| 1  | Bearing the brunt: Mongolian khulan (Equus hemionus hemionus) are exposed to multiple                                                                            |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2  | influenza A strains                                                                                                                                              |
| 3  | Eirini S. Soilemetzidou <sup>1</sup> , Erwin de Bruin <sup>2</sup> , Kathrin Eschke <sup>3</sup> , Walid Azab <sup>3</sup> , Nikolaus Osterrieder <sup>3</sup> , |
| 4  | Gábor Á. Czirják <sup>1</sup> , Bayarbaatar Buuveibaatar <sup>4</sup> , Petra Kaczensky <sup>5,6</sup> , Marion Koopmans <sup>2</sup> , Chris                    |
| 5  | Walzer <sup>5,7</sup> , Alex D. Greenwood <sup>1,8#</sup>                                                                                                        |
| 6  |                                                                                                                                                                  |
| 7  | <sup>1</sup> Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin,                                                           |
| 8  | <sup>2</sup> Erasmus Medical Centre, Rotterdam, the Netherlands                                                                                                  |
| 9  | <sup>3</sup> Institut für Virologie, Freie Universität Berlin, Berlin, Germany                                                                                   |
| 10 | <sup>4</sup> Wildlife Conservation Society, Mongolia Program, Ulaanbaatar, Mongolia                                                                              |
| 11 | <sup>5</sup> Research Institute of Wildlife Ecology, University of Veterinary Medicine, Vienna, Austria                                                          |
| 12 | <sup>6</sup> Norwegian Institute for Nature Research, Trondheim, Norway                                                                                          |
| 13 | <sup>7</sup> Wildlife Conservation Society, New York, USA                                                                                                        |
| 14 | <sup>8</sup> Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany                                                                        |
| 15 | #Address correspondence to: Alex D. Greenwood, greenwood@izw-berlin.de, Alfred-Kowalke                                                                           |
| 16 | Str.17, 10315 Berlin, Germany. Phone: +49305168233, Fax: +49305126104                                                                                            |
| 17 |                                                                                                                                                                  |
| 18 |                                                                                                                                                                  |
| 19 |                                                                                                                                                                  |
| 20 |                                                                                                                                                                  |

#### 21 Abstract

The majority of influenza A virus strains are hosted in nature by avian species in the orders of 22 Anseriformes and Charadriformes. A minority of strains have been able to cross species 23 boundaries and establish themselves in novel non-avian hosts. Influenza viruses of horses, 24 donkeys, and mules represent such successful events of avian to mammal influenza virus 25 adaptation. Mongolia has over 3 million domestic horses and is home to two wild equids, the 26 Asiatic wild ass or khulan (Equus hemionus hemionus), and Przewalski's horse (Equus ferus 27 przewalskii). Domestic and wild equids are sympatric across most of their range in Mongolia. 28 Epizootic influenza A virus outbreaks among Mongolian domestic horses have been frequently 29 recorded. However, the exposure, circulation and relation to domestic horse influenza A virus 30 outbreaks among wild equids is unknown. We evaluated serum samples of Asiatic wild asses in 31 32 Mongolia for antibodies against influenza A viruses, using modified protein microarray 33 technique. We detected antibodies against hemagglutinin (H) H1, H3, H5, H7, H8 and H10 influenza A viruses. Asiatic wild asses may represent a previously unidentified influenza A virus 34 reservoir in an ecosystem shared with populations of domestic horses in which influenza strains 35 circulate. 36

37

38 Keywords: Influenza A, virus, serology, Asiatic Wild Asses, exposure, antibodies

39

# 40 Introduction

Historically, two major strains of Equine Influenza virus (EIV) have caused influenza
virus outbreaks in domestic equids. The first identified EIV, influenza A/H7N7 or equine-1, was
isolated from horses in 1956 [1]. Influenza A/H3N8 or equine-2 was subsequently reported and

