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Delineation of the forest-tundra ecotone using texture-based classification of 22 

satellite imagery 23 

The transition zone between the boreal forest and Arctic tundra, the forest-tundra ecotone (FTE), 24 

is an area of high ecological and climatological significance. Despite its importance, a globally 25 

consistent high spatial resolution mapping is lacking. Accurate mapping of the FTE requires the 26 

use of satellite remote sensing data. Here we use the Landsat Vegetation Continuous Fields (VCF) 27 

product and reference point data to derive the location and characteristics of the FTE. An image 28 

texture-based supervised classification scheme is developed based on a study area in Central 29 

Eurasia to statistically exploit the spatial patterns of the transition zone. Texture statistics for the 30 

VCF image are derived from the grey-level co-occurrence matrix (GLCM) based on which the 31 

study area is classified into forest, tundra, and FTEs. Adaptive parameterisation is implemented to 32 

achieve optimal classification performance in the study area. This method is further applied to six 33 

additional study areas around the circumarctic region to test its adaptability. In all study areas, this 34 

method achieves better FTE delineation results than previously reported methods, showing better 35 

classification accuracies (average of 0.826) and more realistic and complete representation of the 36 

FTE as shown by visual examination. This shows the universal applicability of the method and its 37 

potential to be used to achieve more detailed and accurate circumarctic mapping of the FTE, which 38 

could serve as the basis of time series analysis of FTE positions, eventually contributing to a better 39 

understanding of the inter-relations between climate change and shifts in sub-arctic vegetation. 40 

 41 

Keywords: forest-tundra ecotone; Landsat VCF; sub-arctic vegetation, texture analysis; image 42 

classification 43 

1. Introduction 44 

The forest-tundra ecotone (FTE), also interchangeably termed the taiga-tundra ecotone 45 

(TTE) or the ‘arctic treeline,’ is the transition zone from closed canopy forest to treeless tundra, 46 

featuring changes in tree cover and density, tree size and shape (Sveinbjörnsson, Hofgaard and 47 

Lloyd, 2002), with a variety of spatial patterns which challenge globally consistent high resolution 48 

mapping (ref.). As a circumarctic phenomenon, the FTE is the world’s largest vegetation transition 49 

zone (Ranson, Montesano and Nelson, 2011), spanning more than 13400km in length and up to 50 

This is an Accepted Manuscript of an article published by Taylor & Francis inInternational Journal of Remote Sensing on 09062020, 
available online: http://www.tandfonline.com/full/10.1080/01431161.2020.1734254 .



3 
 

several hundred kilometres in width (Callaghan et al., 2002). The configuration, composition and 51 

dynamics of the FTE vary greatly through time and across the circumarctic region according to 52 

local to regional abiotic and biotic drivers including disturbance history (Hofgaard, Harper and 53 

Golubeva, 2012; Timoney et al., 2018). 54 

 Most current global vegetation models predict encroachment of boreal forest onto the 55 

treeless tundra  in response to global warming (Larsen et al., 2014). Recent Earth System Models 56 

(Settele et al., 2014) show a general northward migration trend, with forest areas displacing 57 

between 11% and 50% of the tundra within 100 years (Larsen et al., 2014). However, circumarctic 58 

and worldwide, forest advance in FTE areas since 1900 has been observed in only about half of 59 

sites studied (Harsch et al., 2009) despite considerable climate change (Larsen et al., 2014). 60 

Regional influences complicate the actual patterns of FTE movement (Callaghan, Werkman and 61 

Crawford, 2002; Rees et al., 2002; Harsch et al., 2009; Van Bogaert et al., 2011; Hofgaard et al., 62 

2013; Larsen et al., 2014). The FTE in different subarctic regions has been found to remain static 63 

or in dynamic equilibrium (Masek, 2001), show an increase in biomass or crown closure without 64 

moving (Payette, Fortin and Gamache, 2001), or be within a northward (Esper and Schweingruber, 65 

2004; Gamache and Payette, 2005; Hofgaard et al., 2013) or southward (Vlassova, 2002; Crawford, 66 

Jeffree and Rees, 2003; Montesano et al., 2009) movement stage, with different displacement rates 67 

found for different species and different structures (Payette, Fortin and Gamache, 2001; Crawford, 68 

2008; Hofgaard et al., 2013). This diversity of FTE change modes and discrepancy between model 69 

predictions and empirical findings (Van Bogaert et al., 2011; Hofgaard et al., 2013; Timoney et 70 

al., 2018; Rees et al. in prep.) emphasise the need for precise spatial mapping of the current 71 

circumarctic FTE. 72 
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 A clear characterisation of the circumarctic FTE and its temporal progression through 73 

observation is lacking despite its high ecological significance (Harsch and Bader, 2011; Montesano 74 

et al., 2016). Because of the vastness and predominant remoteness of the transition zone, remote 75 

sensing is the only feasible approach to retrieve its configuration (Rees et al., 2002; Ranson, 76 

Montesano and Nelson, 2011). Various remote sensing methods can be utilised for this purpose, 77 

including spectral based methods using products from multispectral imagery, e.g. NDVI 78 

(Normalised Difference Vegetation Index) and VCF (Vegetation Continuous Fields) products, 79 

Synthetic Aperture Radar (SAR) data, or hyperspectral imagery through which spectral profiles 80 

for different vegetation types can be established and monitored (Govender, Chetty and Bulcock, 81 

2007; Hu and Li, 2007; Darvishzadeh, 2008; Im and Jensen, 2008; Li, Chen and Chen, 2010; Wu 82 

and Peng, 2012, Walther et al, 2019). Traditionally, studies have defined the FTE according to 83 

vegetation metrics including tree density and cover, tree height, biomass, tree growth form and 84 

proportions of different vegetation types e.g. tree-to-tundra area ratio (Timoney et al., 1992; 85 

Callaghan et al., 2002; Montesano et al., 2014, 2016).  86 

 The spatial structure of the FTE can potentially be exploited as a tool through which the 87 

