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Abstract 9 

Monitoring vegetation change is important because the nature, extent and rate of change in key 10 

measures, such as plant biomass, cover and species composition, provides critical insight into broader 11 

environmental and land use drivers and leads to the development of appropriate policy. We used 12 

Landsat data between 1984 and 2018 to produce a map of Enhanced Vegetation Index (EVI) change 13 

over South Africa at 30 m resolution and an interactive web application to make the analysis both 14 

globally applicable and locally meaningful. We found an increase in EVI of 0.37 ± 0.59% yr-1 (mean ± 15 

standard deviation), confirming global vegetation greening trends observed with lower-resolution 16 

satellites. Mesic, productive biomes including the Albany Thicket and Savanna, exhibited the largest 17 

greening trends while browning trends were dominant in more arid biomes, such as the Succulent 18 

Karoo and Desert. Although overall EVI trends correspond to vegetation index trends derived from the 19 

Advanced Very-High-Resolution Radiometer (8 km resolution), the relative scarcity of Landsat data 20 

availability during the 1980s is a potential source of error. Using repeat very-high-resolution satellite 21 

(ca. 3 m resolution) imagery and ground-based photography as reference, we found good 22 

correspondence with EVI trends, revealing patterns of degradation (e.g. woody plant encroachment, 23 

desertification), and restoration (e.g. increased rangeland productivity, alien clearing) over selected 24 

landscapes. The utility of the EVI trend layer to government and industry for monitoring ecosystem 25 

changes will be enhanced by the ability to distinguish climatic from anthropogenic drivers of change. 26 

This may be partially achieved though interactive exploration of the EVI trends using the application 27 

found here: http://evitrend.zsv.co.za 28 
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Introduction 32 

Land degradation can be defined as the reduction or loss of ecosystem function caused by both human 33 

and non-human processes (Aynekulu et al., 2017). Reduced ecosystem function results in the loss of 34 

biodiversity and ecosystem services that sustain livelihoods around the globe, and is estimated to 35 

reduce the world’s gross domestic product by 10-17% annually (ELD, 2015). Human-induced land 36 

degradation results from activities, such as the over-exploitation of natural resources, where 37 

vegetation is the primary terrestrial resource (Haberl et al., 2007). This is often associated with a 38 

reduction of vegetation cover, loss of natural habitat, and pollution and waste. In some environments 39 

an increase in vegetation cover, associated with woody plant thickening (Belay et al., 2013), or the 40 

invasion of alien species (Witt et al., 2017), can also result in the loss of ecosystem functionality, 41 

although this is not universally the case (Eldridge et al., 2011). Degradation trends can also be a result 42 

of climatic variability and trends, particularly in rainfall and temperature, that are unrelated to human 43 

activity (Ellis and Swift, 1988). Regardless of the cause, the Sustainable Development Goals 44 

acknowledge the global impact of degradation and now include Land Degradation Neutrality (LDN) as 45 

an important target with the aim of reversing existing land degradation and avoiding future 46 

degradation (Cowie et al., 2018). Achieving LDN requires an account of current ecosystem state, the 47 

extent of change relative to a given baseline, and an understanding of the main drivers of degradation. 48 

While climate change can exacerbate land degradation (Gonzalez et al., 2012), distinguishing 49 

anthropogenic and climatic drivers of vegetation cover change remains difficult. 50 

In drylands, which cover 41% of the Earth’s terrestrial surface (Maestre et al., 2016), degradation has 51 

historically been synonymous with desertification (Bauer, 2016; Sinclair and Fryxell, 1985) and is often 52 

associated with the overgrazing of rangelands by pastoralists (Hilker et al., 2014; Mganga et al., 2015).  53 

This narrative, however, has long been challenged by tenants of the non-equilibrium theory (Behnke 54 

et al., 1994), which holds that, in most dryland environments, vegetation cover is not in equilibrium 55 

with human-enforced herbivore pressures (Ellis and Swift, 1988). Rather, climatic variation can 56 

override the effect of human-induced degradation, so that vegetation cover can be restored or further 57 

degraded during rainfall extremes regardless of herbivore pressures. Despite the important influence 58 

that climate has on vegetation cover and composition, recent evidence from southern Africa suggests 59 

that the broad-scale recovery of vegetation in some of the region’s dryland environments is probably 60 

linked more strongly to a release from historically high grazing pressure than to any underlying change 61 

in rainfall (Hoffman et al., 2018). Regardless of the drivers of change, distinguishing between 62 

trajectories of recovery and degradation is important in order to prioritise areas in need of restoration 63 

intervention.   64 
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Measuring trends in vegetation cover change has been made easier and more affordable at regional 65 

scales with the advent of free satellite remote sensing data (Wulder et al., 2012). Various satellite-66 

derived vegetation indices have been used to measure attributes of ecosystem status including 67 

grassland and rangeland productivity (e.g. Cawkwell et al., 2016; Svoray et al., 2013) and degradation 68 