| 44 | remains the major cause of equine influenza [2]. While H7N7 EIV is thought to be equine-              |
|----|-------------------------------------------------------------------------------------------------------|
| 45 | specific with limited but unique variation in the HA gene [3], H3N8 EIV appear to bind to avian-      |
| 46 | like receptors in the upper respiratory tract of horses suggesting a recent avian origin of the       |
| 47 | strain[4]. Further evidence horse of susceptibility to avian like influenza viruses is the occurrence |
| 48 | of two outbreaks in China in 1989 and 1990, caused by H3N8 virus, antigenically related to H3         |
| 49 | viruses of avian origin [5]. Moreover, previous H3N8 influenza virus outbreaks in dogs [6], their     |
| 50 | isolation from a Bactrian camel in Mongolia [7], and some evidence for human infection [8],           |
| 51 | indicate that horses are not the only host for H3N8 viruses. Mongolia, with a current population      |
| 52 | of domestic horses exceeding 3 million, has suffered several EIV outbreaks [9]. The first two         |
| 53 | outbreaks, 1974-75 and 1983-84, were caused by H7N7 EIV and the last three, 1993-94, 2007-08          |
| 54 | [10] and 2011 were caused by H3N8 EIV. After 1984 [11], H7N7 EIV was not isolated and is              |
| 55 | considered extinct in the region, while H3N8 seems to circulate in low prevalence [9].                |
| 56 | In addition to domestic horses, Mongolia is home to the Przewalski's horse (Equus ferus               |
| 57 | przewalskii), and hosts the biggest population of Asiatic wild ass (or khulan, Equus hemionus         |
| 58 | hemionus) in Central Asia [12]. The distribution of khulan overlaps with other free-living            |
| 59 | ungulate species, such as goitered gazelles (Gazella subgutturosa), Mongolian gazelles                |
| 60 | (Procapra gutturosa), and free ranging Bactrian camels (Camelus ferus). Most importantly their        |
| 61 | distribution overlaps with local livestock including domestic horses which outnumber wild             |
| 62 | ungulates by several orders of magnitude. Disease transmission between domestic and free-living       |
| 63 | populations is possible through sharing pasture and waterholes. EIV outbreak dynamics in wild         |
| 64 | equids from Central Asia are poorly understood. In 2007 an H3N8 influenza                             |
| 65 | (A/equine/Xinjiang/4/2007) outbreak was reported in a Przewalski's horse population in the            |
| 66 | Chinese part of the Gobi with a 5% mortality rate [13]. Influenza exposure in khulans, however,       |

remains uncharacterized. Mongolia also has a high diversity of wild birds, including migratory
waterbirds, that use Mongolia as a stop-over during their annual migrations. The Central and the
East Asian flyways passing through Mongolia are critical to influenza ecology (Figure 1).
Therefore, we sought to investigate the exposure to influenza viruses in Mongolian khulan, as a
first step in understanding their role in the ecology of influenza viruses.

72

#### 73 Materials and Methods

The study took place in the Southern Gobi Desert in Mongolia, and was approved by the 74 ethical committee of the University of Veterinary Science in Vienna (ETK-15/03/2016) and the 75 Mongolian Government (05/5656). Twenty-one adult khulan (8 stallions and 13 mares) were 76 anesthetized and nasal swabs, serum and blood samples collected from October 15-19, 2015. The 77 method of choice for efficient chemical capture in the Gobi desert is from a moving jeep. After 78 successful detection of khulan in the steppe, and initiation of the chase, there is a cut off time of 79 15 min for animal welfare reasons which determines when capturing will end. Subsequently, a 80 new khulan group needs to be found before continuing. The time to capture (from detection and 81 initiation of the chase to reversal of the anesthesia to being ready to resume the search for a new 82 animal) for individual animals ranged from approximately 1 hour to several days. 83

The animal sampling expedition was part of a radio collaring project, in which habitat fragmentation, due to new mining-related infrastructures in Southern Gobi was investigated. Khulans were captured in two different locations, one near the mining-infrastructure site and one near the Ergeliin Zoo protected area (Figure 1). All animals were darted from a moving jeep, using a Daninject JM CO2 darting gun [14]. None of the khulan demonstrated clinical symptoms of EIV or other infectious diseases when handled. Samples were stored immediately at -20°C in a portable freezer in Mongolia, transported on dry ice to Austria in full compliance with the
Convention on International Trade in Endangered Species (CITES) and stored at -80 °C until
laboratory analysis at the Research Institute of Wildlife Ecology, University of Veterinary
Medicine, Vienna. Due to field conditions and the absence of a mobile laboratory, blood samples
could not be processed on site, so that only 13 of 21 serum samples could be used and all were
severely hemolysed.

A protein microarray (PA) technique as described previously [15,16,17,18],was used to identify the influenza virus strains in the khulan serum samples. Samples were inactivated in a water bath at 56° C for 4 hours due to regulations for testing of animal samples from foot and mouth disease endemic regions. Serum samples from 3 kulans were tested against different secondary antibodies in order to determinate the highest sensitivity; protein A, protein G and anti-horse. Anti-horse IgG showed highest overall response.

102 Briefly, thirty-two recombinant proteins of different influenza A virus antigens were printed on 16-pad nitrocellulose Film-slides (Oncyte avid, Grace Bio-labs, Bend, OR, USA). All 103 104 presently known influenza A virus HA-types are represented on the array (Table 1), except for bat hemagglutinin type 17 and 18. Slides were treated with Blotto-blocking buffer to avoid non-105 specific binding (Thermo Fischer Scientific Inc., Rockford, MA, USA) for 1 hour at 37°C in a 106 moist chamber. After washing the slides were incubated with a fourfold dilution series of the 107 khulan serum starting from 1:20 to 1:1280. After 1 hour incubation at 37 °C, slides were washed 108 and incubated with a 1:500 dilution of the anti-horse IgG conjugated to Alexafluor 647 (Jackson 109 immunoresearch). A last washing step was done to remove unbound conjugate, after which the 110 slides were dried and scanned using a Powerscanner (Tecan). Spot intensities were determined, 111

and titer heights were calculated by curve fitting using R (R Statistical Computing, version 3.1.0, 112 Vienna, Austria). Since the serum dilutions start from 1/20, titers less than 20 were set to 20. 113

