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A B S T R A C T

Prioritizing where to implement management interventions is critical because managers have limited budgets
and the effect of habitat enhancement depends on site-specific environmental conditions. Field experiments can
identify the conditions where habitat enhancement is most effective, but are typically of limited extent and thus
not sufficient for producing spatial predictions that can guide management efforts. We tested if we could produce
spatial predictions maps – showing where management interventions to enhance bee habitat would be most
successful – by combining spatial predictions of plant community composition (i.e., environmental conditions)
obtained from field surveys with a field experiment, in which we quantified the effect of three types of man-
agement interventions on bee species richness. Using information from digital maps, we predicted plant species
composition within power line clearings across southeast Norway. The intervention type, which involved cutting
and removal of the woody vegetation, resulted in the largest increase in bee species richness, but the enhanced
bee species richness was limited to clearings with forb-dominated vegetation. Importantly, the estimated effects
on bee species richness did not differ between models using the predicted, versus the empirically observed, plant
species composition as predictor, making it possible to produce spatial predictions of the increase in bee richness
from implementing different management interventions. Synthesis and applications: Combining field surveys with
data from field experiments can be used to produce high-resolution maps showing where wild bee habitat
enhancement is likely to have the greatest effect. Such maps can inform decisions about where to allocate costly
management interventions.

1. Introduction

The effect of habitat management interventions on species and po-
pulations depend on site-specific environmental conditions (Batáry,
Báldi, Kleijn, & Tscharntke, 2010; McCracken et al., 2015). Tools that
enable managers to decide on type of habitat interventions and to
prioritize where to implement different interventions are critical, be-
cause managers operate with a limited budget. Field experiments in
which habitat conditions are manipulated can reveal causal relation-
ships between habitat interventions and population and species level
ecological responses. However, field experiments are costly to imple-
ment, and consequently, they are typically limited in spatial and tem-
poral extent, and limited to the organisms and environmental condi-
tions that occur in the experimental plots. The limited sample size and
extent of experiments can restrict our ability to produce valid spatial
predictions of the environmental conditions (e.g. local plant species

composition) that influence the effectiveness of management inter-
ventions. Field experiments alone may therefore not be sufficient for
producing spatial predictions that can guide habitat management ef-
forts for species of conservation concern.

The conservation of wild bees (Hymenoptera: Anthophila) is gaining
widespread attention and multiple countries have recently adopted
national strategies for preserving this ecologically important taxon
(Senapathi, Goddard, Kunin, & Baldock, 2017; Norwegian Ministries,
2018). Bees constitute a large and ecologically diverse taxon (Michener,
2007; Westrich, 1996) and the reported declines in their diversity (e.g.
Biesmeijer et al., 2006; Potts et al., 2010) is therefore likely the result of
multiple drivers, each calling for different management strategies.
Some threats, such as habitat fragmentation (Carrié et al., 2017), ha-
bitat loss (Larsson & Franzén, 2007; Steffan-Dewenter, Munzenberg,
Burger, Thies, & Tscharntke, 2002), and competition from managed
bees (Herbertsson, Lindström, Rundlöf, Bommarco, & Smith, 2016)
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impact wild bee diversity by restricting the access to, and amount of
limiting resources. Improving habitat conditions by increasing the
amount of floral or nesting resources within the landscape is therefore
central to conserving wild bee diversity.

In agricultural landscapes, agri-environmental schemes that im-
prove the quality of existing habitats are promising instruments to
promote wild bee diversity (Batáry, Dicks, Kleijn, & Sutherland, 2015;
Hopwood, 2008). In silvicultural landscapes, power line clearings can
contain diverse plant communities (Eldegard, Eyitayo, Lie, & Moe,
2017; Eldegard, Totland, & Moe, 2015) and provide a promising pos-
sibility for creating and maintaining early successional habitats for wild
bees (Russell, Ikerd, & Droege, 2005; Russell, Russell, Kaplan, Mian, &
Kornbluth, 2018; Sydenham, Moe, Totland, & Eldegard, 2015; Wagner,
Ascher, & Bricker, 2014). Although bee habitat management aimed at
improving habitat resource availability and diversity generally in-
creases bee diversity (Tonietto & Larkin, 2018), the effectiveness of
such habitat interventions depends to a large extent on the environ-
mental context (Batáry et al., 2010; Sydenham, Moe, Stanescu-Yadav,
Totland, & Eldegard, 2016) and the experience level of land users and
managers [typically land owners, (McCracken et al., 2015)]. Habitat
interventions should therefore target sites where their effectiveness is
greatest, since funding agencies typically operate on a limited budget
(Batáry et al., 2015).

