STATE OF THE CLIMATE IN 2018

Special Supplement to the Bulletin of the American Meteorological Society Vol. 100, No. 9, September 2019

STATE OF THE CLIMATE IN 2018

Editors

Jessica Blunden Derek S. Arndt

Chapter Editors

Peter Bissolli Howard J. Diamond Matthew L. Druckenmiller Robert J. H. Dunn Catherine Ganter Nadine Gobron Martin O. Jeffries Tim Li Rick Lumpkin Ademe Mekonnen Emily Osborne Jacqueline A. Richter-Menge Ahira Sánchez-Lugo Ted A. Scambos Carl J. Schreck III Sharon Stammerjohn Diane M. Stanitski Kate M. Willett

Technical Editor

Andrea Andersen

BAMS Special Editor for Climate

Richard Rosen

AMERICAN METEOROLOGICAL SOCIETY

COVER CREDITS:

FRONT/BACK: © BOB Busey, International Arctic Research Center, University of Alaska Fairbanks

Ice-rich permafrost exposed on the face of Itkillik Bluff on the North Slope of Alaska. The bluffs and surrounding ice-rich permafrost have lost large volumes of ice over recent years due to lateral erosion and surface disturbances such as wildfire and climate warming. Members of NASA's Arctic-Boreal Vulnerability Experiment visit this site annually to collect frozen soil and ground ice for carbon analysis. The team also uses regional airborne and space-borne remote sensing to identify potential volume of major ground ice loss in previously unidentified ice-rich parts of the landscape.

How to cite this document:

Citing the complete report:

Blunden, J. and D. S. Arndt, Eds., 2019: State of the Climate in 2018. Bull. Amer. Meteor. Soc., 100 (9), Si–S305, doi:10.1175/2019BAMSStateoftheClimate.1.

Citing a chapter (example):

Scambos, T. and S. Stammerjohn Eds., 2019: Antarctica and the Southern Ocean [in "State of the Climate in 2018"]. *Bull. Amer. Meteor. Soc.*, **100** (9), S169–S188, doi:10.1175/2019BAMSStateoftheClimate.1.

Citing a section (example):

Meijers, A. J., B. Sallée, A. Grey, K. Johnson, K. Arrigo, S. Swart, B. King, and M. Mazloff, 2019: Southern Ocean [in "State of the Climate in 2018"]. *Bull. Amer. Meteor. Soc.*, **100** (9), S181–S185, doi:10.1175/2019BAMSStateoftheClimate.1.

EDITOR AND AUTHOR AFFILIATIONS (ALPHABETICAL BY NAME)

Ades, M., European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom

Adler, R., University of Maryland, College Park, Maryland

Aldeco, Laura S., Servicio Meteorológico Nacional, Buenos Aires, Argentina

Alejandra, G., Instituto Geofísico del Perú, Lima, Perú

Alfaro, Eric J., Center for Geophysical Research and School of Physics, University of Costa Rica, San José, Costa Rica

Aliaga-Nestares, Vannia, Servisão Nacional de Meteorología e Hidrología del Perú, Lima, Perú

Allan, Richard P., University of Reading, Reading, United Kingdom

Allan, Rob, Met Office Hadley Centre, Exeter, United Kingdom

Alves, Lincoln M., Centro de Ciencias do Sistema Terrestre, Instituto Nacional de Pesquisas Espaciais, Cachoeira Paulista, Sao Paulo, Brazil

Amador, Jorge A., Center for Geophysical Research and School of Physics, University of Costa Rica, San José, Costa Rica

Andersen, J. K., Geological Survey of Denmark and Greenland, Copenhagen, Denmark

Anderson, John, Department of Atmospheric and Planetary Science, Hampton University, Hampton, Virginia

Arndt, Derek S., NOAA/NESDIS National Centers for Environmental Information, Asheville, North Carolina

Arosio, C., University of Bremen, Bremen, Germany

- **Arrigo, Kevin,** Department of Earth System Science, Stanford University, Stanford, California
- Azorin-Molina, César, Regional Climate Group, Department of Earth Sciences, University of Gothenburg, Gothenburg, Sweden; Centro de Investigaciones sobre Desertificación – Spanish National Research Council, Moncada (Valencia), Spain
- **Bardin, M. Yu,** Yu. A. Izrael Institute of Global Climate and Ecology, and Institute of Geography, Russian Academy of Sciences, Russia

Barichivich, Jonathan, Instituto de Geografía, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile

Barreira, Sandra, Argentine Naval Hydrographic Service, Buenos Aires, Argentina

Baxter, Stephen, NOAA/NWS Climate Prediction Center, College Park, Maryland

- Beck, H. E., Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey
- Becker, Andreas, Global Precipitation Climatology Centre, Deutscher Wetterdienst, Offenbach am Main., Germany
- Bell, Gerald D., NOAA/NWS Climate Prediction Center, College Park, Maryland

Bellouin, Nicolas, University of Reading, Reading, United Kingdom

- Belmont, M., Seychelles National Meteorological Services, Pointe Larue, Mahé, Seychelles
- Benedetti, Angela, European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom

Benedict, Imme, Meteorology and Air Quality Group, Wageningen University and Research, Wageningen, Netherlands Bernhard, G. H., Biospherical Instruments Inc., San Diego, California

Berrisford, Paul, NCAS-Climate, European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom

- Berry, David I., National Oceanography Centre, Southampton, United Kingdom
- Bettio, Lynette, Bureau of Meteorology, Melbourne, Victoria, Australia
- Bhatt, U. S., Geophysical Institute, University of Alaska Fairbanks, Fairbanks, Alaska

Biskaborn, B. K., Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam, Germany

Bissolli, Peter, Deutscher Westterdienst, WMO RA VI Regional Climate Centre Network, Offenbach, Germany

Bjella, Kevin L., Cold Regions Research and Engineering Laboratory (CRREL), Fairbanks, Alaska

Bjerke, J. K., Norwegian Institute for Nature Research, Tromsø, Norway

Blake, Eric S., NOAA/NWS National Hurricane Center, Miami, Florida

Blenkinsop, Stephen, School of Engineering, Newcastle University, Newcastle-upon-Tyne, United Kingdom

- Blunden, Jessica, NOAA/NESDIS National Centers for Environmental Information, Asheville, North Carolina
- **Bock, Olivier,** Paris Institute of Globe Physics, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- **Bosilovich, Michael G.,** Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, Maryland

Boucher, Olivier, Sorbonne Université, Paris, France

Box, J. E., Geological Survey of Denmark and Greenland, Copenhagen, Denmark

Boyer, Tim, NOAA/NESDIS National Centers for Environmental Information, Silver Spring, Maryland

Braathen, Geir, WMO Atmospheric Environment Research Division, Geneva, Switzerland

Bringas, Francis. G., NOAA/OAR Atlantic Oceanographic and Meteorological Laboratory (AOML), Miami, Florida

- Bromwich, David. H., Byrd Polar and Climate Research Center, The Ohio State University, Columbus, Ohio
- Brown, Alrick, Department of Physics, The University of the West Indies, Jamaica
- Brown, R., Climate Research Division, Environment and Climate Change Canada, Montréal, Quebec, Canada
- Brown, Timothy J., Western Regional Climate Center, Desert Research Institute, Reno, NV
- Buehler, S. A., Universität Hamburg, Hamburg, Germany
- **Cáceres, Luis,** Instituto Nacional de Meteorología e Hidrología de Ecuador, Ecuador
- Calderón, Blanca, Center for Geophysical Research, University of Costa Rica, San José, Costa Rica