Investigation of viral shedding was attempted from nasal swabs (see Supplementary 114 115 material); however, as no viral material was detected, genome sequences were unavailable introducing uncertainty as to which strains to use in confirmatory serological assays. Protein 116 microarray results were confirmed depending on the availability of strains with a probability of 117 118 being related to the field strains, e.g. horse or avian derived. We used three available strains: one H3 strain (A/equine/Richmond/1/07) that is the equine influenza strain known to circulate 119 worldwide and was included in the protein microarray and two H7 strains, A/Equine Prague/1/56 120 and A/Mallard/Netherlands/12/00). A/Mallard/Netherlands/12/00 is closely related to the H7N7 121 strain A/Chicken/Netherlands/1/03 that was found on the PA. No closely related strain to the 122 123 H7N7 on the PA was available and A/Equine Prague/1/56 was chosen because of its equine origin. 124

Hemagglutination inhibition assays (HI) (see Supplementary material), Virus 125 Neutralization Test (VNT) (Supplementary material) and Single Radial Hemolysis Assay (SRH) 126 were used to confirm the results of PA on a subset of samples. 127

Seven khulan serum samples (both microarray positive and negative) were tested against 128 strains H3N8 (A/equine/Richmond/1/07), H7N7 (A/Equine Praque/1/56), and H7N3 129 (A/Mallard/Netherlands/12/00) using SRH according to the OIE recommendations [19]. Positive

130

and negative reference anti-equine influenza serum were used in each plate as controls. Fresh 131

sheep erythrocytes (obtained from Berlin zoo) and/or chicken erythrocytes (Labor Dr. Merk, 132

Germany) were washed and prepared to a final concentration of 8% in saline/HEPES buffer. 133

Erythrocytes were sensitized with each virus independently, mixed with guinea pig complement 134

(Sigma) and 1% agarose gel, and finally spread on a plate. Holes were punched in the gel and 10 µl of heat inactivated (56°C for 30 min) serum, including positive and negative controls, were added to each well and plates were incubated at 34°C for 20 hours in a humid box. The area of hemolysis was measured and expressed in mm<sup>2</sup>. The assay was repeated two times independently.

140

### 141 **Results**

Viral detection was attempted from nasal swabs using qPCR but no virus could be detected. The result is not surprising as 460 domestic free-ranging Bactrian camels were similarly screened yielding a single influenza A virus positive individual [7]. Considering none of the animals displayed clinical symptoms of infection, the lack of actively shedding individuals is consistent with expectations.

To detect exposure to influenza in non-shedding individuals, a protein microarray (PA) 147 technique testing 32 hemagglutinin recombinant proteins (HA1-part) from type H1 to H16, as 148 described previously [15,16,17,18], was used to profile the antibodies to influenza viruses in the 149 khulan serum (Table 1). Six animals were negative, whereas 7 animals had reactivity detectable 150 by microarray to one or more antigens. These were low levels of reactivity to H5 (2 animals), H8 151 and H10 antigen (1 animal each), and low to moderate titers against H1 (1 animal), and H7 (2 152 animals). Five khulans showed reactivity to H3-08, which is the horse influenza strain known to 153 circulate in Mongolia. This reactivity was specific for the EIV H3 antigen, other antigens 154 (representing strains isolated from humans) were negative (Figure 2). The two khulan serum 155 samples which reacted with H7 antigen, reacted specifically to the Dutch H7N7 strain (H7-03, 156 A/Chicken/Netherlands/1/03), but not to the Chinese H7N9 157

Confirmation of the PA results using hemagglutination inhibition assays was not possible because the serum was severely hemolysed and agglutination was detected in the control well without virus. VNT was tested on a subset of serum samples (Table 2 and 3) using one H3N8 equine, and two H7 strains (see supplemental information). Although minimal replicates were used, VNT did confirm the H3N8 result of the PA, but failed to confirm the H7 result (Table 2 and 3).

164 Single radial hemolysis (SRH) was performed using A/equine/Richmond/1/07, A/Equine

165 Praque/1/56 and A/Mallard/Netherlands/12/00. Two of four H3 positive khulan in the protein

166 microarray reacted with A/equine/Richmond/1/07 with a hemolysis area of 35 and 60 mm<sup>2</sup>. The

167 two samples that could not be confirmed had lower antibody titer as determined by the protein

168 microarray and were likely below the detection limit of the SRH assay (Table 2 and 3). The H7

169 positive khulan in the protein microarray, reacted with both A/Equine Praque/1/56 and

170 A/Mallard/Netherlands/12/00; the hemolysis area was  $35 \text{ mm}^2$ . The hemolysis areas of positive

and negative control serum were 148 and 12  $mm^2$ , respectively.