FTE can be statistically separated from other landcover classes (forest and tundra). In remote 88 

sensing imagery, the spatial arrangement of surface feature can potentially be recognised using 89 

surface texture analysis. The inclusion of texture information into image classification and land 90 

cover mapping have improved classification accuracies (Blom and Daily, 1982; Greenspan and 91 

Goodman, 1993; Haack and Bechdol, 2000; Ferro and Warner, 2002; Coburn and Roberts, 2004; 92 

Herold, Haack and Solomon, 2004; Otukei, Blaschke and Collins, 2012), and proven helpful in 93 

vegetation analysis and mapping (Coburn and Roberts, 2004; Wood et al., 2012). However, no 94 

study has yet incorporated texture information into the derivation of FTE areas.  95 
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The aim of this study is to provide an FTE delineation algorithm which incorporates texture 96 

measures into a supervised classification scheme using Landsat VCF and reference point data. We 97 

further aim to make the algorithm adaptable to be used in different regions through variable 98 

parameterisation adjusted for optimal performance locally. For this purpose, we developed the 99 

algorithm in a study area in Central Eurasia, and tested the method in additional study areas around 100 

the circumarctic region.  101 

 102 

2. Materials and methods 103 

2.1. Study areas  104 

This study splits the circumarctic region into seven sub-regions following the scheme of 105 

Montesano et al. (2009). Longitudinal limits of each region are: Eastern Canada (ECA): 55°W–106 

80°W; Central/Western Canada (CWCA): 80°W–130°W; Alaska (ALA): 130°W–170°W;  107 

Eastern Eurasia (EEU): 180°E–110°E; Central Eurasia (CEU): 110°E–60°E; Western Eurasia 108 

(WEU): 60°E–40°E; Scandinavia (SCA): 40°E–4°E (Figure 1). The algorithm development part 109 

of this study focuses on a region in Central Eurasia (128.52 by 150.72 km, centring on 61.928E, 110 

66.953N) which straddles the transition from forest to tundra, thus encompassing the regional FTE 111 

(Figure 2). The region was chosen where a recent circumarctic FTE characterisation (Ranson, 112 

Montesano and Nelson, 2011) overlap with the location of the northern limit of boreal forest as 113 

shown by the Circumpolar Arctic Vegetation Map (CAVM), which is a circumarctic-scale 114 

vegetation map based on Advanced Very High Resolution Radiometer (AVHRR) data (Walker et 115 

al., 2005). Six additional study areas of similar sizes to the Central Eurasia study area are chosen 116 
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to test the applicability of the developed FTE delineation method, one in each of the other six sub-117 

regions (Figure 1). 118 

Please put Figure 1 here. 119 

 120 
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 133 

2.2. Data   134 

2.2.1. Vegetation Continuous Fields 135 
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  The VCF is an estimate of the proportion of a pixel occupied by tree cover derived from 136 

multi-spectral satellite remote sensing images (Hansen & DeFries 2004). Formally, the pixel value 137 

is an estimate of the amount of skylight obstructed by tree canopies of at least 5m in height 138 

(Montesano et al. 2009). Thus, a VCF image is a continuous (per-pixel) representation of 139 

vegetation cover across space which depicts areas of heterogeneous landcover, such as the FTE, 140 

better than traditional discrete classification schemes (Montesano et al., 2009; DiMiceli et al., 141 

2011; Townsend et al., 2011). The first VCF product is generated from Moderate Resolution 142 

Imaging Spectroradiometer (MODIS) data at a spatial resolution of 250m, with yearly coverage 143 

from 2000 to present (DiMiceli et al 2011). The 250m spatial resolution and relatively long 144 

temporal coverage make such products potentially suitable for large-scale study of ecotone 145 

dynamics (Stow et al., 2004; Montesano et al., 2009), and have been used by numerous studies to 146 

map tree cover (Cross and Settle, 1991; Zhu and Evans, 1994; Mayaux and Lambin, 1997; Tottrup 147 

et al., 2007; Heiskanen and Kivinen, 2008). A global FTE product already exists at MODIS 148 

resolution, i.e. the Ranson et al. (2011) FTE, which is based on image segmentation on MODIS 149 

VCF data adjusted using Quickbird-derived tree cover estimates.  150 

  This study uses the Landsat VCF product as the primary data source, which is the MODIS 151 

VCF product densified to 30 m resolution using Landsat images. It thus having improved 152 

discriminatory power for small forest patches and increased ability to identify vegetation 153 

transitions more accurately. It is currently the highest-resolution multi-temporal global dataset of 154 

tree cover, and has been shown to have similar accuracies to MODIS VCF (Sexton et al., 2013). 155 

The most recent version of the dataset ,version 3 (Sexton et al., 2013), is used in this study, which 156 

covers four nominal epochs: 2000, 2005, 2010 and 2015, derived from MODIS VCF data in the 157 

corresponding years. However, visual examination of Landsat VCF in our study area shows that 158 
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the product suffers from artefacts that are cloud and shadow contamination and inconsistencies 159 

among VCF values from different scenes, and the severity of these defects varies greatly between 160 

epochs. This study uses the Landsat VCF dataset having the fewest apparent artefacts and thus the 161 

best quality among the available epochs (the 2000 epoch for the Central Eurasia study area), which 162 

is ensured through visual inspection (Figure 2(c)).  163 

Please put Figure 2 here. 164 

 165 

 166 

 167 

 168 

 169 

 170 

 171 
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2.2.2. Reference point data 178 

Reference data points where the type of vegetation cover can be identified are needed for 179 

training and validation purposes. For this, 100 randomly distributed points are generated for the 180 

selected study region through the ‘Create Random Points’ function in the ArcMap 10.4 software. 181 

The landcover class of the data points are determined through visual interpretation of vegetation 182 

distribution in the area surrounding each point, thus taking into consideration local context. This 183 

is achieved through the examination of high-resolution Google Earth coverage of the study area 184 

(Sentinel-2 data, 10m spatial resolution). Thus, the points are divided into four landcover classes 185 