Camargo, Suzana J., Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York

Campbell, Jayaka D., Department of Physics, The University of the West Indies, Jamaica

- Campos Diaz, Diego A., Dirección Meteorológica de Chile, Santiago de Chile, Chile
- Cappelen, J., Danish Meteorological Institute, Copenhagen, Denmark
- **Carrea, Laura,** Department of Meteorology, University of Reading, Reading, United Kingdom
- Carrier, Seth B., National Institute of Water and Atmospheric Research, Ltd., Auckland, New Zealand
- Carter, Brendan R., Joint Institute for the Study of the Atmosphere and Ocean, University of Washington, and NOAA/OAR Pacific Marine Environmental Laboratory, Seattle, Washington
- **Castro, Anabel Y.,** Servicio Nacional de Meteorología e Hidrología del Perú, Lima, Perú
- **Cetinić, Ivona,** NASA Goddard Space Flight Center, Greenbelt, Maryland, and Universities Space Research Association, Columbia, Maryland
- **Chambers, Don P.,** College of Marine Science, University of South Florida, St. Petersburg, Florida
- Chen, Lin., Institute for Climate and Application Research (ICAR)/KLME/ILCEC/CIC-FEMD, Nanjing University of Information Science and Technology, Nanjing, China
- **Cheng, Lijing,** International Center for Climate and Environment Sciences, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
- Cheng, Vincent. Y. S., Environment and Climate Change Canada, Toronto, Ontario, Canada
- Christiansen, Hanne H., Geology Department, University Centre in Svalbard, Longyearbyen, Norway
- Christy, John R., The University of Alabama in Huntsville, Huntsville, Alabama
- Chung, E.-S., IBS Center for Climate Physics, Busan, South Korea
- **Claus, Federico,** Argentine Naval Hydrographic Service, Buenos Aires, Argentina,
- **Clem, Kyle R.,** Institute of Earth, Ocean, and Atmospheric Sciences, Rutgers, the State University of New Jersey, New Brunswick New Jersey
- Coelho, Caio A. S., CPTEC/INPE Center for Weather Forecasts and Climate Studies, Cachoeira Paulista, Brazil
- **Coldewey-Egbers, Melanie,** German Aerospace Center (DLR) Oberpfaffenhofen, Wessling, Germany
- Colwell, Steve, British Antarctic Survey, Cambridge, United Kingdom

Cooper, Owen R., Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado, and NOAA/OAR Earth System Research Laboratory, Boulder, Colorado

- **Cosca, Cathy,** NOAA/OAR Pacific Marine Environmental Laboratory, Seattle, Washington
- **Covey, Curt,** Lawrence Livermore National Laboratory, Livermore, California
- **Coy, Lawrence,** Science Systems and Applications, Inc., NASA Goddard Space Flight Center, Greenbelt, Maryland
- Dávila, Cristina P., Servicio Nacional de Meteorología e Hidrología del Perú, Lima, Perú

- Davis, Sean M., Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, and NOAA/OAR Earth System Research Laboratory, Boulder, Colorado
- de Eyto, Elvira, Marine Institute, Furnace, Newport, Ireland
- de Jeu, Richard A. M., VanderSat B.V., Haarlem, Netherlands
- **De Laat, Jos,** Royal Netherlands Meteorological Institute (KNMI), DeBilt, Netherlands
- Decharme, B., Centre National de Recherches Météorologiques, France
- **DeGasperi, Curtis L.,** King County Water and Land Resources Division, Seattle, Washington
- Degenstein, Doug, University of Saskatchewan, Saskatoon, Saskatchewan Canada
- **Demircan, Mesut,** Turkish State Meteorological Service, Ankara, Turkey
- Derksen, C., Climate Research Division, Environment and Climate Change Canada, Downsview, Ontario, Canada
- Dhurmea, K. R., Mauritius Meteorological Service, Vacoas, Mauritius
- **Di Girolamo, Larry,** University of Illinois at Urbana-Champaign, Champaign, Illinois
- Diamond, Howard J., NOAA/OAR Air Resources Laboratory, College Park, Maryland
- Diaz, Eliecer, Instituto de Hidrología de Meteorología y Estudios Ambientales de Colombia (IDEAM), Bogotá, Colombia
- Diniz, Fransisco A., Instituto Nacional de Meteorologia, Brasilia, Brazil
- Dlugokencky, Ed J., NOAA/OAR Earth System Research Laboratory, Boulder, Colorado
- Dohan, Kathleen, Earth and Space Research, Seattle, Washington
- **Dokulil, Martin T.,** Research Department for Limnology Mondsee, University of Innsbruck, Austria
- **Dolman, A. Johannes,** Department of Earth Sciences, VU University Amsterdam, Amsterdam, Netherlands
- **Domingues, Catia M.,** Institute for Marine and Antarctic Studies, University of Tasmania, Antarctic Climate and Ecosystems Cooperative Research Centre, and Australian Research Council's Centre of Excellence for Climate System Science, Hobart, Tasmania, Australia
- **Domingues, Ricardo,** Cooperative Institute for Marine and Atmospheric Studies, University of Miami and NOAA OAR Atlantic Oceanographic and Meteorological Laboratory (ADML), Miami, Florida,
- Donat, Markus G., Barcelona Supercomputing Centre, Barcelona, Spain
- **Dorigo, Wouter A.,** Department of Geodesy and Geoinformation, TU Wien - Vienna University of Technology, Vienna, Austria
- **Drozdov, D. S.,** Earth Cryosphere Institute, and Tyumen State University, Tyumen, Russia
- **Druckenmiller, Matthew L.,** National Snow and Ice Data Center, Boulder, Colorado

Dunn, Robert J. H., Met Office Hadley Centre, Exeter, United Kingdom

Durre, Imke, NOAA/NESDIS National Centers for Environmental Information, Asheville, North Carolina

Dutton, Geoff S., Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, and NOAA/OAR Earth System Research Laboratory, Boulder, Colorado

EIKharrim, M., Direction de la Météorologie Nationale Maroc, Rabat, Morocco

Elkins, James W., NOAA/OAR Earth System Research Laboratory, Boulder, Colorado

Epstein, H. E., Department of Environmental Sciences, University of Virginia, Charlottesville, Virginia

Espinoza, Jhan C., Instituto Geofisico del Perú, Lima, Perú, and Université Grenoble Alpes, Grenoble, France

Famiglietti, James S., Global Institute for Water Security, School of Environment and Sustainability, and Department of Geography and Planning, University of Saskatchewan, Saskatoon, Canada

Farrell, Sinead L., NOAA Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland

Fausto, R. S., Geological Survey of Denmark and Greenland, Copenhagen, Denmark

Feely, Richard A., NOAA/OAR Pacific Marine Environmental Laboratory, Seattle, Washington

Feng, Z., Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington

Fenimore, Chris, NOAA/NESDIS National Centers for Environmental Information, Asheville, North Carolina

Fettweis, X., University of Liège, Liège, Belgium

Fioletov, Vitali E., Environment and Climate Change Canada, Toronto, Canada

Flemming, Johannes, European Centre for Medum-Range Weather Forecasts, Reading, United Kingdom

Fogt, Ryan L., Department of Geography, Ohio University, Athens, Ohio

Forbes, B. C., Arctic Centre, University of Lapland, Rovaniemi, Finland

Foster, Michael J., Cooperative Institute for Meteorological Satellite Studies, Space Science and Engineering Center, University of Wisconsin-Madison, Madison, Wisconsin