(e.g. Wessels et al., 2007), forest intactness (e.g. Hansen et al., 2013), land cover change (e.g. Defries 69 

and Townshend, 1994) and even ecosystem biodiversity (e.g. Gould, 2000), to name a few. These 70 

vegetation indices mostly rely on reflectance in the near-infrared wavelengths because plants have a 71 

distinctive spectral signature, characterised by a low reflectance in the visible spectrum, and a high 72 

reflectance in the near-infrared (Gates, 2012). A wealth of studies have used low spatial, but high 73 

temporal resolution satellite sensors such as the Moderate Resolution Imaging Spectrometer (MODIS) 74 

and the Advanced Very-High-Resolution Radiometer (AVHRR) to perform time series analysis of 75 

vegetation indices including the Normalised Difference Vegetation Index (NDVI) and the Enhanced 76 

Vegetation Index (EVI) as proxies for vegetation cover and primary productivity (Pettorelli et al., 2005; 77 

Tucker, 1979; Verbesselt et al., 2010). A wide-spread vegetation greening trend has been observed 78 

globally, which has been attributed to atmospheric CO2 enrichment and increasing rainfall (Hickler et 79 

al., 2005; Zhu et al., 2016). Isolating local-scale drivers of change is made difficult by the low spatial 80 

resolution of MODIS (250 m) and AVHRR (8 km) imagery. In the context of LDN, useful tools, including 81 

Trends.Earth, have been developed to implement systematic accounts of land degradation using 82 

MODIS primary productivity trajectories (Gonzalez-Roglich et al., 2019). However, MODIS only extends 83 

back to 2000, and human-induced degradation footprints can occur at scales smaller than the 250 m 84 

MODIS resolution. Thus, higher resolution imagery might elucidate finer-scale dynamics.  85 

Recent advances in cloud computing technology have allowed scientists to utilise the full archive of 86 

higher resolution (30 m) Landsat 5, 7 and 8 satellite imagery (extending back to 1984) to perform 87 

decadal time series analyses of vegetation cover change (Pasquarella et al., 2016). Remote sensing 88 

analysis has been able to move from static, bi-temporal measures of change toward more continuous 89 

time series analysis. Applications have included quantifying forest cover change (Hansen et al., 2013) 90 

and phenology (Melaas et al., 2013), land cover change (Gong et al., 2019), woody plant encroachment 91 

(Venter et al., 2018), riparian zone restoration (Hausner et al., 2018), and surface coal mining (Yang et 92 

al., 2018). Such studies provide a distinct advantage over low resolution regional measures of greening 93 

and browning trends because they give more nuanced insight into the type and cause of vegetation 94 

degradation or restoration. 95 

This is particularly important in southern Africa where vegetation greening can signal both restoration 96 

and degradation, depending on the local context. For example, the encroachment of woody plants 97 

(alien or native) into open areas and an increase in grass cover can both be registered as greening by 98 
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satellites. However, woody plant encroachment often reduces the grazing capacity of a rangeland, 99 

while an increase in grass cover has the opposite effect (Anadón et al., 2014; Macharia and Ekaya, 100 

2005). Previous efforts at identifying degradation using satellite remote sensing have focussed on 101 

distinguishing climate- versus human-driven browning (Wessels et al., 2007). Such efforts have either 102 

relied on expert opinion mapping at administrative unit scales, or have relied on the interpretation of 103 

single-temporal NDVI snapshots (Thompson et al., 2009). High-resolution land cover change maps do 104 

exist (e.g. GeoTerraImage, 2015) but they rely on a bi-temporal and categorical analysis of change 105 

only, that masks gradual changes along a continuum of vegetation cover. Government investment in 106 

alien clearing, wetland restoration, land development monitoring, rangeland management, and 107 

ecosystem accounts would benefit from monitoring tools that quantify trends in vegetation condition 108 

at high-resolution in an interactive environment that also allows for its integration with local 109 

knowledge. Furthermore, the Intergovernmental Science-Policy Platform on Biodiversity and 110 

Ecosystem Services (IPBES, 2018) has recognized the global importance of improving the detection, 111 

monitoring and verification of land degradation trends. 112 

To improve upon previous analyses of vegetation cover change over South Africa at low spatial 113 

resolutions, we aimed to develop a high-resolution map of vegetation cover change and perform a 114 

quantitative and qualitative validation using ancillary satellite and fixed-point repeat photograph data 115 

at select locations over the country. We mapped linear trends in annual Landsat EVI time series for 116 