(forest, two types of FTE and tundra, Figure 2(c)).  186 

It is necessary to separate FTEs into two small-scale and large-scale ones (hereafter 187 

referred to as FTE1 and FTE2, respectively) as they both represent a transition from forest to tundra, 188 

but at considerably different spatial scales, thus having vastly different spatial texture features. 189 

Therefore, they can confuse the classification scheme if regarded as a single class. This distinction 190 

between two FTE classes is different than in the Ranson et al. (2011) study where the FTE is also 191 

separated into class 1, which are image segments with mean VCF values between 5 and 20, and 192 

class 2 which are those with mean VCF values of less than 5 but with standard deviation values of 193 

larger than 5. The examination of spatial texture relies on focal analysis on a small area around 194 

each VCF pixel, and the transition in FTE1 occurs in similar spatial scale to these focal areas. Thus, 195 

FTE1 are mostly altitudinal FTEs, but also small-scale FTEs without significant elevational change. 196 

On the other hand, FTE2 represents transition zones much larger in scale, and thus appear to be 197 

pixels surrounded by windows composed of relatively uniform pixels having ‘intermediate’ VCF 198 

values. These pixels correspond to large-scale latitudinal FTEs. Additional data points are 199 

manually added for the FTE1 class which have very few data points randomly generated, while 200 
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still ensuring relatively even distribution of all data points. The final numbers of forest, FTE1, 201 

FTE2 and tundra data points are 20, 22, 39, and 19, respectively. Additionally, three altitudinal 202 

FTE data points (therefore FTE1 points) available from the published literature (Wilmking et al., 203 

2012) are included in the study (Figure 2(c)). Landsat VCF data and the reference point data are 204 

then processed in subsequent steps (Figure 3) into an FTE map of the study area: 205 

Please put Figure 3 here. 206 

 207 

 208 

 209 

 210 

 211 

 212 

 213 

 

2.3. VCF thresholding 214 

To provide a baseline for performance assessment of the texture-based classifiers, we first 215 

perform simple thresholding of the VCF data. The Ranson et al. (2011) study identified the FTE 216 

as image segments with mean VCF percentages between 5 and 20, or those with mean VCF 217 

percentages of less than 5 and standard deviation values larger than 5. This threshold pair envelops 218 

the ‘intermediate VCF values’ that are considered to represent the core of the FTE (Ranson, 219 

Montesano and Nelson, 2011). However, forests in various parts of the circumarctic region may 220 
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have different ranges of VCF values because of differences in structure and composition. 221 

Therefore, an experiment is conducted to find the pair of VCF thresholds with which reference 222 

data points in different landcover classes could be best distinguished. Thus, the intermediate VCF 223 

value envelope is derived programmatically to best fit the study area. According to this model, a 224 

pixel is classified as forest if its VCF value is above some upper threshold and as tundra if it is 225 

below some lower threshold. Pixels with VCF values in between are classified as FTE. All possible 226 

combinations of two VCF thresholds from 1 to 100 are investigated, and the classification 227 

accuracies and kappa coefficients (Cohen, 1960) are recorded. The threshold pair that gives the 228 

best accuracies as measured by these two metrics is selected as the optimal threshold pair for FTE 229 

characterisation in the study area. Preference is given to the threshold pair that gives the highest 230 

kappa coefficients when the result judging from the two metrics differ, since the kappa coefficient 231 

takes into account the possibility of agreement occurring by chance and is considered more robust 232 

statistic than simple accuracy. This new threshold pair (hereafter referred to as the adaptive 233 

threshold pair) is compared with the Ranson et al. (2011) 5-20 threshold pair to test their abilities 234 

to correctly separate different landcover classes.  235 

 236 

2.4. FTE delineation based on supervised classification utilising texture measures 237 

2.4.1. Texture measures used in this study 238 

Common measures of texture include first-order statistics such as variance, and second-239 

order statistics calculated on the basis of the grey-level co-occurrence matrix (GLCM) (Ferro and 240 

Warner, 2002). The calculation of GLCMs, as proposed by Haralick et al. (1973), has proved to 241 

be one of the most powerful tools to extract information of spatial structure from remote sensing 242 
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images (Weszka, Dyer and Rosenfeld, 1976; Conners and Harlow, 1980). It is a tabulation of how 243 

often different combinations of grey levels co-occur in an image or image section (Yang et al., 244 

2009), based on which numerous texture features can be derived to represent local spatial 245 

variations at pixels of interest. In this study, a total of 11 GLCM-based texture measures (termed 246 

primary texture measures, Table 1, Equations (1)-(11)) are analysed for their ability to distinguish 247 

between different landcover classes. In addition, eight texture measures derived from the primary 248 

GLCM-based textures are included in the analysis (termed secondary texture measures, Table 1, 249 

Equations (12)-(19)). Thus, a total of 19 texture measures are used in this study. 250 

 251 

 252 

 253 

 254 

 255 

 256 

 257 

 258 

 259 

 260 

 261 
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Please put Table 1 here.262 
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Where: 263 

𝑃𝑖,𝑗 is the (i, j)th entry in the GLCM; 𝜇𝑥, 𝜇𝑦,𝜎𝑥 and 𝜎𝑦 are the means and standard deviations of 𝑝𝑥 264 

and 𝑝𝑦; 𝑁𝑔 is the number of distinct grey levels in the quantised image; 265 

∑𝑖 is ∑
𝑁𝑔

𝑖=1
; ∑𝑗 is ∑

𝑁𝑔

𝑗=1
; 266 

𝑃𝑥+𝑦(𝑘) = ∑ ∑ 𝑃𝑖,𝑗
𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1
, (i+j=k; k=2,3,…,2𝑁𝑔); 𝑃𝑥−𝑦(𝑘) = ∑ ∑ 𝑃𝑖,𝑗

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1
, (|i –j|=k; k=0,1,…,𝑁𝑔-1); 267 