172

## 173 Discussion

Although we could not detect viral genomes to further define the strains circulating among wild equids, our serological results suggest that equids may be exposed to more influenza viruses than previously considered. Virus detection is often limited by the short window in which the virus is present, and therefore screening for antibodies, which often persist longer than the virus itself, provides information about past infections and virus diversity in animal populations [17]. While sampling of twenty-one individual animals may seem low, one has to keep in mind that khulans are extremely skittish animals, and normally flee human presence even when separated by several kilometers distance. Anesthesia and sampling of non-domestic equids,
particularly under the physically challenging and remote environment of the Gobi Desert, can be
difficult, for both animals and humans, and not always successful [14]. Furthermore, khulans are
a red list species globally and nationally and capture permits are granted only after careful
evaluation of the risks and benefits. On these grounds, capture permits for the mere sampling of
an endangered species without an imminent need have little chance of approval.

187 The difficult terrain, with dry river beds, low mountains, bushes, shrubs and desert 188 basins, severely restricts successful outcomes. Capture (from detection and initiation of the chase 189 to reversal of the anesthesia to being ready to resume the search for a new animal) for one 190 individual takes approximately 1 hour under the best conditions but ranges to several days, if 191 khulans are not found in the vast Gobi ecosystem [19]. In our study, the number of animals 192 captured exceeded the expectations for our short 2-week window. These challenges need to be 193 taken into account when evaluating this study.

Our findings suggest that khulans might be susceptible to more influenza A viruses than 194 previous thought, although they may not show any signs of disease. Zhu et al reached a similar 195 conlusion, where he showed in his study, that Mongolian horses are being infected with different 196 AIV, without that resulting to new outbreaks or clinical signs [20]. Despite the low titer values 197 observed, the PA and the other confirmatory assays were largely congruent. The animals, which 198 had higher titers as determined by the protein microarray, could generally be confirmed by 199 additional serological methods. Those with very low titers as determined by the PA were either 200 unconfirmed or only confirmed by one of the additional assays employed. Several other factors 201 also played a role in the outcome of our confirmatory experiments. Besides low titer values, bad 202 field storage conditions and the long inactivation time of serum for several hours at 56°C likely 203

degraded the samples and affected the readout of the assays. Moreover, without genomic
information, it is also unclear which exact H3 and H7 strains infected the khulans which likely
reduced the detection limit of the confirmatory assays as it is unlikely we used the same antigens
that confronted the khulans. Titers were also likely low because all animals were clinically
healthy when captured and sampled [21,22].

209

210 The most commonly detected antibodies were against H3 EIV HA1 antigens, consistent 211 with data on low vaccination rates and therefore an ongoing circulation of these viruses among Mongolian horses [9,10]. We found evidence for exposure to influenza viruses with a 212 213 hemagglutinin of subtype H7. H7N7 equine influenza is considered extinct in the region, although some studies still report serological evidence of the strain [23]. The protein microarray 214 and confirmatory SRH reacted both with H7N7 A/Equine Praque/1/56 and H7N3 215 216 A/Mallard/Netherlands/12/00. SRH, used in our study as a confirmatory test, has been demonstrated to be the most sensitive serological assay for equine influenza viruses [24]. SRH is 217 218 able to distinguish closely related strains, and detect small quantities of viral antigen [25]. Considering our results, co-circulation of both subtypes cannot be excluded. Other H7 subtypes 219 circulate in wild birds in Southeast Asia and viral isolation would further clarify to which 220 specific H7 influenza virus khulan might be exposed in Mongolia. From our results, we could 221 not determine whether the khulans were infected with equine derived H7 strains or were directly 222 infected by waterfowl. Positive khulans against H1 strains may have been infected during an 223 224 H1N1 pandemic in 2009 [26]. Sajid et al. [27] reported similar results in horses in Pakistan during an EIV outbreak. Two khulans had antibodies against H5 influenza viruses. Similar 225

results have been reported for donkeys, a domestic equid, suggesting equids are susceptible tohighly pathogenic H5N1 influenza strains [28].

Individual animals were positive for HAs of influenza A H8 and H10, suggesting that sporadic infections with viruses belonging to these subtypes have occurred. However, we cannot exclude that multiple known or unknown strains of H1, H5, H8 and H10 cross reacted in the microarray assay due to the haemolytic nature of the khulan serum or that the viral strains eliciting the immune response are divergent from known strains. The lack of knowledge of strains circulating in wild animal populations constrains assay confirmation and represents a potential area where further research would be beneficial.