Identifying locations where the environmental conditions make
habitat management most effective requires field experiments where
the effect of management interventions are tested under different en-
vironmental conditions. The relevant environmental conditions may
differ between regions and habitat types. In agricultural landscapes,
relevant environmental gradients include the amount of resources in
the surrounding landscape, both source habitats, from which bees can
colonize restored habitats (Batáry et al., 2010; Scheper et al., 2013) and
the amount of floral resources (Scheper et al., 2015). In power line
clearings transecting forest, a thick layer of woody debris –with a stem
diameter too small to be of value for cavity nesting bees – typically
cover the ground after manual clearing of the woody vegetation.
Sydenham et al. (2016) found that removing the debris, and thereby
exposing the bare ground, increased bee species richness, but the effect
size increased along a gradient from dwarf shrub to forb dominated
plant communities. However useful data from field experiments are,
such experiments are costly to operate and therefore typically run on a
limited number of sites, making it difficult to predict the effect of
management beyond the experimental sites. Predicting the effective-
ness of habitat management actions is particularly difficult if important
factors that influence the effectiveness cannot be extracted directly
from for example land use maps, but depend on local environmental
conditions, such as the composition of plants found within the site
(Sydenham et al., 2016), or within neighbouring habitat patches
(Scheper et al., 2015).

Field experiments documenting that the effectiveness of habitat
management vary with environmental conditions are of little practical
use if the effectiveness cannot be predicted at spatial scales relevant to
managers. A potential solution would be to obtain spatial predictions of
the effectiveness of habitat management by combining field experiment
data with field survey data. With field experiments we here mean on-
site manipulations of habitat conditions with the aim of testing the
effect of habitat management interventions on for example bee di-
versity. With field survey data we mean data collected in the field,
along environmental gradients but without the use of experimental
manipulation of habitat. If plant composition can be predicted using
data from field surveys, then these predictions could potentially be used
in combination with the results from field experiments to predict the
effect of management measures for bees across the entire region cov-
ered by the field survey data. Within our region, the gradient in forb
species richness corresponds to a vegetation gradient ranging from
dwarf shrub dominated to forb dominated which generally seems to
drive bee diversity within power line clearings in our region (Sydenham

et al., 2015). We build upon the work of Sydenham et al. (2016) to test
if we could predict the plant community composition within power line
clearings and further produce spatial predictions of the effectiveness of
removing the woody debris following maintenance clearing for bee
species richness.

In this study, we tested if we could combine field survey data of
plant communities with data from a large-scale field experiment in-
vestigating different habitat enhancement measures to increase plant
and bee species richness, to produce spatial predictions of the effec-
tiveness of habitat enhancement measures within power line clearings
in SE Norway. Specifically, we tested if: (1) the plant community
composition followed the same gradient (from dwarf shrub dominated
to forb/shrub dominated) within the 19 sites where the field experi-
ments had been conducted, as within the 51 sites where we had con-
ducted vegetation surveys; (2) the plant species composition shifted
from dwarf shrub dominance to forb and shrub dominance along gra-
dients of elevation, terrain ruggedness, solar irradiance, precipitation
during the growing season, the density of the surrounding forests, the
amount of mires surrounding the sites, site specific productivity, and
soil infiltration capacity; (3) the estimated site-specific effectiveness of
wild bee habitat management differed between models that were based
on the predicted plant community composition and models that were
based on empirical data; and (4) if we would be able to identify loca-
tions for cost-effective wild bee habitat interventions.

2. Methods

2.1. Plant data collection

In Datasetsurvey, vegetation inventories were conducted in 51 sites in
power line clearings in SE Norway in 2009 and 2010 (Fig. 1A). We
recorded the percentage cover of all plant species within four rectan-
gular (5×1m) plant plots placed along the centre of the power line
clearing, with a distance of 50m between neighbouring plots. Each
plant plot consisted of five 1m2 subplots. If a species was present in a
subplot, but had< 1% cover, it was recorded as 1%. Species that could
not be readily identified to species were identified to the genus level. In
Datasetexp field data on understorey vegetation was recorded in another
19 sites in power line clearings in 2013 (Fig. 1A). Each site consisted of
three experimental plots; 30 m long and 40–80m wide, depending on
the width of the power line clearing. The experimental plots were lo-
cated at least 20m apart. The tree-layer vegetation within the three
experimental plots at each site had been subjected to one of three
treatments; (a) left Uncut, (b) Cut and left on the ground, or (c) cut and
the resulting debris removed (Cut-remove) from the experimental plot
[see Sydenham et al. (2016) for details on the experimental set-up]. We
recorded the percentage cover of all plant species within nine 1m2

subplots placed in a regular grid pattern within a 10× 10m square in
the centre of each treatment plot.