South Africa between 1984 and 2018 and hypothesised that the country has undergone a net greening 117 

in accordance with previous national-scale studies (Bai & Dent 2007). To make the layer relevant to 118 

policy makers and land managers, we have packaged it in an interactive web application that allows 119 

users with local knowledge to interpret vegetation dynamics at the landscape-scale. We illustrate this 120 

interpretation using very high-resolution satellite imagery and fixed-point repeat photographs for 121 

select locations across the country. 122 

 123 

Methods 124 

Remote sensing 125 

All remote sensing data collection and analysis was performed using the Google Earth Engine (GEE) 126 

JavaScript API, which is a cloud computing platform for earth observation and analysis (Gorelick et al., 127 

2017). We used the near-complete set of USGS Landsat 5, 7 and 8 Surface Reflectance Tier 1 imagery 128 

over South Africa at 30 m resolution between 1984 and 2019 (Woodcock et al., 2008). The Landsat 129 

data provided by GEE have been pre-processed to orthorectified surface reflectance and have been 130 
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atmospherically corrected using LEDAPS (Masek et al., 2006). We masked clouds, cloud shadow and 131 

snow using the ‘pixel_qa’ band. Due to slight differences between Landsat 7 and 8 sensors (Holden 132 

and Woodcock, 2016), cross-calibration of reflectance values is important when implementing time 133 

series analysis (Zhu, 2017). We applied published cross-calibration coefficients to harmonise Landsat 134 

8 reflectance values with the other Landsat collections (Roy et al., 2016). 135 

The most widely used satellite-derived measure of vegetation growth or vigour is (NDVI devised by 136 

Tucker (1979). However, NDVI saturates over high biomass areas and is sensitive to background soil 137 

reflectance and atmospheric contamination (Xue and Su, 2017). Despite the disadvantage of being 138 

less sensitive to sparse vegetation (Heute et al., 2012), EVI simultaneously corrects for atmospheric 139 

and soil effects and does not saturate over high vegetation biomass (Liu and Huete, 1995). Therefore 140 

we decided to use EVI even though EVI and NDVI are highly correlated over space and time (Fensholt 141 

et al., 2006). EVI is calculated as: 142 

𝐸𝑉𝐼 = 𝐺 × 
𝜌𝑛𝑖𝑟 −  𝜌𝑟𝑒𝑑

𝜌𝑛𝑖𝑟 + (𝐶1 × 𝜌𝑟𝑒𝑑 − 𝐶2 × 𝜌𝑏𝑙𝑢𝑒) + 𝐿
 143 

where 𝜌𝑛𝑖𝑟, 𝜌𝑟𝑒𝑑, and 𝜌𝑏𝑙𝑢𝑒 represent reflectance in the near-infrared, red and blue wavelengths, and 144 

G=2.5, C1=6, C2=7.5, and L=1 (Huete et al., 2002). 145 

Trend analysis 146 

We derived time-integrated measures of EVI using medoid composites of reflectance values within 147 

each year. The medoid is a multi-dimensional analogue of the median which is robust against extreme 148 

outliers (e.g. remnant cloudy pixels after cloud masking) and is a better representative of vegetation 149 

conditions over the given time period compared to the more commonly used compositing methods 150 

such as median or maximum (Flood, 2013). The magnitude and significance of the trend in EVI 151 

between 1986 and 2019 was then calculated using the Sen’s slope (Sen, 1968) estimator and Mann-152 

Kendall test (Mann, 1945), respectively. The Sen’s slope estimator is a non-parametric linear 153 

regression that is robust against outliers and skewed data (Wilcox, 2010). We calculated per-pixel 154 

percentage change in EVI as: 155 

∆ 𝐸𝑉𝐼 =
𝑚

𝑐
× 100 156 

where m and c are the slope and y-intercept in the regression line defined as y = mx + c. Change in EVI 157 

is thus expressed relative to the baseline EVI value (y-intercept) for each pixel so that the magnitude 158 

of change is comparable across productivity gradients. Although the Sen’s slope deals well with 159 

outliers, trends with large magnitudes are not necessarily significant because of large variance over 160 

time. Thus, the significance of the trend was calculated using the Mann-Kendall S statistic, which is 161 
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the most common non-parametric method to detect monotonic trends in climatic (e.g. Ahmad et al., 162 

2015) and remote sensing (e.g. de Jong et al., 2011) data. To avoid the pitfalls of setting absolute 163 

significance levels (Amrhein et al., 2019), we used the S statistic as a weighting variable to calculate 164 

weighted means of EVI trends for spatial aggregations. We did this by scaling the S statistic scores over 165 

the country between 0 and 1, and multiplying each pixel’s trend value by its scaled S statistic. 166 

Mean EVI trend values were calculated for South African biomes and South Africa Vegetation Types 167 

(Mucina et al., 2018) grouped into ecological functional groups (Dayaram et al., 2019). South African 168 

Vegetation Types are mapped in terms of their historic or pre-European extent, i.e. natural vegetation 169 

extent prior to conversion to other land uses. We used a Landsat-derived 2014 land cover map 170 