235 A possibility is that these viruses co-circulate with H3N8 among equids in Central Asia, but occasional introduction from exposure to wild birds, other mammals or their droppings is a 236 possible alternative [29]. In a harsh steppe-desert ecosystem such as the Gobi Desert, water can 237 238 be scarce resulting in diverse species congregation at waterholes which may increase disease transmission. The upper respiratory tract of the horse expresses both sialic acid 2,3-Gal and 2,6-239 Gal receptors, which are similar to those in wild aquatic birds. Because of this similarity in avian 240 and equine respiratory biology [30], it is possible that equids are susceptible to a broader 241 spectrum of influenza viruses than other mammals. Furthermore, the presence and free 242 movement of the domestic and wild species may be risk factors associated with the influenza 243 244 exposure and transmission.

245

The Results reported here should be considered in the light of some of the field and laboratory
limitations. The lack of research on the topic , the low animal numbers that could be collected
and the nature and preservation of the serum samples exclude statistical analysis, modeling of the

| 249 | data and limit the conclusions that can be drawn. Although susceptibility of wild equids to new  |
|-----|--------------------------------------------------------------------------------------------------|
| 250 | influenza strains may not pose a threat to their conservation status, it might represent an      |
| 251 | overlooked ecological niche for influenza virus and an alternative route of infection for other  |
| 252 | wild and domestic animals. Further epidemiological investigation of wild equids from Central     |
| 253 | Asia should clarify the diversity of influenza virus strains that infect wild equids and help to |
| 254 | establish the monitoring of influenza virus transmission between wild and domestic equids in the |
| 255 | area.                                                                                            |
| 256 |                                                                                                  |
| 257 | Authors and contributors                                                                         |
| 258 | AG, CW conceptualized the study and supervised the study. SES, BB, PK, CW conducted the          |
| 259 | investigation on capturing and sampling the animals. SES, EdB, KE, WA, NO, GC analyzed the       |
| 260 | data. SES, GÁC and ADG wrote the original draft. All co-authors contributed to the writing,      |
| 261 | review and edited of the manuscript.                                                             |
| 262 | Conflicts of interest                                                                            |
| 263 | The authors declare that there are no conflicts of interest                                      |
| 264 | Funding information                                                                              |
| 265 | ESS, NO, GÁC, CW and ADG were funded by a grant from the Leibniz Gemeinschaft (SAW-              |
| 266 | 2015-IZW-1 440).                                                                                 |
| 267 |                                                                                                  |
| 268 | Acknowledgments                                                                                  |

| 269 | We acl                                                                              | knowledge the FUW-Advanced Design Studio for their insightful suggestions for the map    |  |  |  |  |  |  |
|-----|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| 270 | illustra                                                                            | tion. We thank the Ministry of Nature, Environment and Tourism of Mongolia,              |  |  |  |  |  |  |
| 271 | Dashzeveg Tserendeleg, Otgonsuren Avirmed, Enkhtuvshin Shiilegdamba (WCS), Nyamdorj |                                                                                          |  |  |  |  |  |  |
| 272 | Barnuu                                                                              | nd (SEA), Dennis Hosack, and Purevsuren Tsolmonjav (OT) for the logistical and practical |  |  |  |  |  |  |
| 273 | suppor                                                                              | t during khulan capture.                                                                 |  |  |  |  |  |  |
| 274 |                                                                                     |                                                                                          |  |  |  |  |  |  |
| 275 | Refere                                                                              | nces                                                                                     |  |  |  |  |  |  |
| 276 | 1.                                                                                  | Sovinova O, Tumova B, Pouska F, Nemec J. 1958. Isolation of a virus causing              |  |  |  |  |  |  |
| 277 |                                                                                     | respiratory disease in horses. Acta Virol 2:52-61.                                       |  |  |  |  |  |  |
| 278 | 2.                                                                                  | Waddell GH, Teigland MB, Sigel MM. 1963. A NEW INFLUENZA VIRUS                           |  |  |  |  |  |  |
| 279 |                                                                                     | ASSOCIATED WITH EQUINE RESPIRATORY DISEASE. J Am Vet Med Assoc                           |  |  |  |  |  |  |
| 280 |                                                                                     | 143:587–590.                                                                             |  |  |  |  |  |  |
| 281 | 3.                                                                                  | Landolt GA, Chambers TM. 2016. The clinical features, pathobiology, and epidemiology     |  |  |  |  |  |  |
| 282 |                                                                                     | of influenza infections in horses, p. 503–523. In Swayne, DE (ed.), Animal Influenza.    |  |  |  |  |  |  |
| 283 |                                                                                     | John Wiley & Sons, Inc., Hoboken, NJ, USA.                                               |  |  |  |  |  |  |
| 284 | 4.                                                                                  | Joseph U, Su YCF, Vijaykrishna D, Smith GJD. 2017. The ecology and adaptive              |  |  |  |  |  |  |
| 285 |                                                                                     | evolution of influenza A interspecies transmission. Influenza and Other Respiratory      |  |  |  |  |  |  |
| 286 |                                                                                     | Viruses 11:74–84.                                                                        |  |  |  |  |  |  |
| 287 | 5.                                                                                  | Guo, Y., Wang, M., Kawaoka, Y., Gorman, O., Ito, T., Saito, T., Webster, R.G., 1992.     |  |  |  |  |  |  |
| 288 |                                                                                     | Characterization of a new avian-like influenza A virus from horses in China. Virology    |  |  |  |  |  |  |
| 289 |                                                                                     | 188, 245–255. doi:10.1016/0042-6822(92)90754-D                                           |  |  |  |  |  |  |
| 290 | 6.                                                                                  | Parrish CR, Murcia PR, Holmes EC. 2015. Influenza Virus Reservoirs and Intermediate      |  |  |  |  |  |  |