2.2. Bee data collection

In Datasetexp, solitary bees had been sampled using three flight in-
terception traps (‘window traps’) within each experimental plot in 2013
(see Sydenham et al. (2016)). The traps were installed immediately
after snowmelt, emptied once per month, and operated throughout the
summer before removal in August/September. Given that the in-
dividuals were free to move between the habitat treatment plots, we
interpret a higher species richness or abundance of bees in one treat-
ment type over the others as a preference for that treatment type by the
bees within the local community. Assuming that bees seek to optimize
the reward from their activities, the magnitude of this effect (or pre-
ference) should be positively related to the potential for increasing the
fecundity and fitness (population-level effects) and diversity (species
and community-level effects) of the bees within an area.

During the wild bee sampling, wind knocked over some traps and
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Fig. 1. Graphical summary of the project workflow. (A) The location of study sites within the regional power line grid in SE Norway. (B) Datasetsurvey consisted of
vegetation surveys conducted in four 5m2 plots, located 50m apart within the 51 study sites (n=204). We sorted the 204 plots along three NMDS axes of species
turnover and (C) predicted the plant species turnover (plot scores on NMDS axis 1) throughout the region. The colour gradient (yellow-red) visualizes the predicted
shift from forb to dwarf shrub dominated plant communities. (D) Datasetexp consisted of vegetation surveys conducted in three sets of nine 1m2 plots, spaced at
varying distances within the 19 study sites (n= 57). In each set, the nine 1m2 plots were each placed in an experimental unit where the trees had been either: cut, cut
and removed or left uncut. We sampled wild bees within each treatment unit. (E) We modelled the species richness of bees as a response of elevation and an
interaction between treatment unit type, and NMDS1 scores and compared the slopes between models using the predicted and empirical NMDS1 scores. (F) We
predicted the effect of the ‘cut and remove’ treatment compared to the standard maintenance clearing (i.e. ‘cut’) across the entire region, allowing managers to
identify where the effectiveness of removing woody debris is likely to be greatest (bright colours on the map). (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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consequently the total number of successful collection rounds within
treatment plots, ranged from nine to twelve. We therefore standardized
the sampling intensity by using the expected abundance of each species
within a site given nine trapping rounds. When calculating the stan-
dardized species richness per treatment plot we only included species
with an expected abundance of at least one individual in one out of nine
traps (see Supplementary material Appendix S1 for details on the
standardization procedure).

2.3. Environmental variables from digital maps

In order to produce spatial predictions of plant species composi-
tions, we assembled a raster-stack containing environmental variables
for use in the predictive modelling process (see Supplementary material
Appendix S2 for a detailed protocol). We selected environmental vari-
ables that we expected would be related to the growing conditions for
plants; sites on low productive soils or at high elevations were domi-
nated by dwarf shrubs whereas sites on high productive soils or at low
elevations were dominated by forbs (Eldegard et al., 2017). The raster-
stack contained raster layers with a resolution of 50×50m for: ele-
vation obtained from The Norwegian Mapping Authority (2016); ter-
rain ruggedness [TRI, (Hijmans et al., 2016)] calculated from the ele-
vation map; monthly mean solar irradiance (IRR) and mean monthly
Precipitation (Prec) for each month between May and August obtained
from the WorldClim database (Fick & Hijmans, 2017). We included
three raster layers to represent local soil conditions: soil infiltration
potential obtained from the Survey (2011); Site specific productivity
extracted from the AR50 land use maps obtained from the Norwegian
Institute of Bioeconomy Research [NIBIO] (2007); and the propor-
tionate area occupied by wetlands within 250m of each 50m2 raster
cell. We used a 250m radius because solitary bee species richness is
strongly correlated with the amount of habitat within the landscape at
this spatial scale (Steffan-Dewenter et al., 2002). We calculated the
mean tree cover density (TCD) within 250m of each 50m2 raster cell as
we expected a high TCD might prevent plant colonisations. We ob-
tained maps on the WET and TCD from Copernicus Land Monitoring
Services (2018). The distance to semi-natural grasslands (Norwegian
Environment Agency, 2011) was included as it might influence the
colonization potential of plants. Finally, we downloaded spatial data on
the stately managed power line grid (The Nowegian Water Resources
and Energy Directorate, 2015). We used the number of sets of pylons
with aerial lines within each power line clearing as a proxy for the
width of the power line clearing, as previous studies have found power
line width to be an important driver of local plant diversity (Eldegard
et al., 2017). Single sets of pylons and aerial lines has a width of 18m
for the high voltage 300 and 420 kV power lines, and the recommended
clearing width is 10m on each side (Rasjonell Elektrisk Nettvirksomhet
AS, 2013), which amounts to a total width of 38m for single-set
clearings. The majority of the regional and distributional power lines in
our study region are single-set clearings, but some stretches of the grid
has double sets of pylons and aerial lines, and a total width of nearly
80m.