𝑃𝑥(𝑖) = ∑ 𝑃𝑖,𝑗
𝑁𝑔

𝑗=1
; 𝑃𝑦(𝑗) = ∑ 𝑃𝑖,𝑗

𝑁𝑔

𝑖=1
; 268 

HXY = −∑ ∑ 𝑃𝑖,𝑗log𝑃𝑖,𝑗𝑗𝑖 ; HXY1 = −∑ ∑ 𝑃𝑖,𝑗log𝑝𝑥(𝑖)𝑝𝑦(𝑗)𝑗𝑖 ;   269 

HXY2 = −∑ ∑ 𝑝𝑥(𝑖)𝑝𝑦(𝑗)log𝑝𝑥(𝑖)𝑝𝑦(𝑗)𝑗𝑖 ; and HX and HY are entropies of 𝑝𝑥 and 𝑝𝑦. 270 

 271 

2.4.2. Derivation of optimal window size 272 

Our FTE characterisation method relies on texture analysis, which considers not only VCF 273 

values of the selected points, but also the spatial configuration of the landscape within the 274 

surrounding windows. The actual implementation of texture analysis needs to be adapted for 275 

different regions because of the difference in the spatial configuration of FTE areas, requiring 276 

different parameterisation in the texture analysis algorithm. An appropriate window size and a 277 

suitable set of texture measures are key parameters in the texture analysis, and need to be 278 

determined first. In this study, an optimal window size is determined before the derivation of 279 

optimal textures. This is because the optimal window size is a distance at which textures from 280 

different landcover classes can be properly separated. It is therefore a geographic phenomenon 281 

independent of texture selection, and is only dependent on the scale at which the unique textures 282 

of the FTE are identifiable. More importantly, differences in window size can directly influence 283 
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the separating power of the texture measures, i.e. texture measures perform differently when 284 

applied with different window sizes (Ge et al., 2006).  285 

  The determination of an appropriate window size for texture analysis is crucial for two 286 

reasons. Firstly, texture measures are calculated within a window around each point, and the 287 

window size must be appropriate so that it is smaller than the object, in our case the FTE, but big 288 

enough to include the characteristic variability of the object  (Hall-Beyer, 2017). Secondly, past 289 

studies have shown increased class separability with the incorporation of texture in addition to 290 

spectral information in image classification, and this benefit generally increases with larger 291 

window sizes which reduce random error and thus produces more stable textures. However, larger 292 

window sizes also lead to larger edge effects and introduce systematic errors. More importantly, 293 

the window size needs to be compatible with the scale of texture resolvable by the remote sensing 294 

product used. Instead of using arbitrary and fixed geometric windows regardless of study area, this 295 

study produces data-driven geographic windows in a window size with which texture analysis is 296 

able to produce maximum separability between different landcover classes.  297 

  Spatial statistical methods like the semivariogram can potentially be used to determine the 298 

scales of spatial variability in the VCF image, and thus to estimate optimal window sizes in texture 299 

analysis. However, in this study we utilise the information from the data points to specifically find 300 

the scale at which the FTE classes can be optimally separated from other classes, thus yielding 301 

more focused and meaningful spatial scale outcome. Specifically, the separability between data 302 

points of different landcover classes is calculated for the Central Eurasia region using all the 19 303 

GLCM-based texture measures. This process is repeated for window sizes from 3 to 91 pixels to 304 

encompass the range of window sizes in which different landcover classes can be identified 305 

through visual inspection. We adopt the Transformed Divergence as a statistical measure to assess 306 
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the separability between landcover classes. Transformed Divergence and the Jeffries Matusita 307 

Distance are both commonly used for this purpose (Davis et al., 1978), and while they have been 308 

found to have similar performances in assessing class separability (Gong, Marceau and Howarth, 309 

1992), the Jeffries Matusita Distance is computationally less efficient (Jensen and Lulla, 1987). 310 

Transformed Divergence (TD) is defined as follows: (Otukei, Blaschke and Collins, 2012), 311 

 312 

      TD𝑖𝑗 = 2(1 − 𝑒
−𝐷𝑖𝑗

8 )                   (20) 313 

where:  314 

 𝐷𝑖𝑗 =
1

2
trace ((𝐂𝑖 − 𝐂𝑗)(𝐂𝑖

−1 − 𝐂𝑗
−1)) +

1

2
trace ((𝐂𝑖

−1 − 𝐂𝑗
−1)(𝜇𝑖 − 𝜇𝑗)(𝜇𝑖 − 𝜇𝑗)

𝑇
)      (21) 315 

 316 

  The subscripts 𝑖, 𝑗 represent signatures of the selected classes; 𝐂𝑖  and 𝐂𝑗  are covariance 317 

matrices of 𝑖 and 𝑗; 𝜇𝑖 and 𝜇𝑗 are mean vectors of 𝑖 and 𝑗. 318 

  Transformed Divergence has a range of 0 to 2√2, with higher values showing higher 319 

separability. Usually, Transformed Divergence values of higher than 1.9 are deemed to represent 320 

separable classes, while those between 1.7 and 1.9 represent good separation and those below 1.7 321 

shows poor separation (Jensen 1996). Since the purpose of our study is to isolate FTE from other 322 

landcover classes, transformed divergence values are only calculated between the FTE category 323 

(both FTE1 and FTE2) and forest and tundra, thus resulting in calculated values for four landcover 324 

class pairs (FTE1 – forest, FTE1 – tundra, FTE2 – tundra, and FTE2 – forest). The window size at 325 

which maximum total separability is achieved in all the class pairs is chosen as the optimal window 326 

size to be used in subsequent steps. 327 

 328 
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2.4.3. Derivation of suitable texture measures  329 

  All 19 GLCM-based texture measures (Table 1) are calculated for all data points (Figure 330 