| zie   |
|-------|
| zie   |
|       |
|       |
| 47.   |
| 2     |
|       |
| akh   |
| s in  |
|       |
|       |
| ine   |
| er    |
|       |
|       |
|       |
| 017.  |
| and   |
|       |
| on    |
| es of |
|       |
|       |
|       |

| 314 |     | 2006. Capture and Anaesthesia of Wild Mongolian Equids – the Przewalski's Horse        |
|-----|-----|----------------------------------------------------------------------------------------|
| 315 |     | (Equus ferus przewalskii) and Khulan (E. hemionus). Mongolian Journal of Biological    |
| 316 |     | Sciences 4.                                                                            |
| 317 | 14. | Koopmans M, de Bruin E, Godeke G-J, Friesema I, Gageldonk R van, Schipper M,           |
| 318 |     | Meijer A, Binnendijk R van, Rimmelzwaan GF, Jong MD de, Buisman A, Beek J van,         |
| 319 |     | van de Vijver D, Reimerink J. 2012. Profiling of humoral immune responses to influenza |
| 320 |     | viruses by using protein microarray. Clinical Microbiology and Infection 18:797-807.   |
| 321 | 15. | Freidl GS, de Bruin E, van Beek J, Reimerink J, de Wit S, Koch G, Vervelde L, van den  |
| 322 |     | Ham H-J, Koopmans MPG. 2014. Getting More Out of Less – A Quantitative                 |
| 323 |     | Serological Screening Tool for Simultaneous Detection of Multiple Influenza A          |
| 324 |     | Hemagglutinin-Types in Chickens. PLoS ONE 9:e108043.                                   |
| 325 | 16. | Freidl GS, Binger T, Müller MA, de Bruin E, van Beek J, Corman VM, Rasche A,           |
| 326 |     | Drexler JF, Sylverken A, Oppong SK, Adu-Sarkodie Y, Tschapka M, Cottontail VM,         |
| 327 |     | Drosten C, Koopmans M. 2015. Serological Evidence of Influenza A Viruses in            |
| 328 |     | Frugivorous Bats from Africa. PLOS ONE 10:e0127035.                                    |
| 329 | 17. | Soilemetzidou SE, de Bruin E, Franz M, Aschenborn OHK, Rimmelzwaan GF, van Beek        |
| 330 |     | R, Koopmans M, Greenwood AD, Czirják GÁ (2019) Diet may drive influenza A virus        |
| 331 |     | exposure in African mammals. J Inf Dis in press.                                       |
| 332 | 18. | OIE Equine Influenza. OIE Man. Diagnostic Tests Vaccines Terr. Anim. 2016, Chapter     |
| 333 |     | 2, 1–16, doi:10.1017/CBO9781107415324.004.                                             |
| 334 |     |                                                                                        |
| 335 | 19. | Kaczensky, P., & Walzer, C. (2006). Asiatic Wild Ass collaring mission for the Great   |
| 336 |     | Gobi A Strictly Protected Area in Mongolia, 14.                                        |