2.4. Statistical analyses

We used the vegetation survey dataset Datasetsurvey to build pre-
dictive models for plant composition (Fig. 1B, C), and the data from the
field experiment Datasetexp to validate the predictions (Tests 1 and 2).
Thereafter, we tested if the context-dependent effectiveness of habitat
interventions on wild bee species richness and abundance was esti-
mated equally well with predicted plant species composition as with the
empirical plant species composition (Test 3; Fig. 1E). Finally, we pre-
dicted the context-dependent effectiveness of wild bee habitat inter-
ventions within the entire power line grid (Test 4; Fig. 1F).

We estimated gradients in plant species compositional turnover for
both datasets. For Datasetsurvey we used presence/absence data for the

plant taxa (n= 133) in each 5m2 plot to model differences in plant
species composition. We used a non-metric dimensional scaling
(NMDS), specified with centring, PC rotation, half-change scaling and
step across, to place the 204 plant plots in a three-dimensional space
(Fig. 1B), according to their Jaccard’s dissimilarity in plant species
composition (Oksanen et al., 2013). For Datasetexp, (139 plant taxa) we
used an NMDS, with the same specifications as for Datasetsurvey, to place
the 57 experimental plots in a three-dimensional space (Fig. 1D).

To test if we had obtained similar gradients in plant species com-
position for both datasets (Test 1), we tested if the species weighted
scores along the NMDS axes from Datasetsurvey and Datasetexp corre-
sponded similarly to the functional traits of plants. We first used the
function tnrs in the taxize R package (Chamberlain & Szocs, 2013) to
update the species names for all the recorded plant taxa in both datasets
and removed taxa that had only been identified to genera – or for which
we could not find accepted species names – resulting in 123, and 139
plant taxa for Datasetsurvey and Datasetexp, respectively. For both data-
sets, we used linear regressions to test if the species NMDS scores were
related to: the growth form of plants (Dwarf Shrub, Shrub, and Forb);
the Ellenberg moisture tolerance; the Nitrogen-tolerance; and the
woodiness of plants. The traits of plants were downloaded using the R
package TR8 (Bocci, 2015) sourcing traits from the Ecoflora (Fitter &
Peat, 1994), Catminat (Julve, 1998), and PLANTS (Green, 2009) da-
tabases. The woodiness trait contained 15 factor levels, with multiple
variations of “semi-woody”. We simplified this trait by renaming all
“semi-woody” categories into a single category (i.e. “Semi-woody”).
Species that had only been identified to genera or for which we could
not retrieve information on specific traits were omitted from the tests.
The tests included: 123 and 139 species for growth form; 108 and 107
species for both moisture and nitrogen tolerance; and 111 and 109
species for woodiness, for Datasetsurvey and Datasetexp, respectively.

To test if the plant species composition shifted from dwarf shrub to
forb-dominated along the environmental gradients (Test 2), we built a
predictive model for the plant composition (NMDS scores) within
power line clearings. We fitted linear mixed effect models (LMM) with
the plant plot scores (n= 204) from the three NMDS axes from
Datasetsurvey as the response variables and with site identities as random
effects (n=51). Mixed effect models were fitted using the lme4
package (Bates, Maechler, Bolker, & Walker, 2015). We extracted en-
vironmental conditions for each plant plot from the environmental
raster stack and checked for potential collinearity between variable
pairs (Pearson correlation coefficient r > 0.6). We used elevation as
the only proxy for climatic conditions as it was highly correlated to the
monthly estimates of solar irradiance and temperature (r > 0.7). For
each NMDS axis, we first built a full model containing all environmental
variables with a p-value ≤0.1. We reduced the full model by sequen-
tially removing variables until all remaining variables were statistically
significant (p≤ 0.05) and plotted the estimated regression slopes
against the raw data to evaluate if the explanatory variables should be
transformed (by e.g. adding a logarithmic term or a second order
polynomial term, see Table 1 for the variables and their transformations
in the final models). We used likelihood ratio tests to evaluate if
transforming the variables improved model fit and plotted the fitted
values against the Pearson residuals to ensure that residuals were uni-
formly distributed. We calculated the marginal (i.e. variance accounted
for by the fixed effects) and conditional variance (i.e. the variance ac-
counted for by the fixed effects and the random effects) explained (R2)
by the models (Barton, 2016). We used the model formulas from the
final models, combined with the raster maps of the environmental
conditions to predict the NMDS axes scores across the entire region.

We used the 57 vegetation plot scores along the NMDSDatasetexp axes
to validate the predicted NMDSDatasetsurvey scores (Fig. 1C) by fitting a
LMM for each NMDS axis, using the empirical NMDSDatasetexp scores as
the response variable and the corresponding, predicted,
NMDSDatasetsurvey scores as a fixed effect variable. We included site
identities (n=19) and treatment plot types (n= 3) as random
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intercept terms to account for site specific and treatment specific var-
iations in NMDS scores.