Francis, S. D., National Weather Forecasting and Climate Research Centre, Nigerian Meteorological Agency, Abuja, Nigeria

Franz, Bryan A., NASA Goddard Space Flight Center, Greenbelt, Maryland

Frey, Richard A., Cooperative Institute for Meteorological Satellite Studies, Space Science and Engineering Center, University of Wisconsin-Madison, Madison, Wisconsin

Frith, Stacey M., Science Systems and Applications, Inc, Lanham, Maryland, NASA Goddard Space Flight Center, Greenbelt, Maryland

Froidevaux, Lucien, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California Ganter, Catherine, Bureau of Meteorology, Melbourne, Victoria, Australia

Garforth, J., Woodland Trust, Grantham, United Kingdom

Gerland, Sebastian, Norwegian Polar Institute, Fram Centre, Tromsø, Norway

Gilson, John, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California

Gleason, Karin, NOAA/NESDIS National Centers for Environmental Information, Asheville, North Carolina

Gobron, Nadine, Knowledge Management for Sustainable Development and Food Security Unit, European Commission, Joint Research Centre, Ispra, Italy

Goetz, S., School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, Arizona

Goldenberg, Stanley B., NOAA/OAR/AOML Hurricane Research Division, Miami, Florida

Goni, Gustavo, NOAA/OAR Atlantic Oceanographic and Meteorological Laboratory (AOML), Miami, Florida

Gray, Alison, School of Oceanography, University of Washington, Seattle, Washington

Grooß, Jens-Uwe, Forschungszentrum Jülich, Jülich, Germany

Gruber, Alexander, Department of Geodesy and Geoinformation, TU Wien - Vienna University of Technology, Vienna, Austria; Department of Earth and Environmental Sciences, KU Leuven, Heverlee, Belgium

Gu, Guojun, University of Maryland, College Park, Maryland

Guard, Charles "Chip" P., NOAA/NWS Weather Forecast Office, Guam

Gupta, S. K., Science Systems and Applications, Inc., Hampton, Virginia

Gutiérrez, Dimitri, Instituto del Mar del Perú, Callao, Perú

Haas, Christian, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany

Hagos, S., Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington

Hahn, Sebastian, Department of Geodesy and Geoinformation, TU Wien - Vienna University of Technology, Vienna, Austria

Haimberger, Leo, Department of Meteorology and Geophysics, University of Vienna, Vienna, Austria

Hall, Brad D., NOAA/OAR Earth System Research Laboratory, Boulder, Colorado

Halpert, Michael S., NOAA/NWS Climate Prediction Center, College Park, Maryland

Hamlington, Benjamin D., NASA Jet Propulsion Laboratory, Pasadena, California

Hanna, E., School of Geography and Lincoln Centre for Water and Planetary Health, University of Lincoln, Lincoln, United Kingdom

Hanssen-Bauer, I., Norwegian Meteorological Institute, Blindern, Oslo, Norway

Harris, Ian, National Centre for Atmospheric Science (NCAS), University of East Anglia, Norwich, United Kingdom and Climatic Research Unit, School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom

- Hazeleger, Wilco, Meteorology and Air Quality Group, Wageningen University and Research, Wageningen, Netherlands; Netherlands eScience Center, Amsterdam, Netherlands; and Faculty of Geosciences, Utrecht University, Utrecht, Netherlands.
- He, Q., Earth System Modeling Center, Nanjing University of Information Science and Technology, Nanjing, China
- Heidinger, Andrew K., NOAA/NESDIS/STAR University of Wisconsin-Madison, Madison, Wisconsin
- Heim, Jr., Richard R., NOAA/NESDIS National Centers for Environmental Information, Asheville, North Carolina
- Hemming, D. L., Met Office Hadley Centre, Exeter, United Kingdom; Birmingham Institute of Forest Research, Birmingham University, Birmingham, United Kingdom
- Hendricks, Stefan, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- Hernández, Rafael, Instituto Nacional de Meteorología e Hidrología de Venezuela (INAMEH), Caracas, Venezuela
- Hersbach, H. E., European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom,
- Hidalgo, Hugo G., Center for Geophysical Research and School of Physics, University of Costa Rica, San José, Costa Rica
- Ho, Shu-peng (Ben), NOAA/NESDIS Center for Satellite Applications and Research, College Park, Maryland
- Holmes, R. M., Woods Hole Research Center, Falmouth, Massachusetts
- Hu, Chuanmin, College of Marine Science, University of South Florida, St. Petersburg, Florida
- Huang, Boyin, NOAA/NESDIS National Centers for Environmental Information, Asheville, North Carolina
- Hubbard, Katherine, Florida Fish and Wildlife Conservation Commission, St. Petersburg, Florida
- Hubert, Daan, Royal Belgian Institute for Space Aeronomy (BIRA), Brussels, Belgium
- Hurst, Dale F., Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, and NOAA/OAR Earth System Research Laboratory, Boulder, Colorado
- Ialongo, Iolanda, Finnish Meteorological Institute, Helsinki, Finland
- Ijampy, J. A., Nigerian Meteorological Agency, Abuja, Nigeria
- Inness, Antje, European Centre for Medium Range Weather Forecasts, Reading, United Kingdom
- Isaac, Victor, Environment and Climate Change Canada, Toronto, Ontario, Canada
- Isaksen, K., Norwegian Meteorological Institute, Blindern, Oslo, Norway
- Ishii, Masayoshi, Climate Research Department, Meteorological Research Institute, Japan Meteorological Agency, Tsukuba, Japan
- Jeffries, Martin O., Cold Regions Research and Engineering Laboratory, ERDC-USACE, Hanover, New Hampshire

Jevrejeva, Svetlana, National Oceanography Centre, Liverpool, United Kingdom Jia, G., Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Jiménez, C., Estellus, Paris, France

- Jin, Xiangze, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts
- John, Viju, EUMETSAT, Darmstadt, Germany
- **Johnsen, Bjørn,** Norwegian Radiation and Nuclear Safety, Østerås, Norway
- Johnson, Gregory C., NOAA/OAR Pacific Marine Environmental Laboratory, Seattle, Washington
- Johnson, Kenneth S., Monterey Bay Aquarium Research Institute, Moss Landing, California
- Johnson, Bryan, NOAA/OAR Earth System Research Laboratory, Global Monitoring Division, and University of Colorado, Boulder, Colorado
- Jones, Philip D., Climatic Research Unit, School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom
- Jumaux, Guillaume, Météo France, Direction Interrégionale pour l'Océan Indien, Réunion
- Kabidi, Khadija, Direction de la Météorologie Nationale Maroc, Rabat, Morocco
- Kaiser, J. W., Max Planck Institute for Chemistry, Mainz, Germany; Deutscher Wetterdienst, Offenbach, Germany
- Karaköylü, Erdem M., NASA Goddard Space Flight Center, Greenbelt, Maryland, and Science Application International Corporation, Beltsville, Maryland
- Karlsen, S.-R., Norut Northern Research Institute, Tromsø, Norway
- Karnauskas, Mandy, NOAA/NMFS Southeast Fisheries Science Center, Miami, Florida
- Kato, Seiji, NASA Langley Research Center, Hampton, Virginia
- **Kazemi, A. Fazl,** Islamic Republic of Iranian Meteorological Organization, Iran
- Kelble, Christopher, NOAA/OAR Atlantic Oceanographic and Meteorological Laboratory (AOML), Miami, Florida
- Keller, Linda M., Department of Atmospheric and Oceanic Sciences, University of Wisconsin-Madison, Madison, Wisconsin
- Kennedy, John, Met Office Hadley Centre, Exeter, United Kingdom
- **Kholodov, A. L.,** Geophysical Institute, University of Alaska Fairbanks, Fairbanks, Alaska
- Khoshkam, Mahbobeh, Islamic Republic of Iranian Meteorological Organization, Iran
- Kidd, R., Earth Observation Data Centre for Water Resources Monitoring GmbH, Vienna, Austria
- Killick, Rachel, Met Office Hadley Centre, Exeter, United Kingdom,
- **Kim, Hyungjun,** Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
- Kim, S.-J., Korea Polar Research Institute, Incheon, Republic of Korea
- King, A. D., University of Melbourne, Melbourne, Australia
- King, Brian A., National Oceanography Centre, Southampton, United Kingdom