2(c)) using the determined optimal window size (cf. above). The next task is the determination of 331 

an optimal set of texture measures which can separate the FTE from other landcover classes in a 332 

statistically robust way. This is conducted in a two-step process. In the first step, for each landcover 333 

class, mean values of all 19 texture measures for all the data points are calculated. T-tests are then 334 

performed to assess the separability between average texture values from data points in each 335 

landcover class pair. Since the variance of the VCF values of the four landcover classes and 336 

therefore that of the resulted texture measures may not be equal, two-sample F-tests are conducted 337 

to determine the equality of variance, and subsequent t-tests are altered in accordance to the F test 338 

results. If variances are determined to be unequal, Satterthwaite’s approximation of the effective 339 

degrees of freedom is used  (Satterthwaite, 1946). A texture measure is retained only if it shows 340 

the ability to separate either or both the FTE classes from other classes, i.e. reporting with statistical 341 

significance that the texture measure averages of points in FTE classes are different from those in 342 

both forest and tundra classes. 343 

  In the second step, the remaining texture measures filtered by the t-tests go through the 344 

Spearman rank correlation test to determine their collinearity, and texture measures which 345 

correlate strongly with others and hence provide minimal additional discriminating power are 346 

excluded. This test is used because of its nonparametric properties and tolerance of extreme values, 347 

and its ability to test for monotonic relationships that are not necessarily linear. Specifically, an 8-348 

pixel neighbourhood area (3 by 3) is constructed centred on each data point, and each remaining 349 

texture measure is calculated for every pixel within this neighbourhood. Summary mean and 350 

standard deviation values are calculated for the texture measures in these neighbourhoods. 351 
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Spearman rank correlation is then calculated for each pair of texture measures based on the mean 352 

and standard deviation summaries for all data points, assessing their collinearity. The result are 353 

Spearman rank matrices for the mean and standard deviation summaries of every texture pair.   354 

  For each texture measure, its Spearman rank correlation coefficients with all other texture 355 

measures are averaged, and the five texture measures with the lowest averages of the mean 356 

summaries are kept for further analysis. Then, the rest of the texture measures with at least one 357 

mean summary that shows no significant correlation (p value > 0.01) with others are kept. Texture 358 

measures filtered out by these two steps have relatively strong correlation with others and should 359 

be eliminated from further analysis. However, exceptions can be made when the standard deviation 360 

summaries are not strongly correlated, suggesting their ability to capture unique textural 361 

heterogeneity (Wood et al., 2012).  Thus, five texture measures among those filtered out by the 362 

two-step process having the smallest averaged standard deviation summaries are kept for further 363 

analysis. 364 

   365 

2.4.4. Supervised classification 366 

  The selected texture measures from the previous step are calculated for the entire image 367 

using the optimal window size. The resulting texture measures are then fed into the maximum 368 

likelihood classification algorithm. Water body pixels (identified in the VCF product by the mask 369 

value of 200) are ignored in the classification process. In order to convey the distinction between 370 

VCF values for different landcover classes to the classification algorithm, thresholded VCF images 371 

are created both using the 5-20 and adaptive threshold pairs, and then also fed into the classification 372 

process. The classification is executed with randomly selected half of the data points as training 373 

data, and the other half for validation, while ensuring that half of each landcover class are kept for 374 
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both training and validation. Due to the fragmented nature of the classification result, a 375 

generalisation process involving image segmentation is performed to filter out FTE segments too 376 

small in size in order to achieve a more desirable transition zone feature. After the classification 377 

process, the FTE1 and FTE2 classes are merged into a single FTE landcover class. The final FTE 378 

derivation results are compared to previously delineated FTEs qualitatively through visual 379 

inspection and quantitatively through classification accuracy and kappa coefficient. 380 

 381 

 2.5. Application to additional study areas 382 

The above FTE delineation method developed in Central Eurasia is used on FTEs in the 383 

other six study areas to test its applicability. To streamline the data retrieval process and enhance 384 

the adaptability of our method, we explore the feasibility of vegetation data retrieval and 385 

processing from the Google Earth Engine platform, hereafter referred to as GEE (Gorelick et al., 386 

2017). Landsat VCF data intersecting with the study areas of the best quality are downloaded, and 387 

the derivation of optimal window sizes and texture measures are performed locally in MATLAB. 388 

Texture image calculation using the derived parameters are performed in GEE, and the resulting 389 

texture images are downloaded to be used in supervised classification in ArcMap. GEE currently 390 

has 18 GLCM textures available, two of which are duplicates (inertia and contrast), thus making a 391 

total of 17 usable texture measures. Autocorrelation (AUT) and inverse difference (IND) are not 392 

available in GEE, and we replace them by similar-performing measures, i.e. correlation (COR) 393 

and homogeneity (HOM), respectively (Haralick, Shanmugan and Dinstein, 1973). If either or both 394 

of the latter two are also among the selected list of texture measures, no replacement of the former 395 

two is given. The same supervised classification method as used in the Central Eurasia study area 396 

is implemented to separate FTE with other landcover classes, in which training and validation data 397 
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also come from randomly generated reference points in the study areas (Figure 10). This workflow 398 

offloads the most time-consuming tasks (VCF data retrieval and texture image calculation) to 399 

GEE’s cloud-computation platform which saves a considerable amount of processing time. It also 400 

ensures that the detailed statistical procedures developed in this study are followed through local 401 

processing, which are much less time-consuming and not available in GEE.  402 

 403 

3. Results 404 

3.1. VCF thresholding 405 

  The adaptive VCF threshold pair enveloping FTE pixels is determined to be 5 and 10 for 406 

the Central Eurasia region using the method described above, as this threshold pair yields the 407 

highest overall accuracy and kappa coefficient in separating forest, FTE and tundra data points 408 

(Figure 4).   409 
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Please put Figure 4 here. 410 

 411 

 412 

 413 

 414 

 415 

 416 

 417 

 418 

 419 

 420 

 421 

 

 

 

 

 

 