| 337 | 20. | Zhu, H., Damdinjav, B., Gonzalez, G., Patrono, L.V., Ramirez-Mendoza, H., Amat,           |
|-----|-----|-------------------------------------------------------------------------------------------|
| 338 |     | J.A.R., Crispell, J., Parr, Y.A., Hammond, T., Shiilegdamba, E., Leung, Y.H.C., Peiris,   |
| 339 |     | M., Marshall, J.F., Hughes, J., Gilbert, M., Murcia, P.R., 2019. Absence of adaptive      |
| 340 |     | evolution is the main barrier against influenza emergence in horses in Asia despite       |
| 341 |     | frequent virus interspecies transmission from wild birds. PLOS Pathogens 15, e1007531.    |
| 342 |     | doi:10.1371/journal.ppat.1007531                                                          |
| 343 | 21. | Dilai, M., Piro, M., El Harrak, M., Fougerolle, S., Dehhaoui, M., Dikrallah, A., Legrand, |
| 344 |     | L., Paillot, R., Fassi Fihri, O., 2018. Impact of Mixed Equine Influenza Vaccination on   |
| 345 |     | Correlate of Protection in Horses. Vaccines 6, 71. doi:10.3390/vaccines6040071            |
| 346 |     |                                                                                           |
| 347 | 22. | El-Hage, C.M., Savage, C.J., Minke, J.M., Ficorilli, N.P., Watson, J., Gilkerson, J.R.,   |
| 348 |     | 2013. Accelerated vaccination schedule provides protective levels of antibody and         |
| 349 |     | complete herd immunity to equine influenza: Equine influenza accelerated vaccination      |
| 350 |     | regimen induces protective antibody levels. Equine Vet J 45, 235–239.                     |
| 351 |     | doi:10.1111/j.2042-3306.2012.00605.x                                                      |
| 352 |     |                                                                                           |
| 353 | 23. | Khan A, Mushtaq MH, Ahmad M ud D, Nazir J, Fatima Z, Khan A, Farooqi SH. 2018.            |
| 354 |     | The Equine Influenza Outbreak in Pakistan 2016: Seroprevalence and Geo-Temporal           |
| 355 |     | Epidemiology of a Large Propagating Outbreak. Pakistan Journal of Zoology 50.             |
| 356 | 24. | Daly J, Daas A, Behr-Gross M-E. 2007. Collaborative study for the establishment of a      |
| 357 |     | candidate equine influenza subtype 2 American-like strain A/EQ/South Africa/4/03 -        |
| 358 |     | horse antiserum biological reference preparation. Pharmeuropa Bio 2007:7-14.              |

| 359 | 25. | Trombetta, C.M., Perini, D., Vitale, L., Cox, R.J., Stanzani, V., Piccirella, S., Montomoli, |
|-----|-----|----------------------------------------------------------------------------------------------|
| 360 |     | E., 2015. Validation of Single Radial Haemolysis assay: A reliable method to measure         |
| 361 |     | antibodies against influenza viruses. Journal of Immunological Methods 422, 95-101.          |
| 362 |     | doi:10.1016/j.jim.2015.04.009                                                                |
| 363 |     |                                                                                              |
| 364 | 26. | Burmaa A, Tsatsral S, Odagiri T, Suzuki A, Oshitani H, Nymadawa P. 2012. Cumulative          |
| 365 |     | incidence of pandemic influenza A (H1N1) 2009 by a community-based serological               |
| 366 |     | cohort study in Selenghe Province, Mongolia: Incidence of pandemic A (H1N1) 2009 in          |
| 367 |     | Mongolia. Influenza and Other Respiratory Viruses 6:e97–e104.                                |
| 368 | 27. | Sajid M, Ahmad M-D, Khan MA, Anjum MA, Mushtaq MH. 2013. Investigation of                    |
| 369 |     | equine influenza virus in two geographical regions of Pakistan. Tropical Animal Health       |
| 370 |     | and Production 45:693–694.                                                                   |
| 371 | 28. | Abdel-Moneim AS, Abdel-Ghany AE, Shany SA. 2010. Isolation and characterization of           |
| 372 |     | highly pathogenic avian influenza virus subtype H5N1 from donkeys. Journal of                |
| 373 |     | Biomedical Science 17:25.                                                                    |
| 374 | 29. | Su S, Xing G, Wang J, Li Z, Gu J, Yan L, Lei J, Ji S, Hu B, Gray GC, Yan Y, Zhou J.          |
| 375 |     | 2016. Characterization of H7N2 Avian Influenza Virus in Wild Birds and Pikas in              |
| 376 |     | Qinghai-Tibet Plateau Area. Scientific Reports 6:30974                                       |
| 377 | 30. | Laabassi F. 2016. Epidemiology of Equine Influenza Viruses, p In Kasenga, FH (ed.),          |
| 378 |     | Epidemiology of Communicable and Non-Communicable Diseases - Attributes of                   |
| 379 |     | Lifestyle and Nature on Humankind. InTech.                                                   |
| 380 |     |                                                                                              |
| 195 |     |                                                                                              |

| 383 | Figure legends                                                                                      |
|-----|-----------------------------------------------------------------------------------------------------|
| 384 | Figure 1: Relation between khulan distribution, protected areas, sampling sites and the major       |
| 385 | migratory flyways in Mongolia. The arrows represent the outside border of each migratory            |
| 386 | flyway.                                                                                             |
| 387 |                                                                                                     |
| 388 |                                                                                                     |
| 389 |                                                                                                     |
| 390 | Figure 2: Antibody profiles in sera from khulans, expressed as titers (Y axis) of IgG reactivity to |
| 391 | a range of influenza A HA1 antigens (X axis). Animal number corresponding to ID's: 1: 19742;        |
| 392 | 2:19850; 3:19845; 4:19842; 5:19852; 6:19555; 7:19848                                                |
| 393 |                                                                                                     |
| 394 |                                                                                                     |
| 395 |                                                                                                     |

Table 1. Recombinant HA1-proteins included in the protein microarray.