To test if we could use the predicted plant species composition to
model the site-specific effectiveness of wild bee habitat enhancement
(Test 3), we ran six models with either the predicted NMDS1Datasetsurvey
or the true NMDS1Datasetexp scores as a fixed effect term. In the first two
models, we used the standardized bee species richness as the response
variables. In the third and fourth models, we used the standardized bee
abundances as response variables. In the fifth and sixth models we ran
the models on bee abundances but excluded Ericaceae specialists
(Andrena fuscipes, A. lapponica, and Colletes succinctus), as these species
differ in their foraging habitats from the remaining solitary bee species
within our study system, and prefer habitats dominated by dwarf shrubs
(particularly Ericaceae) which are typically characterized by having a
low diversity of forbs (Sydenham et al., 2015). In all six models, we
used site identity as a random effect, and log(y+ 1) transformed the
response variable to achieve normally distributed residuals.

We tested if the regression slopes differed between models using the
NMDS1Datasetsurvey versus the NMDS1Datasetexp scores. We first created a
new data frame that included a dummy variable for the Dataset identity
(DatasetID). We then refitted a LMM using the same response variables
as in the original models and the site identity as a random intercept and
used likelihood ratio tests to test if the interactions DatasetIDDatasetsurvey

or Datasetexp×NMDS1Datasetsurvey or Datasetexp×Cutting regime, and
DatasetIDDatasetsurvey or Datasetexp×Elevation were statistically sig-
nificant.

We predicted the context-dependent effectiveness of wild bee

habitat management within the entire power line grid by using the bee
species richness model obtained by NMDS1Datasetsurvey in combination
with treatment type and elevation (Test 4). We predicted the expected
number of bee species given each of the three experimental treatments:
Cut and Remove; Cut; and Uncut and back-transformed these predic-
tions onto the measurement scale. We then subtracted the predicted
number of species given Cut and Remove from the predicted number of
species given Cut and Uncut, since Cut and Remove has been shown to
attract more bees to the treatment plots, than the other treatments
(Sydenham et al., 2016). All analyses were conducted using R (R Core
Team, 2018).

3. Results

We were able to identify the same gradient in plant species com-
position in both Datasetsurvey and Datasetexp (Fig. 2A–F). The NMDS-
analysis separated the 204 plant plots from Datasetsurvey along three
NMDS axes (Fig. 1B, stress= 0.14, linear fit R2= 0.92).
NMDS1Datasetsurvey separated sites according to the dominance by plants,
such as forbs and shrubs that depended on fertile soils (Fig. 2A–C). The
NMDS analysis of the plant plots from Datasetexp (Fig. 1D, stress= 0.12,
linear fit R2= 0.92) yielded a primary gradient (NMDS1) with the same
interpretation as the ones retrieved from Datasetsurvey (Fig. 2D–F). By
contrast, the plant scores along NMDS2 and NMDS3 were less clearly
related to the functional traits of plants in both Datasetsurvey (Appendix
S3 Figs. S1A–L) and Datasetexp (Appendix S4 Figs. S2A–L).

Our model predicted a shift towards forb dominated plant com-
munities (Table 1, i.e. decrease in NMDS1Datasetsurvey scores) as the site
productivity index (df= 2, χ2= 46.9, p < 0.001) and terrain rug-
gedness increased (df= 1, χ2= 9.0, p=0.003). The predicted
NMDS1Datasetsurvey was related to scores along NMDS1Datasetexp (Table 2,
df= 1, χ2= 16.1, p < 0.001). Scores along NMDS2Datasetsurvey de-
creased with elevation (df= 1, χ2= 26.7, p < 0.001) and the shade
index (df= 1, χ2= 4.1, p= 0.042) and increased with terrain rug-
gedness (df= 1, χ2= 8.9, p=0.003). Scores along NMDS3Datasetsurvey
were related to the width (i.e. single or double set of aerial lines) of the
power line clearing (df= 1, χ2= 3.9, p=0.049) so that plots within
wide clearings had lower NMDS scores than plots within narrow ones.
However, this relationship was rather weak (t=−1.97). While the
predicted NMDS scores along NMDS2 was not related to the values from
the corresponding NMDS axes obtained from Datasetexp (df= 1,
χ2= 2.4, p=0.12) scores along NMDS3 were (df= 1, χ2= 8.1,
p=0.01, Appendix S5 Table S1).

