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Abstract

The physiological effects of short-term stress responses typically lead to increased individ-

ual survival as it prepares the body for fight or flight through catabolic reactions in the body.

These physiological effects trade off against growth, immunocompetence, reproduction,

and even long-term survival. Chronic stress may thus reduce individual and population per-

formance, with direct implications for the management and conservation of wildlife popula-

tions. Yet, relatively little is known about how chronic stress levels vary across wild

populations and factors contributing to increased chronic stress levels. One method to mea-

sure long-term stress in mammals is to quantify slowly incorporated stress hormone (corti-

sol) in hair, which most likely reflect a long-term average of the stress responses. In this

study, we sampled 237 harvested moose Alces alces across Sweden to determine the rela-

tive effect of landscape variables and disturbances on moose hair cortisol levels. We used

linear model combinations and Akaike’s Information Criterion (corrected for small sample

sizes), and included variables related to human disturbance, ungulate competition, large

carnivore density, and ambient temperature to estimate the covariates that best explained

the variance in stress levels in moose. The most important variables explaining the variation

in hair cortisol levels in moose were the long-term average temperature sum in the area

moose lived and the distance to occupied wolf territory; higher hair cortisol levels were

detected where temperatures were higher and closer to occupied wolf territories,

respectively.

Introduction

Short-term stress allows individuals to perform better in emergency situations (e.g., imminent

threat of predation or physical conflict) whereas, long-term or chronic stress affects individual

fitness negatively [1, 2], with potential implications for the performance of wild populations.

Further, the physiological consequences of chronic stress include reduced fertility [3],

impaired cognition [4], weaker immune system [5], lower body condition and survival [6].
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Despite this overarching importance of chronic stress for individual and population perfor-

mance, little is known about factors affecting chronic stress and its distribution in wild

populations.

Chronic stress may be expressed in a population as increased disease or decreasing popula-

tion growth [7], but these trends may be masked by intense harvest or mistaken for density

dependent processes. Because changes in underlying vital rates can have direct effects on pop-

ulation dynamics and viability, disentangling the role of chronic stress for vital rates in wild

populations is important and particularly true for species with slow life history or small popu-

lations. Furtherthere is often a time lag between disturbance events and the associated popula-

tion decline, where the actual population stressors are often masked or missed. Hence, real-

time data to monitor chronic stress levels could provide an early warning system of changes

that affect populations [8].

Across a variety of species, stress levels and individual health are negatively affected by mul-

tiple factors. These factors include fasting [9]; habitat fragmentation [10]; anthropogenic activ-

ities (e.g., roads, railways, oil and gas well-sites, cut-lines, power-lines, pipelines, and forest

harvest blocks, [8]), disease, injuries, discomfort, or pain [11]; climatic shifts and heat [12, 13];

predation risk [1, 14]; competition [15]; mating competition [16, 17] and displacement [18].

For example, [13] noted that polar bears Ursus maritimus were under higher levels of physio-

logical stress during years with less ice cover and less access to seals, and [1] noted that preda-

tion risk accounted for chronic stress and deterioration of reproduction in snowshoe hares

Lepus americanus. Notably, there may be synergistic effects of stressors occurring across the

landscape, and the frequency and magnitude of these stressors may determine the ultimate

allostatic load (i.e., the physiological consequences of long-lasting exposure to repeated or

chronic stress) on an individual or population.

Cortisol is a hormone involved in a wide range of physiological processes such as immunity,

digestion, reproduction, and growth [19] and is used as a biomarker of stress in humans and

other vertebrates [20]. Growing hair incorporates unbound and potent cortisol molecules cir-

culating in the bloodstream; thus, the amount of cortisol extracted from hair is commonly

used to assess a long-term average of the systemic exposure to cortisol [19]. Hence, cortisol lev-

els in hair offer a long-term measurement (e.g., spanning over weeks or months) of overall

stress load, and has been used in many studies investigating chronic stress levels in a variety of

mammals including grizzly bears (Ursus arctos), caribou/reindeer (Rangifer tarandus), and owl

monkeys (Aotus nancymaae) [21, 22, 23, 24].

Although many studies have investigated the relationship between stress levels and specific

variables such as predation risk or habitat shift, there is currently limited information about

the effects of landscape variables on chronic stress in wildlife (see [8]). To examine how

chronic cortisol levels vary across a landscape requires many sampled individuals across gradi-

ents of the landscape variables of interest. Here, we explore large-scale relationships of hair

cortisol levels in a solitary ungulate, moose Alces alces, across a 2000 km latitudinal gradient

and examined how environmental factors such as long-term temperature variation, predation

and inter- and intra-guild competition pressure, and anthropogenic stressors impacted hair

cortisol levels in moose.