| CODE    | SUBTYPE | STRAIN                            |
|---------|---------|-----------------------------------|
| H1-1918 | H1N1    | A/South Carolina/1/18             |
| H1-1933 | H1N1    | A/WS/33                           |
| H1-1977 | H1N1    | A/USSR/92/1977                    |
| H1-2007 | H1N1    | A/Brisbane/59/2007                |
| H1-2009 | H1N1    | A/California/6/2009               |
| H2-2005 | H2N2    | A/Canada/720/05                   |
| H3-1968 | H3N2    | A/Aichi/2/1968(H3N2)              |
| H3-2009 | H3N9    | A/VICTORIA/210/2009               |
| H3-2013 | H3N2    | A/Switzerland/9715293/2013        |
| H3-2008 | H3N8    | A/equine/Gansu/7/2008             |
| H4-2002 | H4N6    | A/mallard/Ohio/657/2002           |
| Н5-2997 | H5N1    | A/Hong Kong/156/97                |
| H5-2002 | H5N8    | A/duck/NY/191255-59/2002(H5N8) LP |
| H5-2007 | H5N3    | A/duck/Hokkaido/167/2007          |
| H5-2008 | H5N1    | A/chicken/Egypt/0879-NLQP/2008    |
| H5-2010 | H5N1    | A/Hubei/1/2010                    |
| H5-2006 | H5N1    | A/Turkey/15/2006 (clade 2.2)      |
| Н6-1999 | H6N1    | A/quail/HK/1721-30/99             |
| H7-2003 | H7N7    | A/Chicken/Netherlands/1/03        |
| H7-2013 | H7N9    | A/chicken/Anhui/1/2013            |
| H7-2012 | H7N3    | A/chicken/Jalisco/CPA1/2012       |
|         | 1       |                                   |

STRAIN SUBTYPE

| H8-1979  | H8N4  | A/pintail duck/Alberta/114/1979           |
|----------|-------|-------------------------------------------|
| Н9-1999  | H9N2  | A/Guinea fowl/Hong Kong/WF10/99           |
| H9-1997  | H9N2  | A/chicken/Hong Kong/G9/97 (G9 lineage)    |
| H9-2011  | H9N2  | HA1 (H9N2) A/Chicken/India/IVRI-0011/2011 |
| H10-2007 | H10N7 | A/blue-winged teal/Louisiana/Sg00073/07   |
| H11-2002 | H11N2 | A/duck/Yangzhou/906/2002                  |
| H12-1991 | H12N5 | A/green-winged teal/ALB/199/1991          |
| H13-2000 | H13N8 | A/black-headed gull/Netherlands/1/00      |
| H14-1982 | H14N5 | A/mallard/Astrakhan/263/1982new           |
| H15-1983 | H15N8 | A/duck/AUS/341/1983                       |
| H16-1999 | H16N3 | A/black-headed gull/Sweden/5/99           |

398 Table 2. Results of the protein microarray (PA), virus neutralization test (VNT) and single radial

| 399 | hemolysis assay | y (SRH | against A/equine/Richmond/1/07 | (H3N8 | ) influenza | i virus strains. |
|-----|-----------------|--------|--------------------------------|-------|-------------|------------------|
|-----|-----------------|--------|--------------------------------|-------|-------------|------------------|

| Animal<br>ID | PA<br>H3N8 | VNT<br>H3N8 | SRH<br>H3N8 |
|--------------|------------|-------------|-------------|
| 19850        | Positive   | Positive    | Positive    |
| 19845        | Positive   | Positive    | Positive    |
| 19555        | Positive   | Positive    | Negative    |
| 19742        | Positive   | NT          | Negative    |
| 19848        | Negative   | Positive    | Negative    |
| 19836        | Negative   | NT          | Negative    |
| 19841        | Negative   | NT          | Negative    |

401 Table 3. Results of the protein microarray (PA). virus neutralization test (VNT) amd single radial

402 hemolysis assay (SRH) against A/Equine Praque/1/56 (H7N7) and A/Mallard/Netherlands/12/00

403 (H7N3) influenza viruses.

| Animal<br>ID | PA H7    | VNT<br>H7N7 | VNT<br>H7N3 | SRH<br>H7N7 | SRH<br>H7N3 |
|--------------|----------|-------------|-------------|-------------|-------------|
| 19850        | Positive | Negative    | Negative    | Positive    | Positive    |
| 19845        | Negative | NT          | NT          | Negative    | Negative    |
| 19852        | Negative | Negative    | Negative    | NT          | NT          |
| 19555        | Negative | NT          | NT          | Negative    | Negative    |
| 19742        | Negative | NT          | NT          | Negative    | Negative    |
| 19848        | Negative | NT          | NT          | Negative    | Negative    |
| 19842        | Positive | Negative    | Negative    | NT          | NT          |
| 19840        | Negative | Negative    | Negative    | NT          | NT          |
| 19836        | Negative | NT          | NT          | Negative    | Negative    |
| 19841        | Negative | NT          | NT          | Negative    | Negative    |

404





410 Fig. 2