 The thresholding approach results in a pixelated thresholded image not desirable for the 422 

delineation of a transition zone (Figure 5), but serves as a reference of the distribution of VCF 423 

values within the study area. A more detailed look at a subset of the image (Figure 5 c-e) shows 424 

that the thresholded image produced from the adaptive threshold pair gives a more realistic 425 

representation of the forest areas corresponding to Google Earth visualization (Figure 5 d&e), and 426 

the forest areas in the 5-20 thresholded image show heavy encroachment from FTE points which 427 

produces very fragmented forest patches (Figure 5 c&e). This is presumably attributable to the 428 
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adaptive threshold pair being derived directly using the VCF values of the data points, thus 429 

reflecting a better distinction between different landcover classes. Therefore, the adaptive 430 

threshold pair will be used to threshold the VCF image to be used in the supervised classification 431 

process. 432 

Please put Figure 5 here. 433 

 434 

 435 

 436 
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3.2. FTE delineation based on supervised classification utilising texture measurements 453 

3.2.1. Selection of optimal window size and optimal textures measures 454 

  Calculated Transformed Divergence of the class pairs (Figure 6) shows that the FTE1-455 

Forest and FTE2-Tundra class pairs have generally higher separability. Both the FTE1-Tundra and 456 

FTE2-Forest class pairs reach a local maximum at the 15×15 window size, where the FTE1-Forest 457 

and FTE2-Tundra class pairs are also maintaining high levels of separability. Thus, a window size 458 

of 15×15 is deemed to be the optimal window size based on which the GLCMs and texture 459 

measures will be calculated and incorporated into the classification.  460 

Please put Figure 6 here. 461 

 462 

 463 

 464 

 465 

 466 

 467 

 468 

 469 

 470 

 471 

 472 

 473 

  The selected window size is used to derive the optimal set of texture measures. The t-test 474 

keeps 17 texture measures based on which a Spearman rank matrix is established. Mean summaries 475 
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of most texture measures are highly correlated, while the Spearman rank correlation coefficients 476 

calculated from standard deviation summaries have a wider spread. Based on the selection criteria 477 

described above, seven texture measures are kept: cluster shade, correlation, difference variance, 478 

homogeneity, information measure of correlation 2, inverse difference and maximum probability. 479 

They have low collinearity with other texture measures or higher collinearity with others but 480 

relatively low coefficients calculated from the standard deviation summaries.  481 

  482 

3.2.2. Classification and segmentation results 483 

  Texture images are constructed based on the final list of texture measures using the optimal 484 

window size of 15×15, and are then fed into the classification process along with the thresholded 485 

VCF image. The classification based on the 5-20 and 5-10 threshold pairs after merging the two 486 

FTE classes (Figure 7) loses some of the fine details on the surface, which is expected from the 487 

nature of the windowing approach in texture analysis.  488 

 489 

 490 

 491 

 492 

 493 

 494 

 495 
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Please put Figure 7 here. 496 

 497 

 498 

 499 

 500 

 501 

 502 

 503 

 504 

 505 

 506 

 507 

  A more detailed qualitative comparison between and FTE areas derived using different 508 

methods in a subset of the study area (Figure 8) shows that classification based on the adaptive 509 

threshold pair yields a more realistic picture of FTE distribution comparatively when compared to 510 

the Google Earth coverage of the study area. 511 
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Please put Figure 8 here. 512 
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  Quantitative evaluation of the classification result is conducted using half of the data points 521 

as validation (section 2.4.4). Quantitative assessment of the results (Table 2) shows that 522 

classification based on the adaptive threshold pair yields higher accuracies than that based on the 523 

5-20 threshold pair. Simple thresholding produces similar and higher accuracies than classification 524 

based on the 5-20 threshold pair, but is outperformed by that based on the adaptive one, which 525 

produces higher accuracy and kappa coefficient than all other methods. It is therefore the optimal 526 
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FTE delineation approach for our study area. Classification accuracy and kappa coefficient 527 

calculated for the Ranson et al. (2011) FTE are based on two categories: FTE vs. non-FTE. 528 

Please put Table 2 here. 529 

 530 

 531 

 532 

 533 

 534 

 535 

   The supervised classification method based on calculated texture measures and the 536 

adaptively thresholded VCF image, which produces the highest accuracies, is used to create the 537 

final output of this study (Figure 9) – a map of FTE pixels (in green) in the study area. 538 

 539 
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Please put Figure 9 here. 546 

 547 

 548 

 549 

 550 

 551 

 552 

 553 

 554 

 555 

 556 

 557 

3.3. Application to additional study areas 558 

The application of the above FTE delineation method to the additional six study areas is 559 

conducted mainly locally in MATLAB and ArcMap, with GLCM texture images calculated in 560 

GEE. On average, the application of GEE-based texture image calculation reduces the processing 561 

time from approximately 2.5 hours to approximately 3 minutes per texture measure, greatly 562 

expediting the analysis. FTEs derived using our classification method with these adaptive VCF 563 

threshold pairs consistently produce the highest classification accuracy compared to other methods, 564 

as can be seen from the comparison between Google Earth coverages of the study areas, Landsat 565 
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VCF dataset and reference point data, the Ranson et al., (2011) FTE, and the FTE derived using 566 

our method shown in Figure 10 and Table 3. FTE delineated using VCF thresholding also shows 567 

higher accuracies when using the adaptive threshold pairs. Supervised classification using the 5-568 

20 threshold yields generally lower accuracies than VCF thresholding, except for the ALA and 569 

CWCA study areas where they show similar or higher accuracies. 570 

Please put Table 3 here.571 
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 Please put Figure 10 here. 572 

 573 
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4. Discussion 587 

 The results suggest that the Landsat VCF product is a useful data source for FTE 588 

delineation which provides reasonable spatial resolution, and a texture-based classification method 589 

based on VCF values is able to reliably extract FTE information. For the Central Eurasia study 590 

area, the Landsat VCF product produces a more detailed depiction of the FTE area than the 591 

previous global FTE product (Ranson, Montesano and Nelson, 2011) derived from MODIS VCF, 592 

which is based on segmentation before thresholding with arbitrary limits of segment sizes. The 593 