Kipling, Z., European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom

Klotzbach, Philip J., Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

- Knaff, John A., NOAA/NESDIS Center for Satellite Applications and Research, Fort Collins, Colorado
- Korhonen, Johanna, Freshwater Centre, Finnish Environment Institute (SYKE, Helsinki, Finland

Korshunova, Natalia N., All-Russian Research Institute of Hydrometeorological Information - World Data Center, Obninsk, Russia

Kramarova, Natalya A., NASA Goddard Space Flight Center, Greenbelt, Maryland

Kratz, D. P., NASA Langley Research Center, Hampton, Virginia

Kruger, Andries, South African Weather Service and Department of Geography, Geoinformatics, and Meteorology, University of Pretoria, Pretoria, South Africa,

Kruk, Michael C., KBR, NOAA/NESDIS National Centers for Environmental Information, Asheville, North Carolina

Krumpen, Thomas, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany

Labbé, L., Météo France, Direction Interrégionale pour l'Océan Indien, Réunion

Ladd, C., NOAA/OAR Pacific Marine Environmental Laboratory, Seattle, Washington

Lakatos, Mónika, Climatology Division, Hungaran Meteorological Service, Budapest, Hungary

Lakkala, Kaisa, Finnish Meteorological Institute, Arctic Research Centre, Sodankylä, Finland

Lander, Mark A., University of Guam, Mangilao, Guam

Landschützer, Peter, Max Planck Institute for Meteorology, Hamburg, Germany

Landsea, Chris W., NOAA/NWS National Hurricane Center, Miami, Florida,

Lareau, Neil P., Department of Physics, University of Nevada, Reno, NV

Lavado-Casimiro, Waldo, Servicio Nacional de Meteorología e Hidrología del Perú, Lima, Perú

Lazzara, Matthew A., Department of Physical Sciences, School of Arts and Sciences, Madison Area Technical College, and Space Science and Engineering Center, University of Wisconsin-Madison, Madison, Wisconsin

Lee, T. C., Hong Kong Observatory, Hong Kong, China

Leuliette, Eric, NOAA/NWS NCWCP Laboratory for Satellite Altimetry, College Park, Maryland

L'Heureux, Michelle, NOAA/NWS Climate Prediction Center, College Park, Maryland

Li, Bailing, Hydrological Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA; Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland

Li, Tim, Department of Atmospheric Sciences, University of Hawaii, Honolulu, Hawaii

Lieser, Jan L., Antarctic Climate and Ecosystems Cooperative Research Centre and Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia

Lim, J.-Y., Climate Prediction Division, Korea Meteorological Administration, South Korea

Lin, I.-I., National Taiwan University, Taipei, Taiwan

Liu, Hongxing, Department of Geography, University of Cincinnati, Cincinnati, Ohio

Locarnini, Ricardo, NOAA/NESDIS National Centers for Environmental Information, Silver Spring, Maryland

Loeb, Norman G., NASA Langley Research Center, Hampton, Virginia

Long, Craig S., NOAA/NWS National Centers for Environmental Prediction, College Park, Maryland

López, Luis A., Instituto de Hidrología, Meteorología y Estudios Ambientales de Colombia, Bogotá, Colombia

Lorrey, Andrew M., National Institute of Water and Atmospheric Research, Ltd., Auckland, New Zealand

Loyola, Diego, German Aerospace Center (DLR) Oberpfaffenhofen, Wessling, Germany

Lumpkin, Rick, NOAA/OAR Atlantic Oceanographic and Meteorological Laboratory (AOML), Miami, Florida

Luo, Jing-Jia, Institute for Climate and Application Research (ICAR)/KLME/ILCEC/CIC-FEMD, Nanjing University of Information Science and Technology, Nanjing, China

Luojus, K., Finnish Meteorological Institute, Helsinki, Finland

Lyman, John M., NOAA/OAR Pacific Marine Environmental Laboratory, Seattle, Washington, and Joint Institute for Marine and Atmospheric Research, University of Hawaii, Honolulu, Hawaii

Malkova, G. V., Earth Cryosphere Institute, Tyumen Science Center, Tyumen, Russia

Manney, Gloria L., NorthWest Research Associates, and New Mexico Institute of Mining and Technology, Socorro, New Mexico

Marchenko, S. S., Geophysical Institute, University of Alaska Fairbanks, Fairbanks, Alaska

Marengo, José A., Centro Nacional de Monitoramento e Alertas aos Desastres Naturais, Cachoeira Paulista, São Paulo, Brazil

Marin, Dora, Servicio Nacional de Meteorología e Hidrología de Perú, Lima, Perú

Marquardt Collow, Allison B., Universities Space Research Association, Columbia, Maryland; NASA GSFC Global Modeling and Assimilation Office, Greenbelt, Maryland

Marra, John J., NOAA/NESDIS National Centers for Environmental Information, Honolulu, Hawaii

Marszelewski, Wlodzimierz, Department of Hydrology and Water Management, Nicolaus Copernicus University, Toruń, Poland

Martens, B., Laboratory of Hydrology and Water Management, Ghent University, Ghent, Belgium

Martínez-Güingla, Rodney, Centro Internacional para la Investigación del Fenómeno de El Niño, Guayaquil, Ecuador Massom, Robert A., Australian Antarctic-Division, and Antarctic Climate and Ecosystems Cooperative Research Centre, University of Tasmania, Hobart, Tasmania, Australia

May, Linda, Centre for Ecology and Hydrology, Edinburgh, United Kingdom

Mayer, Michael, Department of Meteorology and Geophysics, University of Vienna, Vienna, Austria; European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom

Mazloff, Matthew, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California

McBride, Charlotte, South African Weather Service, Pretoria, South Africa

McCabe, M., Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia

McClelland, J. W., Marine Science Institute, University of Texas at Austin, Port Aransas, Texas

McEvoy, Daniel J., Western Regional Climate Center, Desert Research Institute, Reno, Nevada

McGree, Simon, Bureau of Meteorology, Melbourne, Victoria, Australia

McVicar, Tim R., CSIRO Land and Water, Canberra, Australian Capital Territory; and Australian Research Council Centre of Excellence for Climate Extremes, Sydney, New South Wales, Australia

Mears, Carl A., Remote Sensing Systems, Santa Rosa, California

Meier, Walt, National Snow and Ice Data Center, University of Colorado, Boulder, Boulder, Colorado

Meijers, Andrew, British Antarctic Survey, Cambridge, United Kingdom

Mekonnen, Ademe, Department of Physics, North Carolina A & T State University, Greensboro, North Carolina

Mengistu Tsidu, G., Department of Earth and Environmental Sciences, Botswana International University of Science and Technology, Palapye, Botswana, and Department of Physics, Addis Ababa University, Addis Ababa, Ethiopia