Moose are widely distributed across Sweden, thereby occurring along gradients of anthro-

pogenic activities, carnivore distributions, climate, and sympatric ungulate species. Moose are

adapted to cold climates and are thought to be especially sensitive to warm temperatures [25],

which makes them a good model species for investigating temperature correlates on chronic

stress levels. Additionally, declining moose numbers have been observed across the southern

ranges of their distribution in North America [26, 27, 28] partly because of a variety of cli-

mate-related stressors, including higher average annual temperatures, long strings of mild
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winters, and increasingly favorable conditions for ticks, parasites, and other invasive species

[26, 29]. Similarly, in Sweden moose in the southern portion of their range are more exposed

to less favorable conditions in terms of higher temperatures and increasing prevalence of para-

sites [30]. Thus, we hypothesized that 1) hair cortisol levels in moose will increase along a cli-

matic gradient from north to south because biologically moose experience increased stress at

elevated temperatures which is likely to increase along the latitudinal gradient in Sweden; 2)

moose calves have higher cortisol levels than adult bulls and cows likely due to elevated energy

metabolism and glucocorticoids; 3) moose will experience increased stress levels in areas closer

to anthropogenic centers because of disturbances associated with human activity and occupied

wolf territories because wolves are one of, if not the, main predator of moose across most of

their range; and 4) moose will experience increased stress levels in areas of high ungulate den-

sities due to resource competition.

Methods

Study area and population

We conducted our study across Sweden where numerous climatic gradients occur from the

Scandic Mountains in the west to the Baltic Sea in the east, and from the Arctic tundra in the

north to the boreal and temperate broad-leaved forests in the south. Moose migrate consider-

able distances, from cooler summer ranges in the mountains to milder winter ranges towards

the coast, compared to the south where they are more stationary [31]. In Sweden, moose are of

ecological and economic importance, a national symbol that generates tourism, and Sweden’s

most important game species. Moose are involved in over 10% of the wildlife-vehicle collisions

[32] and their browsing on young saplings negatively impacts commercial forests.

Historically, large carnivores were abundant throughout Sweden. However, all populations

were nearly extinct due to eradication campaigns ending in the 1940s. Today across Sweden,

populations of brown bear Ursus arctos and grey wolf (Canis lupus) are expanding and both

are regulated by licensed hunts and the removal of occasional problem animals. With popula-

tions generally stable or increasing, wolf and brown bear occur mainly in central Sweden and

to the western part of the country. Sympatric ungulate species include roe deer (Capreolus
capreolus), domestic reindeer, fallow deer (Dama dama), red deer (Cervus elaphus), and wild

boar (Sus scrofa).

Sample collection

Hair sampling was conducted by hunters during the moose hunt in fall and winter 2012. All

samples came from animals killed during the annual quota-based harvest. Because the animals

were killed for non-scientific purposes, no ethical permit was required by Swedish law or by

our universities. The research was reviewed and approved by our departmental animal welfare

officer. Sampling protocols were distributed to hunters for hair sampling. Hair was collected

from the rump by cutting the hair as close to the skin as possible using a clean knife or electric

clipper over an area of approximately 4 cm2. Also, hunters documented the day of the hunt,

GPS-location of the kill site, sex, age, reproductive status, harvest method, and general health

of the moose. Because the data obtained were binary data which could easily be determined in

the field, no elaborate scale was used and training was not required. Of the 1000 sample kits

that were sent out to hunters, samples from a total of 389 individuals where provided by hunt-

ers nationwide (Fig 1). However, not all samples received by the lab were used in the analyses

because some samples contained too few hair shafts, had hair shafts still attached to thin frag-

ments of bloody skin, or were covered in blood.
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Hair cortisol analyses

From each of the remaining 237 samples (96 adult males, 77 adult females, 63 calves), approxi-

mately 100 mg of hair (about 20–30 hair shafts) was weighed and placed in 15 ml falcon tubes.

Following the protocol developed by [21] for grizzly bear, hair samples were washed three

Fig 1. Locations of hair-sampled moose during the moose hunt, Sweden, 2012.

https://doi.org/10.1371/journal.pone.0225990.g001
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times in methanol (99% grade chromatography methanol). During washes, 10 ml methanol

was added to the falcon tube, which was slowly rotated on a rotation device for three minutes.