The predicted NMDS1Datasetsurvey scores captured the context de-
pendent effectiveness of the three cutting regimes on solitary bee spe-
cies richness (Table 3, Fig. 4). The term NMDS1Datasetexp×Treatment
(df= 2, χ2= 7.4, p=0.025) showed that as the NMDS1Datasetexp scores
of the treatment plot increased, the number of species sampled in the
Cut-Remove treatment plots decreased at a higher rate than within the
two other treatment categories (Cut and Uncut). Substituting the
NMDS1Datasetexp variable, with the NMDS1Predicted variable resulted in a
model for solitary bee species richness with similar regression slopes as
when running the model with the NMDS1Datasetexp (Fig. 4, Table 3). We
found a similar context dependent effect when running the models on
solitary bee abundance (Appendix S6, Table S2). However, neither the
NMDS1Datasetexp×Treatment (df= 2, χ2= 4.9, p= 0.087) nor the
NMDS1Predicted× Treatment (df= 2, χ2= 3.3, p=0.19) terms were
statistically significant. When the Ericaceae specialists were excluded,
the NMDS1Datasetexp×Treatment interaction (df= 2, χ2= 6.9,
p=0.033) showed that the number of individuals attracted to the Cut-
Remove treatment plots decreased from a higher initial abundance and
at a higher rate than in the other two treatment categories when the
NMDS1Datasetexp score increased. A similar trend was found when sub-
stituting the NMDS1Datasetexp variable with the NMDS1Predicted variable,
but in this case the NMDS1Predicted× Treatment interaction was not
statistically significant (df= 2, χ2= 4.7, p=0.094). Elevation was

Table 1
Plant species composition within power line clearings (NMDS axes scores from
Datasetsurvey, Fig. 1A, B) was related to local growing conditions, topography
and elevation. Changes along NMDS1 reflected a shift from dwarf-shrub to forb
dominated plant communities (Fig. 2). PWL width= Power line width (single
versus double set of pylons and aerial lines). The variance explained by each
model is provided both for the fixed effects alone (R2

Marginal) and for the fixed
effects and random effects (R2

Conditional).

Plant community composition (NMDS axis 1 scores)

Fixed effects Estimate SE t R2
Marginal R2

Conditional

Intercept 0.25 0.11 2.27 0.43 0.73
Productivity −6.58 0.97 −6.76
Productivity2 −3.41 1.01 −3.39
Terrain ruggedness −0.05 0.02 −2.99

Random effects Variance SD

Site (n= 51) Intercept 0.22 0.47
Residual 0.19 0.44

Plant community composition (NMDS axis 2 scores)

Fixed effects Estimate SE t R2
Marginal R2

Conditional

Intercept 0.00 0.04 0.00 0.33 0.56
MASL −0.24 0.04 −5.77
Shade −0.08 0.04 −2.02
Terrain ruggedness 0.12 0.04 3.01

Random effects Variance SD

Site (n= 51) Intercept 0.06 0.24
Residual 0.11 0.33

Plant community composition (NMDS axis 3 scores)

Fixed effects Estimate SE t R2
Marginal R2

Conditional

Intercept 0.06 0.05 1.12 0.03 0.22
PWL width −0.16 0.08 −1.97

Random effects Variance SD

Site (n= 51) Intercept 0.04 0.20
Residual 0.17 0.41
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retained in all models (P < 0.05); species richness and abundance
decreased with elevation (Tables 3 and S2, Fig. 4). There were only
slight differences in the parameter estimates when using the predicted
NMDS1 scores compared to when we used the NMDS1 scores from
Datasetexp to model the context dependent effect of the cutting regimes
on bee species richness and abundance. These differences were not
large enough for the estimated relationships to differ significantly be-
tween the two sets of models (Table 4). The most similar parameter
estimates were obtained for the models with log(species richness+ 1)
as a response variable (Fig. 4). We therefore used the log(species
richness+ 1) model, with the predicted NMDS1Datasetsurvey scores to
predict the effectiveness of wild bee habitat management within power
line clearings across the entire region (Figs. 3 and 4).

4. Discussion

In order to achieve the goals of the national pollinator strategies
(Norwegian Ministries, 2018; Senapathi et al., 2017) and conserve wild
bees in intensively managed landscapes, the quality of existing poten-
tial habitat patches will have to be improved. The fact that the effec-
tiveness of habitat improvement schemes on bee diversity depends on
the environmental context (Scheper et al., 2013; Sydenham et al., 2016)
calls for decision-making tools for optimizing the effectiveness of wild
bee habitat management. Our findings demonstrate how combining
spatial predictions of site-specific environmental conditions (i.e., plant
species composition), obtained from field surveys, with the causative
power obtained from field experiments, can identify areas where ha-
bitat improvement schemes will be most effective (Figs. 1 and 4).