Menzel, W. Paul, Space Science and Engineering Center, University of Wisconsin-Madison, Madison, Wisconsin

Merchant, Christopher J., Department of Meteorology, University of Reading, Reading, United Kingdom; National Centre for Earth Observation, University of Reading, Reading, United Kingdom

Meredith, Michael P., British Antarctic Survey, Cambridge, United Kingdom

Merrifield, Mark A., Scripps Institution of Oceanography, University of California San Diego, La Jolla, California

Miller, Ben, Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, and NOAA/OAR Earth System Research Laboratory, Boulder, Colorado

Miralles, Diego G., Laboratory of Hydrology and Water Management, Ghent University, Ghent, Belgium

Misevicius, Noelia, Instituto Uruguayo de Meteorología, Montevideo, Uruguay Mitchum, Gary T., College of Marine Science, University of South Florida, St. Petersburg, Florida

Mochizuki, Y., Tokyo Climate Center, Japan Meteorological Agency, Japan

Monselesan, Didier, CSIRO Oceans and Atmosphere, Hobart, Tasmania, Australia

Montzka, Stephen A., NOAA/OAR Earth System Research Laboratory, Boulder, Colorado

Mora, Natali, Center for Geophysical Research and School of Physics, University of Costa Rica, San José, Costa Rica

Morice, Colin, Met Office Hadley Centre, Exeter, United Kingdom

Mosquera-Vásquez, Kobi, Instituto Geofísico del Perú, Lima, Perú

Mostafa, Awatif E., Department of Seasonal Forecast and Climate Research, Cairo Numerical Weather Prediction, Egyptian Meteorological Authority, Cairo, Egypt

Mote, T., Department of Geography, University of Georgia, Athens, Georgia

Mudryk, L., Climate Research Division, Environment and Climate Change Canada, Downsview, Ontario, Canada

Mühle, Jens, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California

Mullan, A. Brett, National Institute of Water and Atmospheric Research, Ltd., Wellington, New Zealand

Müller, Rolf, Forschungszentrum Jülich, Jülich, Germany

Myneni, R., Department of Earth and Environment, Boston University, Boston, Massachusetts

Nash, Eric R., Science Systems and Applications, Inc., NASA Goddard Space Flight Center, Greenbelt, Maryland

Nauslar, Nicholas J., NOAA/NWS/NCEP Storm Prediction Center, Norman, Oklahoma

Nerem , R. Steven, Colorado Center for Astrodynamics Research, Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado

Newman, Paul A., NASA Goddard Space Flight Center, Greenbelt, Maryland

Nicolas, Julien P., European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom

Nieto, Juan José, Centro Internacional para la Investigación del Fenómeno de El Niño, Guayaquil, Ecuador

Noetzli, Jeannette, WSL Institute for Snow and Avalanche Research SLF, Davos-Dorf, Switzerland

Osborn, Tim J., Climatic Research Unit, School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom

Osborne, Emily, NOAA/OAR Arctic Research Program, Silver Spring, Maryland

Overland, J., NOAA/OAR Pacific Marine Environmental Laboratory, Seattle, Washington

Oyunjargal, Lamjav, Hydrology and Environmental Monitoring, Institute of Meteorology and Hydrology, National Agency for Meteorology, Ulaanbaatar, Mongolia

Park, T., Department of Earth and Environment, Boston University, Boston, Massachusetts

- Pasch, Richard J., NOAA/NWS National Hurricane Center, Miami, Florida
- **Pascual Ramírez, Reynaldo,** National Meteorological Service of Mexico, Mexico
- Pastor Saavedra, Maria Asuncion, Agencia Estatal de Meteorología, Madrid, Spain
- Paterson, Andrew M., Dorset Environmental Science Centre, Ontario Ministry of the Environment and Climate Change, Dorset, Ontario, Canada
- Pearce, Petra R., National Institute of Water and Atmospheric Research, Ltd., Auckland, New Zealand
- Pelto, Mauri S., Nichols College, Dudley, Massachusetts

Perovich, Don, Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire

Petropavlovskikh, Irina, Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, and NOAA/OAR Earth System Research Laboratory, Boulder, Colorado

Pezza, Alexandre B., Greater Wellington Regional Council, Wellington, New Zealand

- Phillips, C., Department of Atmospheric and Oceanic Sciences, University of Wisconsin-Madison, Madison, Wisconsin
- Phillips, David, Environment and Climate Change Canada, Toronto, Ontario, Canada
- **Phoenix, G.,** Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
- Pinty, Bernard, European Commission, Joint Research Centre, Ispra, Italy
- Pitts, Michael, NASA Langley Research Center, Hampton, Virginia
- **Po-Chedley, S.,** Lawrence Livermore National Laboratory, Livermore, California
- **Polashenski, Chris,** USACE, ERDC, Cold Regions Research and Engineering Laboratory, and Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire
- **Preimesberger, W.,** Department of Geodesy and Geoinformation, TU Wien - Vienna University of Technology, Vienna, Austria
- Purkey, Sarah G., Scripps Institution of Oceanography, University of California San Diego, La Jolla, California
- **Quispe, Nelson,** Servicio Nacional de Meteorología e Hidrología del Perú, Lima, Perú
- Rajeevan, Madhavan, Earth System Science Organization, Ministry of Earth Sciences, New Delhi, India
- Rakotoarimalala, C. L., Madagascar Meteorological Service, Antananarivo, Madagascar
- Ramos, Andrea M., Instituto Nacional de Meteorologia, Brasilia, Brazil
- Ramos, Isabel, Servicio Nacional de Meteorología e Hidrología del Perú, Lima, Perú
- Randel, W., National Center for Atmospheric Research, Boulder, Colorado
- Raynolds, M. K., Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska

- Reagan, James, Earth System Science Interdisciplinary Center/ Cooperative Institute for Climate and Satellites–Maryland, University of Maryland, College Park, Maryland and NOAA/ NESDIS National Centers for Environmental Information, Silver Spring, Maryland
- Reid, Phillip, Australian Bureau of Meteorology, and Antarctic Climate and Ecosystems Cooperative Research Centre, Hobart, Tasmania, Australia

Reimer, Christoph, Earth Observation Data Centre for Water Resources Monitoring GmbH, Vienna, Austria

- Rémy, Samuel, Institut Pierre-Simon Laplace, CNRS / UPMC, Paris, France
- Revadekar, Jayashree V., Indian Institute of Tropical Meteorology, Pune, India
- Richardson, A. D., School of Informatics, Computing, and Cyber Systems and Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona
- Richter-Menge, Jacqueline, University of Alaska Fairbanks, Fairbanks, Alaska
- Ricker, Robert, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- Ripaldi, A., Climate Variability Division, Center for Climate Change Information, BMKG, Indonesia
- Robinson, David A., Department of Geography, Rutgers University, Piscataway, New Jersey
- **Rodell, Matthew,** Hydrological Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland
- Rodriguez Camino, Ernesto, Agencia Estatal de Meteorología, Madrid, Spain
- **Romanovsky, Vladimir E.,** Geophysical Institute, University of Alaska Fairbanks, Fairbanks, Alaska; Earth Cryosphere Institute, Tyumen Science Center, Tyumen, Russia
- Ronchail, Josyane, Université Paris Diderot/Laboratoire LOCEAN-IPSL, Paris, France
- Rosenlof, Karen H., NOAA/OAR Earth System Research Laboratory, Boulder, Colorado
- **Rösner, Benajamin,** Laboratory for Climatology and Remote Sensing, Faculty of Geography, University of Marburg, Marburg, Germany
- Roth, Chris, University of Saskatchewan, Saskatoon, Saskatchewan, Canada