After three minutes, methanol was removed and new methanol added. This procedure was

repeated twice for every sample. After washes, hair samples were left to air dry under a fume

hood (three to five days). Samples were cut with scissors into 1–2 cm long pieces and placed in

a grinding jar (25 ml stainless steel grinding jars with one 20 mm stainless steel grinding ball).

Hair strands were ground into a uniform hair powder using a ball mill (Retch MM 200) at 25

Hz for 3.0 min. If hair segments were present after 3.0 min processing time, grinding was con-

tinued in 15 s intervals until a uniform powder was achieved. After grinding, 50 mg of hair

powder was carefully weighed out and transferred to a 1.5 ml Eppendorf tube, into which 1 ml

methanol was added. After manually shaking the tube to make sure the hair powder was evenly

distributed in the methanol, cortisol was extracted by rotating the tubes slowly overnight (16

hours). The morning after, samples were centrifuged for 15 min at 4600 rev/min. and 2150g,

and 0.6 ml of the supernatant was transferred to a glass vial, in which it was left to evaporate at

20˚C in a centrifugal evaporator. Samples were reconstituted in 0.25 ml phosphate buffer and

analyzed using Neogen’s commercial enzyme-linked immunoassay kit (#402710) in duplicates.

Samples were not analyzed in the order they were received by our lab, to separate samples

potentially sent from the same hunter or area over several microplates. Regarding specificity of

the ELISA, cross reactivity of the antibody used for the cortisol kit was (according to the manu-

facturer): Cortisol: 100.00%, Prednisolone: 47.42%, Cortisone: 15.77%, 11-Deoxycortisol

15.00%, Prednisone: 7.83%, Corticosterone: 4.81%, 6b-Hydro-xycortisol: 1.37%, 17-Hydroxy-

progesterone: 1.36%, Deoxycorticosterone: 0.94%, Progesterone: 0.06%, Betamethasone: 0.05%,

Dehydroepiandrosterone: 0.03%, Dexamethasone: 0.03%, Beclomethasone: 0.01%, d-Aldoste-

rone: 0.01%, Testosterone: 0.01%, 17α-Hydroxypregnenolone:< 0.01%, Androstenedione: <

0.01%, Cholesterol< 0.01%, Estradiol:< 0.01%, Estriol: < 0.01%, Estrone:< 0.01%, Pregneno-

lone:< 0.01%. Intra- and interassay coefficients of variation (CV) were 3.9 and 15.1%, respec-

tively. A two-fold increase in the amount of hair powder analyzed in a standard hair sample led

to a following two-fold increase in detected cortisol level. The detection limit was 0.4 ng corti-

sol/ml (calculated by taking the average of the absorbance of the zero standard provided with

the commercial kit), which corresponds to a minimum detectable quantity of approximately

0.24 pg cortisol/mg hair and is similar to what is reported in other studies (e.g. [14, 33]).

Variables influencing long-term stress levels

We created a single candidate set (a priori) of linear models by grouping parameters in combi-

nations that we predicted to be ecologically relevant for moose, including demographic group,

surrounding level of anthropogenic disturbance, ungulate density (i.e., measure of competi-

tion), climate and temperature, and carnivore impact (Table 1). We included two variables to

investigate impacts of anthropogenic disturbance; road density and distance to towns. Road

density was quantified within a moose home range sized buffer around the kill site (1.83 km

radius) in ArcGIS. Road density was calculated by measuring the total road (line) length within

the buffer. Distance to towns was calculated by measuring the Euclidean distance from the kill

site to the nearest settlement with>200 inhabitants. We included one climate variable (average

temperature sum over the last 30 years, received from [34]) that was calculated by summing

the daily average temperature for days during the growing season (> 5˚C), and then creating a

yearly average value for 1980–2009 (according to SMHI’s product sheet). The data was deliv-

ered as an average temperature across a sub-basin level (~500 km2 on average).

We excluded areas far from wolf territories (> 30 km from wolf territories), and used the

remaining data from this variable in our model set to analyze potential predation pressure on

Stress correlates in moose

PLOS ONE | https://doi.org/10.1371/journal.pone.0225990 January 13, 2020 5 / 13

https://doi.org/10.1371/journal.pone.0225990


long-term stress levels of moose. In our model set, we included effects of human disturbance

and average temperature sum (to correct for potential temperature effects).