(GeoTerraImage, 1990) to mask out water and non-natural (mine/industrial, plantation, cropland, 171 

built up) land cover categories when calculating mean EVI trends. Areas classified as “desert” in the 172 

land cover map were not masked because they were found to contain sparse vegetation elements 173 

that are of relevance to rangeland and conservation management. 174 

Remote sensing validation 175 

Validating our remote sensing product is made difficult by the fact that there are currently no 176 

published maps of decadal-scale ecosystem degradation or vegetation cover trends in South Africa 177 

(Driver et al., 2012). Thus, we utilised three reference datasets, namely (1) long-term, low resolution 178 

satellite measures of NDVI, (2) very high-resolution satellite red-green-blue (RGB) imagery and (3) 179 

fixed-point repeat photography for select locations over the country. 180 

NDVI data from AVHRR sensors (in operation since 1981) have been widely used to quantify broad-181 

scale trends in vegetation cover over the globe at a spatial resolution of 8 km (e.g. Cook and Pau, 2013; 182 

Fensholt et al., 2009; Gichenje and Godinho, 2018). Unlike the Landsat archive, the AVHRR data have 183 

a high temporal frequency and produce annual composites that are less affected by outliers 184 

introduced by cloud cover. Landsat data since 1984 have been collected by three different sensors 185 

and, without cross-sensor calibration, produce artificial anomalies in reflectance time series (Roy et 186 

al., 2016). Although the AVHRR sensors lack reliable calibration devices (Staylor, 1990; Burrell et al., 187 

2018), and have relatively broad spectral bands, which reduce atmospheric correction accuracies 188 

(Tanre et al., 1992), they do provide a useful reference dataset for Landsat-derived vegetation indices 189 

(Beck et al., 2011). We calculated annual medoid mosaics for the Global Inventory Modeling and 190 

Mapping Studies (GIMMS; Tucker et al., 2005) third generation AVHRR NDVI dataset provided by GEE 191 

at a spatial resolution of 5 arc minutes between 1984 and 2013 (the AVHRR sensor was discontinued 192 

in 2013). The annual Landsat EVI medoids were aggregated to the spatial resolution of GIMMS data 193 
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using a mean reducer for comparison with GIMMS using a linear regression of all pixel values over 194 

South Africa for each year. 195 

We performed a further qualitative validation and interpretation of landscape-scale trends using 196 

repeat satellite imagery and fixed-point repeat photographs. This validation was neither 197 

comprehensive nor quantitative because of the limited availability of metadata associated with 198 

validation photos which precluded quantitative estimates of vegetation cover change. They merely 199 

provide an analytical tool with which to illustrate what a range of browning and greening trends look 200 

like at landscape scales. Very high-resolution (<5 m) RGB satellite imagery from DigitalGlobe was 201 

filtered for 2002/4 and 2019 imagery using Google Earth Pro. Based on expert knowledge of known 202 

vegetation cover trends over the country, we manually located 14 landscapes expected to cover a 203 

variety of EVI trends (Fig. 1A). We manually selected Landsat pixel locations for comparison with 204 

visually-interpreted trends visible in DigitalGlobe images. Repeat fixed-point photographs, archived at 205 

the Plant Conservation Unit at the University of Cape Town (see http://rephotosa.adu.org.za), were 206 

filtered for photo pairs in which the repeat photograph was taken after 2010 so as to overlap with the 207 

Landsat data (1984-2018). Some historical photographs were taken decades before 1984 and thus 208 

comparisons with the Landsat EVI trends assume linear trends in vegetation cover reflected in repeat 209 

photographs. For qualitative analysis and interpretation, we selected 8 historical-repeat photo pairs 210 

showing a range of vegetation cover trends over different vegetation types. Photo locations (Fig. 1A) 211 

reported by photographers using a GPS were visualised in Google Earth Pro using the 3D view mode 212 

to digitise the photograph field-of-view over the landscape for comparison with the Landsat EVI trend 213 

raster image. One or two pixels were selected over the landscape for EVI trend inspection. 214 

 215 

Results 216 

Overall trends 217 

South Africa has undergone a net greening between 1984 and 2018 with a mean EVI trend of 0.67 ± 218 

0.77% yr-1 (mean ± standard deviation) when quantifying change relative to the baseline EVI value for 219 

each pixel (Fig. 1). After weighting trend values by the Mann-Kendall statistic to account for trend 220 

significance, the mean value was 0.37 ± 0.59% yr-1 which equates to 12.6 ± 20% increase over the 34 221 

years. The mean absolute change in EVI values over the country revealed an increase of 0.02 ± 0.046 222 

EVI units yr-1. Large greening trends dominate the central and northern parts of the country while 223 

browning trends are evident in parts of the east and over much of the extreme north western part of 224 

the country (Fig. 1A). The change in EVI was not evenly distributed across the long-term mean EVI 225 
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gradient (Fig. 1B) nor the South African biomes (Fig. 1C) or functional vegetation types (Fig. S2). 226 