Rozanov, A., University of Bremen, Bremen, Germany

- Rusak, James A., Dorset Environmental Science Centre, Ontario Ministry of the Environment and Climate Change, Dorset, Ontario, Canada
- **Rustemeier, Elke,** Global Precipitation Climatology Centre, Deutscher Wetterdienst, Offenbach am Main, Germany
- Rutishäuser, T., Institute of Geography and Oeschger Center, University of Berne, Berne, Switzerland
- Sallée, Jean-Baptiste, Sorbonne Universités, UPMC University of Paris, L'OCEAN-IPSL, Paris, France
- Sánchez-Lugo, Ahira, NOAA/NESDIS National Centers for Environmental Information, Asheville, North Carolina
- Santee, Michelle L., NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Sawaengphokhai, P., Science Systems and Applications, Inc., Hampton, Virginia

Sayouri, Amal, Direction de la Météorologie Nationale Maroc, Rabat, Morocco

Scambos, Ted A., Earth Science and Observation Center, CIRES, University of Colorado, Boulder Colorado

Scanlon, T., Department of Geodesy and Geoinformation, TU Wien - Vienna University of Technology, Vienna, Austria

Scardilli, Alvaro S., Argentine Naval Hydrographic Service, Buenos Aires, Argentina

Schenzinger, Verena, Department of Meteorology and Geophysics, University of Vienna, Vienna, Austria

Schladow, S. Geoffey, Tahoe Environmental Research Center, University of California at Davis, Davis, California

Schmid, Claudia, NOAA/OAR Atlantic Oceanographic and Meteorological Laboratory (AOML), Miami, Florida

Schmid, Martin, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland,

Schoeneich, P., Institut de Géographie Alpine, Grenoble, France

Schreck III, Carl J., North Carolina State University, Cooperative Institute for Climate and Satellites – North Carolina (CICS-NC), Asheville, North Carolina

Selkirk, H. B., Universities Space Research Association, NASA Goddard Space Flight Center, Greenbelt, Maryland

Sensoy, Serhat, Turkish State Meteorological Service, Ankara, Turkey

Shi, Lei, NOAA/NESDIS National Centers for Environmental Information, Asheville, North Carolina

Shiklomanov, A. I., University of New Hampshire, Durham, New Hampshire; Arctic and Antarctic Research Institute, St. Petersburg, Russia

Shiklomanov, Nikolai I., Department of Geography, George Washington University, Washington, DC

Shimpo, A., Tokyo Climate Center, Japan Meteorological Agency, Tokyo, Japan

Shuman, Christopher A., UMBC JET at NASA Goddard Space Flight Center, Code 615, Greenbelt, Maryland

Siegel, David A., Earth Research Institute and Department of Geography, University of California - Santa Barbara, Santa Barbara, California

Sima, Fatou, Division of Meteorology, Department of Water Resources, Banjul, The Gambia

Simmons, Adrian J., European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom

Smeets, C. J. P. P., Institute for Marine and Atmospheric Research Utrecht, Utrecht University, Utrecht, Netherlands

Smith, Adam, NOAA/NESDIS National Centers for Environmental Information, Asheville, North Carolina

Smith, Sharon L., Geological Survey of Canada, Natural Resources Canada, Ottawa, Ontario, Canada

Soden, B., Rosenstiel School of Marine and Atmospheric Science, University of Miami, Key Biscayne, Florida

Sofieva, Viktoria, Finnish Meteorological Institute (FMI), Helsinki, Finland Sparks, T. H., Poznań University of Life Sciences, Poznań, Poland

Spence, Jacqueline, Meteorological Service, Jamaica, Kingston, Jamaica

Spencer, R. G. M., Florida State University, Tallahassee, Florida

Spillane, Sandra, Met Éireann, Irish Meteorological Service, Dublin, Ireland

Srivastava, A.K., India Meteorological Department, Pune, India

Stabeno, P. J., NOAA Pacific Marine Environmental Laboratory, Seattle, Washington

Stackhouse Jr., Paul W., NASA Langley Research Center, Hampton, Virginia

Stammerjohn, Sharon, Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado

Stanitski, Diane M., NOAA/OAR Earth System Research Laboratory, Boulder, Colorado

Steinbrecht, Wolfgang, Deutscher Wetterdienst (DWD), Hohenpeissenberg, Germany

Stella, José L., Servicio Meteorológico Nacional, Buenos Aires, Argentina

Stengel, M., Deutscher Wetterdienst, Offenbach, Germany

Stephenson, Tannecia S., Department of Physics, The University of the West Indies, Jamaica

Strahan, Susan E., Universities Space Research Association, NASA Goddard Space Flight Center, Greenbelt, Maryland

Streeter, Casey, Florida Commercial Watermen's Conservation, Matlacha, Florida

Streletskiy, Dimitri A., Department of Geography, George Washington University, Washington, DC

Sun-Mack, Sunny, Science Systems and Applications, Inc., Hampton, Virginia

Suslova, A., Woods Hole Research Center, Falmouth, Massachusetts

Sutton, Adrienne J., NOAA/OAR Pacific Marine Environmental Laboratory, Seattle, Washington

Swart, Sebastiann, Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden and Department of Oceanography, University of Cape Town, Rondebosch, South Africa

Sweet, William, NOAA/NOS Center for Operational Oceanographic Products and Services, Silver Spring, Maryland

Takahashi, Kenneth S., Servicio Nacional de Meteorología e Hidrología del Perú, Lima, Perú

Tank, S.E., University of Alberta, Edmonton, Alberta, Canada

Taylor, Michael A., Department of Physics, The University of the West Indies, Jamaica

Tedesco, M., Lamont Doherty Earth Observatory, Columbia University, Palisades, New York, and NASA Goddard Institute of Space Studies, New York, New York

Thackeray, S. J., Centre for Ecology and Hydrology, Lancaster, United Kingdom

Thompson, Philip R., Joint Institute for Marine and Atmospheric Research, University of Hawaii, Honolulu, Hawaii

- Timbal, Bertrand, Centre for Climate Research, Singapore Meteorological Service, Singapore
- Timmermans, M.-L., Yale University, New Haven, Connecticut

Tobin, Skie, Bureau of Meteorology, Melbourne, Victoria, Australia

Tømmervik, H., Norwegian Institute for Nature Research, Tromsø, Norway

Tourpali, Kleareti, Aristotle University, Thessaloniki, Greece

- **Trachte, Katja,** Laboratory for Climatology and Remote Sensing, Faculty of Geography, University of Marburg, Marburg, Germany
- **Tretiakov, M.,** Arctic and Antarctic Research Institute, St. Petersburg, Russia
- **Trewin, Blair C.,** Australian Bureau of Meteorology, Melbourne, Victoria, Australia
- Triñanes, Joaquin A., Laboratory of Systems, Technological Research Institute, Universidad de Santiago de Compostela, Campus Universitario Sur, Santiago de Compostela, Spain; NOAA/OAR Atlantic Oceanographic and Meteorological Laboratory (AOML), Miami, Florida, and Cooperative Institute for Marine and Atmospheric Studies, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida
- Trotman, Adrian R., Caribbean Institute for Meteorology and Hydrology, Bridgetown, Barbados
- Tschudi, Mark, Aerospace Engineering Sciences, University of Colorado, Boulder, Colorado
- **Tye, Mari R.,** Capacity Center for Climate and Weather Extremes (C3WE), National Center for Atmospheric Research, Boulder, Colorado
- van As, D., Geological Survey of Denmark and Greenland, Copenhagen, Denmark
- van de Wal, R. S. W., Institute for Marine and Atmospheric Research Utrecht, Utrecht University, Utrecht, Netherlands; Geosciences, Physical Geography, Utrecht University, Utrecht, Netherlands
- van der A, Ronald J., Royal Netherlands Meteorological Institute (KNMI), De Bilt, Netherlands

van der Schalie, Robin, VanderSat B.V., Haarlem, Netherlands

van der Schrier, Gerard, Royal Netherlands Meteorological Institute (KNMI), De Bilt, Netherlands

van der Werf, Guido R., Faculty of Earth and Life Sciences, VU University Amsterdam, Netherlands

van Heerwaarden, Chiel, Meteorology and Air Quality Group, Wageningen University and Research, Wageningen, Netherlands