To avoid spurious results in our models, we reduced the number of ungulate variables from

five different species down to one category representing the summed densities for the different

species to include their combined effect on moose hair cortisol levels. Because of the similar

gradients from north to south regarding human disturbance-related variables, ungulate densi-

ties, and the climate-related variable, we expected that some variables would be correlated;

therefore, we explored collinearity for parameters using Pearson’s correlation coefficient and

Variance Inflation Factors (VIFs < 2 was considered acceptable; [36]).

Candidate model set

To investigate the effects of hair cortisol levels in moose, we developed a global model from

which we further developed a subset of 23 additional linear models (Gaussian distribution)

with structured combinations of our variables representing the effect of carnivores as a preda-

tion stressor, ungulate density as a competition stressor, and human disturbance and our cli-

mate variable as anthropogenic stressors. In each model, we retained ‘Reproductive Status’

(calf, cow, or bull) and ‘Condition’ (healthy or poor body condition) because these were two

inherently biological variables that may help explain long term variation in hair cortisol levels

in the Swedish moose population. Prior to analysis, we log-transformed the response variable

(hair cortisol values) to reduce the spread of the values and because cortisol values are nor-

mally sparse [37], and scaled to a mean of zero and unit variance all of our continuous land-

scape level variables to allow for comparability in the estimates of their effect sizes. We used

the margins and ggpredict packages in R to estimate the average marginal effect for any signifi-

cant variables in our model(s).

We compared linear models based on differences in Akaike’s information criterion cor-

rected for small sample size (ΔAICc) to assess model weights, and ranked candidate models

using ΔAICc [38]. We used Akaike weights to determine the relative support for a model, and

used model averaging from all model combinations across parameters and calculated uncondi-

tional variance estimates and associated 95% confidence intervals. Further, we determined if

our covariates had influence on hair cortisol levels by examining if the confidence intervals

overlapped zero.

Results

During the fall and winter of 2012, we collected hair samples from 237 hunter harvested moose

carcasses (96 adult males, 77 adult females, 63 calves). Initial removal of missing body ‘Condition’

Table 1. Variables and categories included in linear model combinations to evaluate moose hair cortisol levels in Sweden, 2012.

Category Variable Description

Intrinsic Demographic group Factor with three levels (cow, bull, calf)

Condition Health status; factor with two levels (poor, healthy)

Anthropogenic influences Dist. to town Distance to towns (> 200 inhabitants)

Road density Road length (> 5 m wide) within a 10.5 km2 buffer1

Ungulates / competition Ungulate Number of ungulates shot / 1000 ha (sum of all species)

Climate and temperature Average temp. sum Average temperature sum (years 1980–2009)

Carnivores Dist. to wolf Distance to wolf territories; covariate (m)

1Based on an average home range size with a radius of 1.83 km (southern Sweden), see [35].
2Temperature based on [25].

https://doi.org/10.1371/journal.pone.0225990.t001
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values reduced our sample size to 232 (93 adult males, 77 adult females, 62 calves). On average,

hair cortisol levels for bull, cow, and calf moose were 2.42 (SE = 0.13), 2.49 (SE = 0.16), and 4.09

(SE = 0.28), respectively. Our top model (~ Dem. Group + Condition + Avg. Temp Sum + Wolf)

was supported with 37% of the overall model weight, thus our approach to model average our

beta coefficients was warranted (Table 2). We determined that hair cortisol levels in moose were

positively related to the climatic gradient in Sweden (βAvg. Temperature Sum = 0.9136, 95%

CI = 0.5555–1.2716), suggesting that moose in warmer regions generally had higher hair cortisol

levels than moose in colder regions (Table 3, Fig 2). Additionally, we detected support for differ-

ences in ‘demographic group’ indicating that moose calves had substantially higher cortisol levels

than adult bulls and cows (βDem. Group (Calf) = 0.5002, 95% CI = 0.3539–0.6465; Fig 3). Lastly, we

noted the distance to an occupied wolf territory was inversely related to long term stress levels in

moose (βDistance to Wolf = -0.0846, 95% CI = -0.1636 - -0.0054; Fig 4). There was no effect of the

condition of the moose (‘poor’ versus ‘healthy; βCondition (Poor) = 0.2695, 95% CI = -0.0067–

0.5457), the density of ungulates (i.e., competition) within the home range buffer where the

moose was harvested (βUngulate Density = 0.0289, 95% CI = -0.1126–0.1704), whether the moose was

located close to town or not (βDistance to Town = 0.0066, 95% CI = -0.1212–0.1343), or the level of

road density within the home range buffer where the moose was harvested (βRoad Density = 0.0140,

Table 2. Variables included in the top 9 comprehensive linear models (within ΔAIC< 6; for reference) to evaluate hair cortisol levels in moose sampled across the

Swedish distribution in 2012.