MODIS-based FTE product creates large FTE patches that often include tundra areas that have 594 

been recognised as being within the same segments as the FTE pixels, see for example the FTE 595 

segment designated by letter ‘A’ in Figure 8.  596 

Selecting the correct threshold pair is crucial for satisfactory performance of the texture-597 

based classification method. FTE derived from classification based on the adaptive threshold pair 598 

produces smaller FTE patches than that based on the 5-20 one (Figure 7), which is also true for 599 

simple VCF thresholding (Figure 5), as expected. This corresponds to the forest areas in the study 600 

area producing VCF values of mostly around 10 to 20 due to relatively small biomass, thus making 601 

the 5-20 threshold pair unreliable. This hypothesis was partially validated by the typical tree 602 

heights of around 3-5 m in forests calculated from shadow length and capture time from the Google 603 

Earth coverage (e.g. Mathisen et al., 2013). The inclusion of texture images into classification has 604 

resulted in improved classification accuracies, consistent with previous findings (e.g. Coburn and 605 

Roberts, 2004; Ferro and Warner, 2002; Otukei et al., 2012). Compared to other methods, 606 

classification based on the adaptive threshold pair yields a more realistic representation of FTE 607 

distribution when compared to the Google Earth coverage of the study area (Figure 8). This method 608 

also produces higher accuracy and kappa coefficient than all other methods. Simple thresholding 609 
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produces similar and higher accuracies than classification based on the 5-20 threshold pair, further 610 

confirming the importance of adaptive thresholding in the classification algorithm.  611 

For the additional study areas, the optimal VCF threshold pairs, window sizes and texture 612 

measures derived for different study areas vary considerably. The results show that FTE 613 

delineation using texture-based classification based on adaptive VCF thresholding produces 614 

consistently highest accuracies (Table 3), and again emphasises the need for adaptive 615 

parameterisation in achieving optimal FTE delineation results. Qualitatively, our method produces 616 

FTEs corresponding well with transition areas from forest to tundra shown in the Google Earth 617 

coverages (Figure 10). Our method largely produces FTEs with similar placements to the Ranson 618 

et al. (2011) FTE product, but with additional representation of small-scale FTEs and with more 619 

spatial details for large-scale FTEs. They have more similar FTE placements for study areas where 620 

large-scale FTEs are more spatially concentrated (WEU, EEU, ALA and CWCA). In other study 621 

areas with more spread-out FTEs (as verified by visual examination of the Google Earth coverage 622 

and also placement of VCF pixels with ‘intermediate’ VCF values), our method produces a more 623 

complete representation of the transition zone. The MODIS-based FTE product misses part of the 624 

FTE due to the limit in segment sizes and thus incomplete derivation of transition zones with 625 

spread-out FTE pixels. Thus, our study provides a viable approach to delineating both large and 626 

small-scale FTE areas across the circumarctic region. 627 

The FTE delineation problem is highly scale-dependent. The MODIS VCF product 628 

provides good spatial and temporal coverage for circumarctic FTE delineation, but FTE 629 

recognition based on this product is limited by its 250m spatial resolution whereby local 630 

transitional details can be overlooked. The Landsat VCF product also provides global coverage 631 

but with finer spatial resolution, and our study proves that it can be used to derive large-scale FTE 632 
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areas with the use of texture analysis. The Landsat resolution also enables the recognition of small-633 

scale FTEs not resolvable by the MODIS VCF product. It is therefore a more versatile tool for the 634 

purpose of FTE delineation. With the even higher spatial resolution of the other satellite image 635 

products, e.g. Sentinel-2 data (K. Fletcher, 2012), more spatial characteristics of FTEs can be 636 

revealed, but the limited availability of usable cloud-free imagery limits its use in the effort at 637 

deriving a universally adaptable method for circumarctic FTE delineation. 638 

  One important source of error in this study is the high dependence on the selection of 639 

reference data points, which is based on inspection of high-resolution Google Earth coverage of 640 

the study areas in addition to point data derived from previous work. The adaptive selection of 641 

threshold pairs for dividing landcover classes based on VCF values, the calculation of optimal 642 

window size and optimal set of texture measures are all dependent on correct classification of 643 

reference data points. Data sources apart from locally generated random points are desirable to 644 

improve confidence in the ground truth. Such data are available, for example, through the PPS 645 

Arctic long-term monitoring network (http://ppsarctic.nina.no). Also, this study is built upon the 646 

VCF products and thus affected by inaccuracies in these datasets including systematic errors as 647 

well as the prevalent image artefacts (White, Shaw and Ramsey, 2005; Sexton et al., 2013), which 648 

is a major consideration in the selection of the epoch of the VCF dataset. Future application of our 649 

method is likely limited by the availability of quality data in the areas of interest, which can 650 

potentially be remedied by future improvements in Landsat VCF data quality, local image fusion 651 

of Landsat scenes and MODIS VCF data, or the incorporation of higher-resolution datasets. 652 

In this study, the maximum probability classifier is chosen in consideration of processing 653 

time given the number and sizes of the study areas, an also because the emphasis of this study is 654 

on the incorporation of image texture into the classification workflow. In future application of this 655 
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method, more advanced classification techniques can be used to further improve on the 656 

performance of the classification process. Finally, this study only looks into the horizontal spatial 657 

arrangement of the landscape and does not include an analysis of the vertical dimension of the 658 

FTE. FTE delineation can benefit from elevation information since the occurrence and placement 659 

of altitudinal FTEs are associated with local topographic variation. Also, at a very high spatial 660 

resolution, FTE delineation can benefit from tree height information e.g. from satellite LiDAR 661 

products (Montesano et al., 2016b), as tree height variation is also an important component of 662 

vegetation structural change through the FTE. 663 

 664 

4.1. Future tasks 665 

 This study provides an adaptable method for FTE delineation based on Landsat VCF which 666 

can potentially be used in different parts of the circumarctic region. A future task would be to 667 

create a circumarctic FTE map based on our method, a prerequisite of which is a reasonable 668 

division scheme of the circumarctic region which recognises the ranges of VCF values of different 669 

landcover classes in different regions. For example, the Montesano et al. (2009) division of the 670 

circumarctic region can be used as a starting point, based on which sensitivity analyses can be 671 

conducted to achieve geographically and ecologically meaningful sub-regions. Adaptive 672 