Van Meerbeeck, Cedric J., Caribbean Institute for Meteorology and Hydrology, Bridgetown, Barbados

Verburg, Piet, National Institute of Water and Atmospheric Research, Hamilton, New Zealand

Vieira, G., CEG/IGOT, Universidade de Lisboa, Lisbon, Portugal

Vincent, Lucie A., Environment and Climate Change Canada, Toronto, Ontario, Canada Vömel, Holger, Earth Observing Laboratory, National Center for Atmospheric Research, Boulder, Colorado

Vose, Russell S., NOAA/NESDIS National Centers for Environmental Information, Asheville, North Carolina

Walker, D. A., Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska

Walsh, J. E., International Arctic Research Center, University of Alaska Fairbanks, Fairbanks, Alaska

Wang, Bin, Department of Atmospheric Science and IPRC, University of Hawaii, Honolulu, Hawaii

Wang, Hui., NOAA/NWS Climate Prediction Center, College Park, Maryland

Wang, Lei, Department of Geography and Anthropology, Louisiana State University, Baton Rouge, Louisiana

- Wang, M., Joint Institute for the Study of the Atmosphere and Ocean, University of Washington, Seattle, Washington
- Wang, Mengqiu, College of Marine Science, University of South Florida, St. Petersburg, Florida
- Wang, Ray, Georgia Institute of Technology, Atlanta, Georgia

Wang, Sheng-Hung, Byrd Polar and Climate Research Center, The Ohio State University, Columbus, Ohio

Wanninkhof, Rik, NOAA/OAR Atlantic Oceanographic and Meteorological Laboratory (AOML), Miami, Florida

Watanabe, Shohei, Tahoe Environmental Research Center, University of California at Davis, Davis, California

Weber, Mark, University of Bremen, Bremen, Germany

Webster, Melinda, NASA Goddard Space Flight Center, Greenbelt, Maryland

- Weerts, Albrecht, Deltares, Delft, Netherlands, and Hydrology and Quantitative Water Management Group, Wageningen University and Research, Wageningen, Netherlands
- Weller, Robert A., Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Westberry, Toby K., Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon

Weyhenmeyer, Gesa A., Department of Ecology and Genetics/Limnology, Uppsala University, Uppsala, Sweden

Widlansky, Matthew J., Joint Institute for Marine and Atmospheric Research, University of Hawaii, Honolulu, Hawaii

Wijffels, Susan E., Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

- Wilber, Anne C., Science Systems and Applications, Inc., Hampton, Virginia
- Wild, Jeanette D., NOAA Climate Prediction Center, College Park, MD, USA; ESSIC/University of Maryland, College Park, Maryland
- Willett, Kate M., Met Office Hadley Centre, Exeter, United Kingdom
- Wong, Takmeng, NASA Langley Research Center, Hampton, Virginia

Wood, E. F., Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey

- Woolway, R. lestyn, Dundalk Institute of Technology, Dundalk, Ireland
- Xue, Yan, NOAA/NWS National Centers for Environmental Prediction, Climate Prediction Center, College Park, Maryland
- Yin, Xungang, ERT Inc., NOAA/NESDIS National Centers for Environmental Information, Asheville, North Carolina
- Yu, Lisan, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts
- Zambrano, Eduardo, Centro Internacional para la Investigación del Fenómeno de El Niño, Guayaquil, Ecuador
- Zeyaeyan, Sadegh, Islamic Republic of Iran Meteorological Organization, Tehran, Iran
- Zhang, Huai-Min, NOAA/NESDIS National Centers for Environmental Information, Asheville, North Carolina

Zhang, Peiqun, Beijing Climate Center, Beijing, China

- Zhao, Guanguo, University of Illinois at Urbana-Champaign, Champaign, Illinois
- **Zhao, Lin,** Cold and Arid Regions Environmental and Engineering Research Institute, Lanzhou, China
- Zhou, Xinjia, Center for Satellite Applications and Research, NOAA, College Park, Maryland
- **Zhu, Zhiwei,** Nanjing University of Information Science and Technology, China
- Ziemke, Jerry R., Goddard Earth Sciences Technology and Research, Morgan State University, Baltimore, Maryland, and NASA Goddard Space Flight Center, Greenbelt, Maryland
- Ziese, Markus, Global Precipitation Climatology Center, Deutscher Wetterdienst, Offenbach am Main, Germany

EDITORIAL AND PRODUCTION TEAM

- Andersen, Andrea, Technical Editor, TeleSolv Consulting LLC, NOAA/NESDIS National Centers for Environmental Information, Asheville, North Carolina
- **Griffin, Jessicca,** Graphics Support, Cooperative Institute for Satellite Earth System Studies, North Carolina State University, Asheville, North Carolina
- Hammer, Gregory, Content Team Lead, Communications and Outreach, NOAA/NESDIS National Centers for Environmental Information, Asheville, North Carolina
- Love-Brotak, S. Elizabeth, Lead Graphics Production, NOAA/NESDIS National Centers for Environmental Information, Asheville, North Carolina

- Misch, Deborah J., Graphics Support, TeleSolv Consulting LLC, NOAA/NESDIS National Centers for Environmental Information, Asheville, North Carolina
- Riddle, Deborah B., Graphics Support, NOAA/NESDIS National Centers for Environmental Information, Asheville, North Carolina
- Veasey, Sara W., Visualization Team Lead, Communications and Outreach, NOAA/NESDIS National Centers for Environmental Information, Asheville, North Carolina

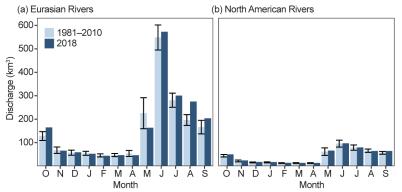


FIG. 5.23. 2018 seasonal discharge (km³), relative to the 1981–2010 average, for the (a) six Eurasian and (b) two North American rivers. Error bars represent ±1 std. dev.

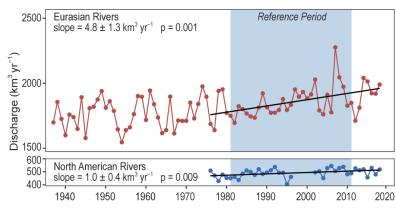


Fig. 5.24. Long-term trends in annual discharge (km³ yr⁻¹) for Eurasian and North American Arctic rivers. Gaps in the North American rivers time-series span from 1996 to 2001 due to missing Yukon data from 1996 to 2001 and missing Mackenzie measurements in 1997 and 1998. Note the different scales for the Eurasian and North American river discharge; discharge from the former is 3–4 times greater than from the latter.

of record (1976–2018) was 1.0 km³ per year. When the Eurasian data are also considered for the same period, the average annual increase in discharge was 4.8 km³ per year (Fig. 5.24). These observations indicate that Arctic river discharge continues to increase, providing powerful evidence for the intensification of the Arctic hydrologic cycle.