The effectiveness of the Cut-Remove intervention (Figs. 3 and 4)
increased with site productivity (decreasing NMDS1 scores). This con-
text dependent effect (difference between Cut-Remove and Cut) was
slightly underestimated (lower intercept in Fig. 3D) when using the
predicted NMDS1 scores (from Datasetsurvey), as compared to the em-
pirical NMDS1 scores (from Datasetexp). Our proposed management
map is therefore likely to be slightly conservative. However, we believe
that most managers would view this as a beneficial attribute of a
management tool. In mountainous regions and at high latitudes, pro-
ductive soils are generally scarce and confined to lowland areas. These
productive areas are typically used for agriculture, and have lost im-
portant wild bee habitats, such as semi-natural grasslands (Öckinger &
Smith, 2007), due to agricultural intensification (Fjellstad & Dramstad,
1999; Ollerton, Erenler, Edwards, & Crockett, 2014). Large semi-nat-
ural elements in these landscapes mainly consist of production forests
which, except in the earliest successional stages after logging (Rubene,
Schroeder, & Ranius, 2015; Taki et al., 2013), are of little habitat value
for wild bees. In such landscapes, power line clearings provide con-
tinuous stretches of land in early-mid successional stages (Eldegard

Fig. 2. The first NMDS axis in Datasetsurvey and Datasetexp separated sites along a gradient in site productivity. Plant scores on NMDS1Datasetsurvey, were (A) negatively
correlated to the nutrient dependencies of plants and plants with low scores were typically (B) forbs and (C) non-woody. (D–F) Plant scores on NMDS1Datasetexp
showed similar relationships to species traits. (G) The predicted NMDS1Dataset survey plot scores, were correlated with the empirical NMDS1Datasetexp scores.
NMDS1Datasetexp axis scores were multiplying by minus 1 to align them with the NMDS1 scores from Datasetsurvey.

Table 2
Validation of the prediction from Datasetsurvey (Fig. 1C). The predicted plant
community composition, i.e. scores along NMDS1, was compared to the cor-
responding NMDS1 scores obtained from the plant plots in Datasetexp. The
model was fitted using a linear mixed effects model with Site and Treatment
(i.e., type of habitat enhancement) as random intercepts.

Fixed effects Estimate SE t R2
Marginal R2

Conditional

Intercept −0.28 0.14 −2.01 0.32 0.79
NMDS1Predicted from dataset

survey

−0.59 0.13 −4.39

Random effects Variance SD

Site (n= 19) Intercept 0.23 0.48
Treatment
(n= 3)

Intercept < 0.01 0.06

Residual 0.10 0.32
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et al., 2017), and are of potential high value for pollinating insects such
as wild bees (Hill & Bartomeus, 2016; Russell et al., 2005; Sydenham
et al., 2015). Power line clearings in these productive areas may be of
particularly high importance to bees if they are managed correctly
through e.g. integrated vegetation management (Russell et al., 2018) or
by exposing the ground by removing woody debris after maintenance
clearing (Sydenham et al., 2016). Our findings demonstrate how spatial
prediction maps can be used to identify priority areas within the power
line grid (Fig. 1) where wild bee habitat enhancement is likely to have
the greatest effect.

When evaluating the effectiveness of habitat management one
should bear in mind that the effect of restoring or improving habitats
can be delayed if the restored habitat patch is isolated from potential
source habitats. In agricultural landscapes, for example, the effective-
ness of habitat management has been shown to be greatest if the
landscape contains source habitats from which bees can recolonize
improved habitat patches (Batáry et al., 2010; Scheper et al., 2013).
However, even in intensively managed landscapes, wild bee commu-
nities in restored habitat patches may ‘mature’ over time as less-mobile,

habitat specialists find their way and colonize the restored habitat
patch (Kremen & M'Gonigle, 2015). Thus, habitat management schemes
should define the goal of implementing management actions. If the aim
is to secure the long-term viability of bee populations at a regional
scale, then it might be a reasonable strategy to restore isolated habitat
fragments, so that they may act as stepping stones between existing
semi-natural habitat patches (Menz et al., 2011). Such a management
plan might include areas where the immediate effect of habitat re-
storation is modest. By contrast, if the aim is to rapidly bolster bee
populations, or for a landowner to direct her efforts to the area(s) where
they will have the largest local effect of bee diversity, then management
plans should target areas where the immediate effect is predicted to be
greatest. In these cases, the modelling approach we have used here may
provide a valuable guide for obtaining the desired effects of habitat
management in a cost-efficient way.

Predicting the effectiveness of habitat management may be easiest
in ecosystems with relatively steep environmental gradients. In boreal
forests the gradient from low productive soils, dominated by dwarf
shrubs, to intermediate to high productive soils dominated by forbs and
shrubs (Eldegard et al., 2017) is fairly distinct and not strongly asso-
ciated with specific plant species. It may be more difficult to predict
factors that determine the management effectiveness in agricultural
landscapes, such as the diversity of late flowering forbs in the sur-
rounding landscape (Scheper et al., 2015), because forb diversity in
grasslands depends on both local environmental conditions and on the
management history of neighbouring areas (Gustavsson, Lennartsson, &
Emanuelsson, 2007; Winsa, Bommarco, Lindborg, Marini, & Öckinger,
2015). Obtaining valid predictions in agricultural landscapes may
therefore require more extensive field surveys than within power line
clearings. Our spatial predictions should therefore not be used outside
power line clearings, or in other regions, unless these predictions can be
validated using independent empirical data from e.g. species occur-
rence records. Online repositories of species occurrence records such as
the Global Biodiversity Information Facility ([GBIF], Edwards, Lane, &
Nielsen, 2000) contain numerous recordings of species occurrences and

Table 3
The context dependent effectiveness of different habitat enhancement types (Cut-Remove, Cut, or Uncut) on the species richness of wild bees was modelled equally
well by the predicted plant species compositions (NMDS1 scores from Datasetsurvey, Fig. 1C) as by the NMDS1 scores obtained from field data collection of plant
community composition within the treatment (Cut-Remove, Cut, or Uncut) plots (from Datasetexp, Fig. 1D).