K AICc ΔAICc AICc Weight Model Likelihood LL Cum. Weight

Dem. Group + Condition + Avg. Temp Sum + Wolf 7 292.5 0.00 0.37 1.00 -139.00 0.37

Dem. Group + Condition + Roads + Avg. Temp Sum + Wolf 8 294.46 1.96 0.14 0.38 -138.91 0.51

Dem. Group + Condition + Town + Avg. Temp Sum + Wolf 8 294.64 2.13 0.13 0.34 -138.99 0.64

Dem. Group + Condition + Avg. Temp Sum 6 294.84 2.33 0.12 0.31 -141.23 0.76

Dem. Group + Condition + Roads + Town + Avg. Temp Sum + Wolf 9 296.59 4.09 0.05 0.13 -138.89 0.81

Dem. Group + Condition + Avg. Temp Sum + Ungulate 7 296.85 4.35 0.04 0.11 -141.18 0.85

Dem. Group + Condition + Roads + Avg. Temp Sum 7 296.95 4.45 0.04 0.11 -141.23 0.89

Dem. Group + Condition + Town + Avg. Temp Sum 7 296.96 4.46 0.04 0.11 -141.23 0.93

�Global Model 10 298.37 5.87 0.02 0.05 -138.69 0.95

�Global model = Dem. Group + Condition + Roads + Town + Avg. Temp Sum + Wolf + Ungulate

https://doi.org/10.1371/journal.pone.0225990.t002

Table 3. Model-average parameter estimates (β), standard errors (se), test statistics (t-values), p-values, and confidence intervals for variables in the linear models

to evaluate hair cortisol levels in moose across the Swedish distribution in 2012. The reference levels for comparison for the categorical variables ‘Demographic group’

and ‘Condition’, are ‘Bull’ and ‘Healthy’, respectively.

95%

β se z value Pr (>|z|) LCL UCL

(Intercept) -0.0874 0.2000 0.437 0.6621 -0.4794 0.3046

Demographic group

Calf 0.5002 0.0746 6.702 <0.0002 0.3539 0.6465

Cow -0.0218 0.0705 0.309 0.7572 -0.1599 0.1163

Condition (Poor) 0.2695 0.1409 1.912 0.0559 -0.0067 0.5457

Average temperature sum 0.9136 0.1826 5.001 <0.0006 0.5555 1.2716

Distance to wolf -0.0846 0.0404 2.094 0.0362 -0.1636 -0.0054

Road density 0.0140 0.0402 0.348 0.7276 -0.0648 0.0929

Distance to town 0.0066 0.0652 0.101 0.9196 -0.1212 0.1343

Ungulate density 0.0289 0.0722 0.401 0.6887 -0.1126 0.1704

https://doi.org/10.1371/journal.pone.0225990.t003
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95% CI = -0.0648–0.0929), respectively, on the long term hair cortisol levels in moose in Sweden

(Table 3).

Discussion

Our study demonstrated that moose hair cortisol levels are not uniform across the Swedish

landscape. As predicted by our first hypothesis, there was a clear gradient in cortisol levels

from north to south, with moose having higher levels in the south, and our analyses suggest

the climatic gradient (i.e., average temperature sum) was an important predictor of stress levels

in moose. [25] noted that moose decreased their activity at a temperature of 14˚C. At 20˚C

moose were open-mouth panting and substantially reduced movement. Biologically, moose

respond to heat stress with increased respiration rates, decreased food intake and increased

water intake [25]. When temperatures rise, moose increase activities that cool their bodies

(e.g., wading in lakes or lying in swamps) while reducing heat-producing activities such as

walking and eating. Thus, hair cortisol levels could be compounded by moose movement (and

stress levels) which may be substantially affected by increasing temperature [39]. Moreover,

warmer temperatures increase prevalence of pathogens and parasites, which are more abun-

dant in the southern range [30]. Further, moose in poor condition are more heat sensitive than

healthy moose, which suggests that warming temperatures may affect health-compromised

individuals more negatively than healthy individuals [40]. If there is indeed a relationship

Fig 2. Mean fitted (predictive) values for the marginal effect of hair cortisol levels on the long-term average temperature sum in the area

where they lived, Sweden, 2012.

https://doi.org/10.1371/journal.pone.0225990.g002
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between warming temperature and moose health, we may see higher moose mortality and dis-

ease rates in the future, especially in the southern ranges, and especially in young moose.

