 

 
 
Appendix B. The Canadin Wetland Classification System (CWCS, 2017) taken from Mahdavi 
et al. (2017).  
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