Browning trends were largely restricted to areas with low average EVI (< 0.07), characteristic of the 227 

arid and semi-arid areas of the Succulent Karoo and Desert biomes and parts of the Nama-Karoo 228 

biome. Greening trends were highest in environments with long-term mean EVI values of ca. 0.2, 229 

particularly the Albany Thicket and Indian Ocean Coastal Belt biomes. Greening trends were relatively 230 

consistent in more productive, mesic areas, notably the Savanna biome which covers 32% of the 231 

country (Fig. 1C). 232 

GIMMS validation 233 

The mean Landsat EVI and GIMMS NDVI values are strongly correlated over South Africa (Fig. 2A). 234 

Annual deviations from long-term means for each pixel display positive trends for both Landsat and 235 

GIMMS sensors (Fig. 2B). However, Landsat data exhibit large positive biases compared to the GIMMS 236 

data during 1985, 1987 and again in 2009 and 2010 (Fig. 2B). This is likely due to the low number of 237 

available cloud-free pixels during those years, particularly during the 1980s. This introduces variation 238 

in the day-of-year at which the annual medoid value for each pixel was acquired (Fig. S2B). This may 239 

also explain the variance in trend values depending on the start and end date of EVI time series (Fig. 240 

S3). 241 

Landscape-level validation 242 

We present EVI greening and browning trends over selected landscapes to illustrate different change 243 

scenarios outlined in Table 1. Readers can explore trends at this resolution for different localities 244 

around the world interactively here: http://evitrend.zsv.co.za. Gradual greening trends may be 245 

associated with woody plant encroachment into previously grassy areas (Fig. 3A, Table 1), or an 246 

increase in the cover of woody plants on previously bare areas, such as eroded gullies in agricultural 247 

landscapes (Fig. 3B). Bush encroachment into grassy areas may be associated with a reduction in EVI 248 

seasonality over time (e.g. Fig. S9 & S10) due to the perennial phenology of woody vegetation 249 

greenness. Greening trends can also be indicative of an increase in herbaceous vegetation cover or 250 

vigour while woody plant cover has remained constant (Fig. 3C & D). Here, there is an increase in EVI 251 

seasonality  due to the senescent phenology of many grass species.  252 

Significant browning trends over areas previously covered by woody plants may indicate tree 253 

harvesting or clearing (Fig. 4D)and in some cases, the expansion of settlements in response to 254 

population growth (Fig. 4A). In areas dominated by herbaceous vegetation, browning may be 255 

indicative of overgrazing, which can result in a reduction in grass vigour and basal cover (Fig. 4A). In 256 

arid landscapes, where vegetation cover is generally low, browning trends might indicate a loss in 257 
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vegetation vigour (Fig. 4C). However, the relative change in arid areas should be viewed in terms of 258 

the magnitude of absolute changes, which may be very low (e.g. 0.01 EVI units in Fig. 4C). Browning 259 

trends are, therefore, not necessarily an indication of management-induced degradation but when 260 

viewed in context of rainfall trends, may be a product of long- or short-term drought conditions. The 261 

clearing of alien vegetation is an example of where restoration activity might exhibit a browning trend 262 

in the vegetation EVI (Fig. 4D). Abrupt browning, typically caused by fire (e.g. Fig. 4D), land cover 263 

change, or deforestation (see supplement for illustrations), are smoothed by the long-term EVI trend 264 

layer. 265 

 266 

Discussion 267 

Recent advances in computing power and the availability of large data have expanded the utility of 268 

satellite remote sensing in providing repeatable and standardised monitoring of long-term 269 

environmental trends (Pettorelli et al., 2014; Zhu, 2017). Despite this, there have been few national 270 

level analyses of how remotely-sensed indices of net primary productivity (NPP) have changed over 271 

time in South Africa. Using Landsat data, available from the Google Earth Engine platform, our results 272 

show an overall net increase in the enhanced vegetation index (EVI) of about 0.37 ± 0.59 % yr-1 over 273 

South Africa for the period 1984-2018. The general increasing trend corresponds to evidence at the 274 

global-scale for a net greening during the past three decades (Zhu et al., 2016). Increasing trends were 275 

greatest in the more humid eastern parts of the country where long-term, mean annual rainfall totals 276 

are above 200 mm. Negative trends were apparent in the arid and hyper-arid western parts of the 277 

country. This adds a different perspective on change, in both its temporal and spatial pattern, from 278 

earlier national-level assessments that were conducted over different time spans. For example, using 279 

NDVI values from fortnightly images at 8 km spatial resolution derived from the AVHRR sensor and 280 

produced by the Global Inventory Modelling and Mapping Studies (GIMMS) group, Bai and Dent 281 