Effectiveness of habitat enhancement

Fixed effects Estimate SE t R2
Marginal R2

Conditional

Intercept (Uncut) 1.40 0.13 10.88 0.40 0.74
NMDS1Predicted −0.02 0.12 −0.15
Cut-Remove 0.33 0.12 2.74
Cut 0.40 0.12 3.31
Elevation −0.32 0.11 −2.86
NMDS1predicted× Cut-Remove −0.27 0.12 −2.34
NMDS1predicted× Cut −0.11 0.13 −0.84

Random effects Variance SD

Site (n= 19) Intercept 0.18 0.42
Residual 0.14 0.37

Effectiveness of habitat enhancement

Fixed effects Estimate SE t R2
Marginal R2

Conditional

Intercept (Uncut) 1.40 0.12 11.59 0.45 0.73
NMDS1Datasetexp −0.01 0.12 −0.04
Cut-Remove 0.35 0.12 2.95
Cut 0.38 0.12 3.09
Elevation −0.32 0.10 −3.07
NMDS1Datasetexp×Cut-Remove −0.32 0.12 −2.66
NMDS1Datasetexp×Cut −0.14 0.13 −1.10

Random effects Variance SD

Site (n= 19) Intercept 0.14 0.37
Residual 0.14 0.37

Table 4
The estimated context dependent effectiveness of wild bee habitat management
(NMDS1 score× Treatment interaction term) did not differ between models
using the predicted (Datasetsurvey) or the locally measured (Datasetexp) en-
vironmental context. Results from likelihood ratio tests.

Log(Bee species richness+ 1) D.f. χ2 P

DatasetID×Elevation 1 0.005 0.94
DataSetID×NMDS1score× Treatment 2 0.083 0.96

Log(Bee abundance+ 1)
DatasetID×Elevation 1 0.008 0.93
DataSetID×NMDS1score× Treatment 2 0.120 0.94

Log(Bee abundance Excl. Ericacea specialists+ 1)
DatasetID×Elevation 1 0.001 0.98
DataSetID×NMDS1score× Treatment 2 0.144 0.93
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the development of predictive modelling techniques, using species oc-
currence data from for example GBIF, is a rapidly developing field of
research and models are constantly being refined (D'Amen, Rahbek,
Zimmermann, & Guisan, 2017).

In contrast to local scale environmental conditions such as forb di-
versity, other determinants of the effectiveness of wild bee habitat
management in agricultural landscapes, such as the amount of semi-
natural grasslands in the surrounding landscape (Batáry et al., 2010)
can be obtained from land use maps. Whenever possible, ecologists
should aim to specify their ecological models so that they can predict
across the landscape. In addition to providing managers with tangible
predictions that they can use when deciding where to allocate man-
agement efforts, such predictions will also allow other ecologists to
compare the predictions to their own models and thus potentially
strengthen our understanding of fundamental ecological processes
(Houlahan, McKinney, Anderson, & McGill, 2017).

5. Conclusions

Managers often operate with a limited budget for implementing
conservation schemes and consequently they need tools for identifying
areas where habitat improvement measures will be most efficient. One
such tool is spatial prediction maps with a relevant resolution – like the
one we have produced for bees in this study. Such maps can be used to

prioritize where to implement costly management interventions.
Moreover, by providing predictions of the expected effect of any habitat
improvement, it will be possible to validate the predictions in future
studies (Houlahan et al., 2017) and further refine ongoing management
schemes.
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Fig. 3. The predicted bee species richness in plots managed by (A) ‘Cut-Remove’, (B) ‘Cut’, and (C) ‘Uncut’. (D) The effectiveness of ‘Cut-Remove’ was greatest in
productive sites (low NMDS1 scores) and species richness decreased with elevation. The predicted species richness (A–C) from the model was back-transformed from
the log-scale before plotted on the maps. The colour gradient (blue-yellow) visualize the predicted gradient in bee species richness given the three habitat man-
agement intervention types. Note that the estimated relationships between log (Bee species richness +1) and NMDS1 scores are nearly parallel when using the NMDS
scores from Datasetsurvey and Datasetexp but that the intercept is slightly lower when using the predicted NMDS1 scores from Datasetsurvey (treatment ‘Cut-Remove’).
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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