thresholds can then be established for each sub-region. This circumarctic FTE product based on 673 

different epochs of the Landsat VCF product (currently 2000, 2005, 2010 and 2015) can be used 674 

to construct a times series of FTE change through the past two decades. The derivation of a 675 

circumarctic product demands sufficient reference data points to be established whose landcover 676 

classes can be determined and verified, either through field work or visual recognition based on 677 

satellite imagery.  678 
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As previously noted, the location and spatial pattern of both latitudinal and altitudinal FTEs 679 

vary greatly across the circumarctic region. These regional differences represent the effect of a 680 

wide range of local influencing factors, the relative importance of which has great implications on 681 

the ecotone’s vulnerability to shift with climatic change. Therefore, it is necessary to move beyond 682 

the task of FTE delineation and explore more detailed spatial patterns within the FTE areas. In this 683 

study, texture information is only used to separate FTE areas from tundra and forest. However, 684 

texture analysis is also potentially useful in the examination of the spatial configuration of FTEs 685 

in different regions. Through observation, recent studies have confirmed a close link between 686 

different FTE spatial patterns (FTE ‘forms’) and FTE movement in response to climate change 687 

(Holtmeier, 2010; Harsch and Bader, 2011). Each FTE form is unique in the spatial arrangement 688 

of vegetation which will be represented in their varying textures in remotely sensed images, which 689 

can be exploited to identify and map different FTE forms, thus facilitating the identification of 690 

FTEs that are the most vulnerable to shift with climate change. The analysis of these local 691 

variations will rely on higher resolution datasets such as Sentinel-2 data, and the correspondence 692 

between FTE forms and vulnerability can be validated by the incorporation of study sites where 693 

historical records of FTE movements are available.  694 

 695 

5. Conclusion 696 

  This study introduces a texture-based classification approach to the FTE delineation 697 

problem. The incorporation of texture measures is theoretically relevant in FTE delineation 698 

because the FTE is a unique transition zone in which the mosaic distribution of forest and tundra 699 

creates unique spatial patterns inexistent in either side of the ecotone. Compared to other 700 

vegetation products, the reliable global coverage and reasonable spatial resolution provided by the 701 
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Landsat VCF is considered to be optimal for the purpose of FTE delineation. This study provides 702 

a versatile delineation approach of multi-scale FTEs based on the Landsat VCF dataset, and 703 

provide objective and adaptable approaches to every component of the texture-based FTE 704 

delineation process through statistical determination of analysis parameters. It is based on 705 

reference data points derived from expert knowledge and thus takes the specificities of the study 706 

area into consideration, and also considers the spatial patterns surrounding the data points. 707 

Compared to pixel-based thresholding and segmentation, our method provides a relatively natural 708 

representation of a transitional area, utilising the information of VCF gradient while preserving 709 

reasonable continuity of the interface, and is robust in handling small-scale variations. Quantitative 710 

assessment also suggests that our method is able to provide more accurate FTE delineation results 711 

than others. Our method can be potentially used to create a circumarctic map of the FTE based on 712 

which a time series of circumarctic FTE change can be derived. This can potentially serve as a 713 

more accurate baseline for future studies seeking to understand the interactions between arctic 714 

vegetation and climatic change, and help models to explain and predict vegetation response to 715 

global warming. 716 
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List of figure captions 916 

 917 

Figure 1. Locations of additional study areas in different sub-regions (red). 

 918 

Figure 2. (a) Location of the study area; (b) Google Earth coverage of the study area; (c) Landsat 

VCF data and reference data points used in this study. The data points from Wilmking et al. (2012) 

study are of the FTE1 class. 

 919 

Figure 3.  Processing steps for FTE delineation. 

 920 

Figure 4. Optimal threshold pairs derived from the Central Eurasia study area. Corresponding 

maximum accuracy and kappa coefficient also displayed (T1acc: first threshold based on 

classification accuracy; T2acc: second threshold based on classification accuracy; T1kappa: first 

threshold based on kappa coefficient; T2kappa: first threshold based on kappa coefficient). Bars 

representing the numbers of points are placed on every 5 bin number from 0 to 100 in the order of 

forest (black), tundra (white) and FTE (grey), from left to right. 

 921 

Figure 5. FTE delineated from VCF thresholding in the study area (a) using the 5-20 threshold 

pair; (b) using the derived 5-10 threshold pair. FTE delineated from VCF thresholding in a subset 

(red rectangle) of the study area: (c) using the 5-20 threshold pair; (d) using the derived 5-10 

threshold pair. (e) Google Earth coverage over the subset of the study area. 

 922 

Figure 6. Transformed divergence between class pairs in different window sizes. 923 

Figure 7. FTE delineated using supervised classification based on texture analysis: (a) using the 5-

20 threshold pair; (b) using the 5-10 threshold pair. 

 

Figure 8. Comparison between (a) FTE areas derived from texture-based classification using 5-20 

threshold pair and (b) 5-10 threshold pair, (c) FTE derived by Ranson et al., (the FTE segment 
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designated by letter ‘A’ is an example of tundra areas being recognised as FTE in this product), 

and (d) Google Earth coverage over a subset of the study area whose location is shown by the red 

rectangle in the left-hand panel. 

 

Figure 9. Final derived FTE area in the Central Eurasia study area. 

 924 

Figure 10. Application of the FTE delineation on additional study sites. (From left to right) 

Google Earth coverage; Landsat VCF and reference data points; Landsat VCF and the Ranson et 

al. (2011) FTE; classified image using our texture-based classification. 
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 939 

Table 1. GLCM-based texture measures used in this study. 

 

Table 2. Classification accuracy and kappa coefficient of FTE delineation using VCF thresholding 940 

and texture-based classification based on the 5-20 and 5-10 threshold pairs, and the Ranson et al. 941 

(2011) FTE in the study area. 942 

 943 

Table 3. Parameterisation and classification accuracies of FTE delineation for the additional study 944 

areas. Those for the Central Eurasia study area are also listed as reference. 945 
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