(2007) suggested that for the period 1981-2003, net primary productivity had decreased over ca. 30% 282 

of South Africa. Their results also showed that the decrease was greatest in the humid and sub-humid 283 

eastern areas of South Africa and smallest in the more arid and hyper-arid, western parts of the 284 

country where NDVI values had generally increased over their study period. Although these findings 285 

cannot be directly compared to our results, the differences in spatio-temporal patterns of change 286 

underscore some of the difficulties in using remotely-sensed indices of NPP which can be strongly 287 

influenced by the start and end dates of the time series, the type of index used as well as by the spatial 288 

and temporal resolution of the data (Wessels et al., 2012). 289 
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While an analysis of the climatic and anthropogenic drivers of greening and browning trends was not 290 

within the scope of this study, we found that using fixed-point repeat photographs and high resolution 291 

satellite images as a form of qualitative validation gave insight into the attribution of degradation or 292 

restoration signals. This is particularly the case when interpreted relative to the local context of 293 

change. For example, much of the increase in EVI recorded in this study for the Albany Thicket, Indian 294 

Ocean Coastal Belt and Savanna biomes can probably be attributed to an increase in woody plant 295 

cover. Here, assigning the greening trend as degradation or restoration is complex given that woody 296 

plant encroachment can be detrimental for livestock agriculture, and yet beneficial for carbon 297 

sequestration (Foden et al., 2019). This encroachment or thickening of woody plants has been widely 298 

reported in these biomes (O’Connor et al., 2014; Skowno et al., 2017) although reasons for the 299 

increase differ. Widespread abandonment of cultivation (Shackleton et al., 2019), a change in burned 300 

area (Venter et al., 2018) or fire frequency (Singh et al., 2018), an increase in the concentration of CO2 301 

in the atmosphere (Bond and Midgley, 2000) and an increase in invasive alien plants (Nkambule et al. 302 

2017) or even plantation forestry (Turpie et al. 2007) are all potential explanations for the pattern. In 303 

contrast, an increase in the cover of herbaceous grasses and not woody plants is probably responsible 304 

for the greening of the wide ecotone between the Nama-Karoo and Grassland biome in the central 305 

part of the country (Masubelele et al., 2015). For the Fynbos biome, the increase in EVI values within 306 

the Cape Fold Mountains as well as the more arid Kamiesberg and Roggeveld high-lying areas are more 307 

difficult to explain, especially in light of the severe drought that has occurred across much of the winter 308 

rainfall region over the period 2015-2017.   309 

There has been a reduction in EVI recorded for the arid and hyper-arid north western parts of the 310 

winter rainfall region. Results from several repeat photography studies in the same region report an 311 

increase in the cover of perennial plants over landscape units composed of plains and ephemeral 312 

streams (Hoffman & Rohde, 2011) although these pre-date the more recent severe drought 313 

experienced in the winter rainfall region. Other areas which exhibited a browning trend in South 314 

Africa, such as parts of KwaZulu-Natal and the southern section of Kruger National Park, can be 315 

explained by factors other than climate. For example, Jewitt et al., (2015), showed that the expansion 316 

of agriculture, plantation forestry, settlements, dams and mines in KwaZulu-Natal were largely 317 

responsible for the transformation of 1.2% of the province’s natural landscapes each year over the 318 

period 1994 to 2011. Therefore, the decrease in EVI values over parts of the province has likely 319 

occurred as a result of this increase in anthropogenic activities.  A different explanation is likely for 320 

the browning trend recorded for Kruger National Park which is best understood in terms of the 321 

reported impact that megaherbivores have had on vegetation biomass in the park (Pellegrini et al., 322 

2017).  323 
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To generate or map more generalized explanations for greening and browning trends over South 324 

Africa will require a more comprehensive validation approach. Due to the limited availability of 325 

ground-truth datasets, we resorted to a nuanced and qualitative validation using repeat fixed-point 326 

ground and satellite images. The repeat photograph epochs extend beyond the Landsat time frame 327 

(1984-2018) and therefore one has to assume linearity in trends that predate this. The use of GIMMS 328 

dataset was an attempt to supplement the qualitative approach and we found good correspondence 329 

with the Landsat EVI trends. Apart from merely validating the accuracy of EVI trends, making value 330 

judgements about the implications of greening or browning trends by assigning them to degradation 331 

or restoration categories requires more information on the drivers of change. For example, there are 332 

many methods to distinguish climatic from human-induced drivers of browning or greening using 333 

remote sensing data (e.g. Abel et al., 2019; Burrell et al., 2017; Horion et al., 2016; Wessels et al., 334 