We also found support for our second hypothesis that calves had higher hair cortisol levels

than adults. In ungulates, as well as in other mammals, younger individuals typically have

higher cortisol levels than adults [41, 42]. The higher levels of hair cortisol in calves are likely

due to elevated energy metabolism and glucocorticoids [43]. Further, moose had higher stress

levels in the south including higher presence of embryonic mortality, and high prevalence of a

tick-borne pathogen that may affect moose calf health in the future [44].

For hypothesis three, we determined that moose hair cortisol levels were higher the closer

moose were to occupied wolf territories, and areas with higher wolf occurrence are generally

characterized by having less human activity (fewer roads, towns, and human inhabitants).

Although we did not detect the anthropogenic variables (i.e., distance to town and the densities

of roads) to be important in our model, it is possible that risk and human activity are working

at different scales than we measured. Further, we did not account for different road or town

sizes and it is likely that areas with high carnivore density have fewer large roads or towns [45].

Indeed, our data showed that areas with higher wolf occurrence had fewer roads and were situ-

ated farther from towns. Also, it is possible these areas are less fragmented, which may mean

lower ambient temperatures during hot days, as large tracts of mature forest are important

Fig 3. Mean fitted values of hair cortisol levels for the marginal effect of cow and calf moose in Sweden, 2012.

https://doi.org/10.1371/journal.pone.0225990.g003

Stress correlates in moose

PLOS ONE | https://doi.org/10.1371/journal.pone.0225990 January 13, 2020 9 / 13

https://doi.org/10.1371/journal.pone.0225990.g003
https://doi.org/10.1371/journal.pone.0225990


locally for thermoregulation [46]. Nevertheless, the closer moose were to occupied wolf territo-

ries the higher the cortisol levels which is not surprising because wolves, where they occur, are

the main predator of moose [29, 47].

There was no support for our last hypothesis that competitor density causes higher cortisol

levels. Other research has suggested diet displacement of moose by red deer [48]. But perhaps

our estimates of ungulate densities were to crude to detect such an effect or simply because

such competition does not easily lead to elevated cortisol levels.

To conclude, temperature, distance to occupied wolf territories, and reproductive status

(i.e., calves) were the most important factors explaining the variation in stress hormone levels

in moose. The average temperature is predicted to increase by 1.4–5.8˚C over the next 100

years [49] and moose are behaviorally, physiologically, and morphologically adapted to cold

environments [50] therefore, higher temperatures may ultimately affect moose health and dis-

tribution in the future [28].

The short term solution to lessen potential impacts of warming temperatures and human

activity on moose and other heat-sensitive wildlife species may be to conserve continuous for-

ests, which increase connectivity and genetic variability for populations and provide cooler

temperatures along with low human activity. In particular, mature forests may provide impor-

tant areas for thermoregulation at local scales [51]. Hence, continuous areas with mature for-

ests may become increasingly important for moose and other wildlife species.

Fig 4. Mean fitted (predictive) values for the marginal effect of hair cortisol levels on distance to wolf territory of moose in Sweden, 2012.

https://doi.org/10.1371/journal.pone.0225990.g004

Stress correlates in moose

PLOS ONE | https://doi.org/10.1371/journal.pone.0225990 January 13, 2020 10 / 13

https://doi.org/10.1371/journal.pone.0225990.g004
https://doi.org/10.1371/journal.pone.0225990


Supporting information

S1 Data.

(TXT)

Acknowledgments

Thanks to the Gunnar and Lillian Nicholson Graduate Fellowship, the Mauritz Carlgren Foun-

dation, and the Fisheries, Wildlife, and Conservation Biology Program at North Carolina State

University. We are grateful to the Swedish Association for Hunting and Wildlife Management

and all the helpful hunters that collected hair samples across Sweden during the 2012 moose

hunt–your work made this study possible. We further thank S. Mills, R. Kays, and L. Corlatti

for valuable input, and A. Allen for providing temperature data.

Author Contributions

Conceptualization: Ellinor Sahlén.

Data curation: Ellinor Sahlén.

Formal analysis: Nicholas P. Gould, Ellinor Sahlén.
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