2007). 335 

Remote sensing with both high- (e.g. Gonzalez et al., 2012) and low-resolution (e.g. Bai et al., 2008) 336 

satellite-derived indices of vegetation productivity can be used to monitor changes in the environment 337 

over relatively large spatial and temporal scales. However, these indices usually provide little more 338 

than a general screening tool and cannot adequately provide information on the type of degradation 339 

or improvement in a landscape. More detailed information on the nature of the changes observed 340 

and the reasons for the changes at smaller spatial and temporal scales can often only be inferred from 341 

extensive ground-truthing, from the observer’s knowledge of the region, or from published studies of 342 

the area. Even then, it is difficult to include a temporal interpretation of the trajectories observed 343 

since very few locations have independent, long-term monitoring data sets to draw on. Data are also 344 

very seldom collected at time-scales relevant to those covered by satellite-derived data and 345 

mismatches between satellite spatial resolution and field data further complicate validation. In the 346 

approach presented here, however, two novel contributions are made.  347 

Firstly, when used in combination with other remotely sensed measures, such as those resulting from 348 

repeat very-high-resolution satellite and ground photography, a more insightful and detailed 349 

interpretation of both the magnitude and direction of change, recorded by Landsat-derived EVI, is 350 

possible. We found good correspondence with EVI trends showing patterns of degradation (e.g. 351 

woody plant encroachment, desertification) and restoration (e.g. increased rangeland productivity, 352 

alien clearing) in South Africa. The inclusion of fine-scale measurement, such as is presented here, 353 

enables the observer to check on the broad-scale pattern provided by the satellite-derived vegetation 354 

index and, in some cases, to better understand local-level processes responsible for the change. The 355 

different spatial scales used in such an analysis also provide a more complete understanding of 356 

environmental change than is usually provided by analyses carried out at one spatial scale only.  357 
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A second contribution of this study relates to the accessibility and usability of satellite-derived 358 

vegetation indices. Cloud computing platforms such as Google Earth Engine (Gorelick et al., 2017) are 359 

making data collection, analysis and visualisation more accessible to scientists and non-specialists 360 

alike. The delivery of remote sensing products in web applications as opposed to static maps is 361 

becoming more common (e.g. Donchyts et al., 2016; Huntington et al., 2017). Users are allowed to 362 

interact with mapped data at their highest resolution, affording more locally-relevant insights than 363 

those gained from a printed map in a publication. The EVI trend data presented here can be explored 364 

at full resolution in our web application (http://evitrend.zsv.co.za). We intend for users to potentially 365 

decipher landscape-scale degradation and restoration trends based on local knowledge with the aid 366 

of plotted EVI trends for user-selected pixels over user-defined time periods (Fig. S3). With access to 367 

the EVI time series, users might be able to also identify periods of rapid change caused by fire or 368 

vegetation clearing events that are lost when summarising the time series using a linear regression 369 

line. In this manner, accuracy errors introduced by the low availability of Landsat data during the 370 

1980s, and variation in trend values depending on start and end dates for EVI time series can be further 371 

interrogated. The biases in the day-of-year (Fig. S1B) during the 80s should inform user interpretation 372 

of trends depending on local vegetation phenology. For instance, the large bias toward Jan/Dec 373 

medoid EVI values in 1986-7 may introduce false-negative long-term trends in summer rainfall areas 374 

where EVI values are expected to be relatively high in Dec/Jan. Conversely, false-positive long-term 375 

trends might be more likely in winter rainfall areas. 376 

Governments and industry partners within, but not limited to, South Africa would benefit from a cost-377 

effective tool for measuring and monitoring ecosystem management and restoration interventions 378 

such as vegetation recovery after alien clearing or mine restoration, or the impact of de-stocking on 379 

rangeland vegetation cover. The EVI trend analysis presented here has wide application and relevance 380 

to a range of land users and decision making interested in incorporating information on the state and 381 

trend of ecosystems into land use management or economic enterprises. For example, livestock or 382 

wildlife managers might be able to assess seasonal patterns in vegetation productivity in the context 383 

of long-term trends in productivity at the grazing camp or farm-scale. Objective and repeatable 384 

measures of ecosystem extent and condition are essential for the successful implementation of 385 

ecosystem accounts (United Nations 2014, Driver et al. 2015). This EVI trend analysis is a step towards 386 

the development of an ecosystem condition index that meets these criteria and with a spatial 387 

resolution relevant to ecosystem accounting. By applying time series processing to intra-annual 388 

vegetation indices, real-time monitoring of land clearing is already being implemented using a fusion 389 

of Landsat and Sentinel satellite data to monitor tropical deforestation (Reiche et al., 2018). 390 

Translating such approaches to more arid environments should be possible with relevant ground-truth 391 
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data. Finally, by supplementing the EVI trend data with time series analyses aimed at disaggregating 392 

climatic from anthropogenic drivers (Burrell et al., 2017), it will be possible to understand their relative 393 

contribution to the observed trend. More importantly it will highlight where land use interventions 394 

are likely to have greater impacts on ecosystems and may contribute to global ecosystem accounting 395 

initiatives such as those outlined in the IPBES framework (Diaz et al., 2015). 396 

 397 

Conclusion 398 

While we observed an overall vegetation greening over South Africa between 1984 and 2018, we 399 

found the direction and magnitude of this trend to be spatially variable at regional and landscape 400 

scales. We suggest that while aggregating results at regional-scales is interesting, the ability to derive 401 

locally relevant insights is only realised at higher resolutions, as illustrated by validation and 402 

interpretation of the EVI trend layer with fixed-point repeat photography and very-high-resolution 403 

satellite imagery. The delivery of the EVI analysis and results in an interactive web application should 404 

allow users to gain local-scale insight at 30 m resolution, interrogate per-pixel EVI time series to 405 

identify sources of error, and to potentially integrate knowledge of local ecosystems to distinguish 406 

restoration from degradation signals in the EVI time series. The utility of the EVI trend layer to 407 

government and industry for monitoring ecosystem changes will be enhanced by the ability to 408 

distinguish climatic from anthropogenic drivers of change. This may be soon realised by fusing Landsat 409 

and Sentinel satellite data, allowing for high resolution monitoring in near real-time.  410 
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Table 1. Description of greening and browning scenarios illustrated in Fig. 3 and 4. Repeat photographs 696 

are licensed under Creative Commons licence CC-BY. 697 

Trend Biome 
Figure 
reference Coordinates Scenario Photo attribution 

Greening Grassland 3A 
 -30.526, 
29.050 

Bush encroachment by Acacia mearnsii 
and Leucosidea sericea rePhotoSA image #4552  

 Grassland 3B 
 -28.873, 
28.242 

Increase of woody plant cover in erosion 
gullies - potential restoration signal DigitalGlobe  

 Nama-Karoo 3C 
 -32.331, 
24.441 

Increase in grass cover and vegetation 
vigor  rePhotoSA image #3645  

 Savanna 3D 
 -28.308, 
24.779 

Woody cover loss on slopes but increase 
in grass vigor on plains DigitalGlobe  

Browning Savanna 4A 
 -26.502, 
31.596 

Clearing of woody plants for establishing 
residential buildings DigitalGlobe  

 Nama-Karoo 4B 
 -33.174, 
23.430 

Right-hand side of the fence line reflects 
decline in cover of the dominant shrub, 
Portulacaria afra (spekboom)  rePhotoSA image #3585  

 Fynbos 4D 
 -34.083, 
18.402 

Manual clearing of alien pine trees from 
the crest of the slope. rePhotoSA image #5275  

  
Succulent-
Karoo 4C 

 -28.589, 
20.156 

Gradual loss of vegetation vigor with 
potential loss of perennial herbs rePhotoSA image #3585  

 698 
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 700 

Figure 1. Average annual change in EVI between 1984 and 2018 (A). Change is expressed as a 701 

percentage of the baseline (1984) EVI value and is derived from the slope and y-intercept of the 702 

regression line through annual medoid composites of Landsat EVI. Non-significant trends are masked 703 

(p>0.05) and points of local-scale validation are shown in blue. The colour scale depicts the distribution 704 

of the data in A prior to significance masking. A loess regression line between the annual average 705 

change and the long-term mean is plotted with a 95% confidence interval ribbon based on a 10 x 10 706 

km aggregation grid (B). Mean annual EVI change values are presented for the major biomes in South 707 

Africa after masking any non-natural land use (C). Data points are sized relative to the area covered 708 

by the respective biome and mean values have been added to the left of the plot space. 709 
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 711 

Figure 2. Comparison of mean EVI and NDVI values derived from Landsat and GIMMS sensors, 712 

respectively, between 1984 and 2013 for all GIMMS pixels within South Africa (A). The density of data 713 

points is indicated by the colour scale and the sample size (N) and R2 value for the linear trend line 714 

(red) are presented. The annual deviation from the long-term mean is plotted in B with a linear trend 715 

line for each sensor. 716 
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 718 

Figure 3. Landscape-scale EVI greening trends illustrated and interpreted with repeat ground (A, C) 719 

and very-high resolution satellite (B, D) photographs. The photo location and approximate field of view 720 

for ground photographs are shown in red in A and C. The average Landsat-derived annual change in 721 

EVI are mapped for each pixel in the third column and is expressed as a percentage of the baseline EVI 722 

value. Annual timeseries are plotted for the selected pixels (white squares) in the fourth column and 723 

Sen’s slope regression lines are plotted in red. See Table 1 for scenario descriptions. 724 
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 726 

Figure 4. Landscape-scale EVI browning trends illustrated and interpreted with repeat ground (A, C, 727 

D) and very-high resolution satellite (B) photographs. See Fig. 3 caption for further details on figure 728 

layout and Table 1 for scenario descriptions. 729 
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