Tundra greenness—H. Epstein, U. Bhatt, M. Raynolds,
D. Walker, B. Forbes, G. Phoenix, J. Bjerke, H. Tømmervik,
S.-R. Karlsen, R. Myneni, T. Park, S. Goetz, and G. Jia

Arctic tundra vegetation has responded to dramatic environmental changes over the course of the last several decades by increasing the above-ground quantity of live vegetation, a process commonly referred to as greening. Vegetation changes vary spatially, in both sign and magnitude, throughout the circumpolar Arctic, and are not necessarily consistent over time (e.g., Bhatt et al. 2013; Reichle

et al. 2018). This variability suggests complex interactions among the atmosphere, vegetation, soils, permafrost, and grazing animals of the Arctic system. Changes in tundra vegetation can have important effects on carbon cycling and soil-atmosphere energy exchange (e.g., Treharne et al. 2016; Frost et al. 2018; Lafleur and Humphreys 2018). The latter has implications for active layer depth and permafrost stability, thereby impacting Arctic landscapes. Changes in tundra vegetation also affect wildlife habitats. For instance, bird and terrestrial mammal species have shown favorable responses (e.g., greater range and larger populations) to Arctic greening, including shrub expansion (e.g., Wheeler et al. 2018). Continued evaluation of the current state and dynamics of circumpolar Arctic vegetation improves our understanding of these complex interactions and their influences on the Arctic system and beyond.

There is a number of controls on the inter-annual dynamics of tundra productivity. Summer air temperature is the most widely acknowledged factor responsible for increasing (greening) tundra vegetation (Ackerman et al. 2018; Keenan and Riley 2018; Myers-Smith and Hik 2018; Weijers et al. 2018; Bjorkman et al. 2018). However,

several reports have shown that increased temperatures can have a detrimental (browning) or no effect on tundra vegetation (Lara et al. 2018; Maliniemi et al. 2018; Opala-Owczarek et al. 2018; Xu et al. 2018). Tundra browning has also been observed in response to extreme events, such as winter snowmelt followed by frost, drought, icing during rain-on-snow episodes, and insect outbreaks (Phoenix and Bjerke 2016; Treharne et al. 2016). Precipitation and moisture availability are also important controls on tundra vegetation dynamics (Lara et al. 2018; Maliniemi et al. 2018; Opala-Owczarek et al. 2018; Wang et al. 2018; Bjorkman et al. 2018) and are linked to the effects of air temperature changes; increased temperatures may lead to reduced growing-season soil moisture and increased water stress in tundra plants (Ackerman et al. 2018; Keenan and Riley 2018; Opala-Owczarek et al. 2018). Deeper snow packs have been shown to lead to increased shrub growth, increasing vegetation net

uptake of CO_2 (Christiansen et al. 2018; Maliniemi et al. 2018; Opala-Owczarek et al. 2018; Parmentier et al. 2018; Wang et al. 2018). Changes in the land cover also affect tundra greenness; for example, reductions in cryogenic disturbances (e.g., frost circles; Becher et al. 2018) and increased lake drainage (Lara et al. 2018) can both lead to greening.

Arctic tundra vegetation has been monitored continuously since 1982 using the Normalized Difference Vegetation Index (NDVI) derived via satellites. NDVI is highly correlated with the quantity (greenness) of above-ground Arctic tundra vegetation (e.g., Raynolds et al. 2012; Karlsen et al. 2018). The data reported here are from the Global Inventory Modeling and Mapping Studies (GIMMS) 3g V1 dataset (GIMMS 2013) and are based largely on the AVHRR sensors aboard NOAA satellites (Pinzon and Tucker 2014). The GIMMS product (at 1/12° resolution for this report) is a bi-weekly, maximum-value composite dataset of the NDVI, calculated from Earth-surface reflectances in the red and near infrared wavelengths. Two metrics based on the NDVI are used: MaxNDVI and TI-NDVI. MaxNDVI is the peak NDVI value for the year, observed during the growing season, and is related to the yearly maximum above-ground vegetation biomass. TI (time-integrated) NDVI is the sum of the bi-weekly NDVI values for the growing season and is correlated with the total above-ground vegetation productivity. Collectively, these two indices describe the abundance and activity of tundra vegetation for a given growing season.

According to the overall trend in tundra greenness for the 37-year record (1982-2018), the MaxNDVI and the TI-NDVI have increased throughout a majority of the geographic circumpolar Arctic tundra (Figs. 5.25a,b). Regions with the greatest increases in tundra greenness are the North Slope of Alaska, the southern subzones of the Canadian tundra, and eastern Siberia. Tundra greenness has declined or shown browning throughout the Yukon-Kuskokwim Delta of western Alaska, the High Arctic of the Canadian Archipelago, and the northwestern and north-coastal Siberian tundra. Specific regions of observed greening and browning tend to be consistent between MaxNDVI and TI-NDVI; however, decreases in TI-NDVI tend to be more spatially extensive than decreases in MaxNDVI, suggesting that in certain locations the length of the growing season may be decreasing, whereas the actual growth of vegetation may not be affected.

Considering variability on a year-to-year basis, NDVI declined in 2018 from the prior year for both indices over North America and slightly increased for Eurasia (Fig. 5.26). For both regions, this follows a year of decreases in NDVI from 2016 to 2017, after particularly high NDVI values were observed in 2016. In North America, TI-NDVI declined by 11.2% from 2017 to 2018 (the largest single-year decline in the record) and declined 14.7% since 2016. MaxNDVI in North America declined by 5.9% from 2017 to 2018 (the second largest single-year decline in the record), and 9.9% since 2016. Note that the mean NDVI values for Eurasian tundra are substantially greater than those for the North American tundra, because most of the Eurasian tundra occurs at relatively lower latitudes.

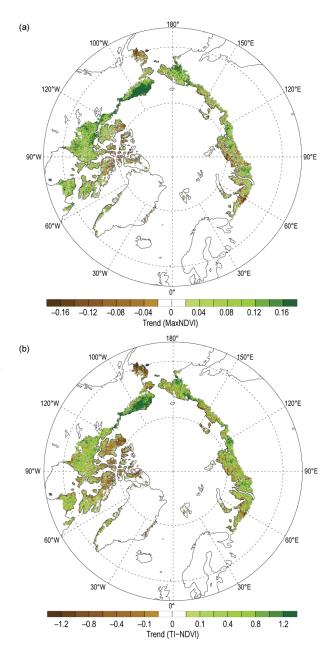


FIG. 5.25. Magnitude of the trend (calculated as the total change over a least squares, linear fit trend line) in (a) MaxNDVI and (b) TI-NDVI for 1982–2018.

With the 2017 to 2018 decline, the North American NDVI values dropped below the mean for the 37-year record. In 2018, MaxNDVI for North America ranked 25th and TI-NDVI ranked 36th (second lowest in the record, behind 1992). NDVI values for Eurasia remained above the mean; MaxNDVI ranked ninth and TI-NDVI ranked 11th. For the Arctic as a whole, MaxNDVI in 2018 was essentially at the mean value (ranked 19th) and TI-NDVI was less than the mean value (ranked 31st).

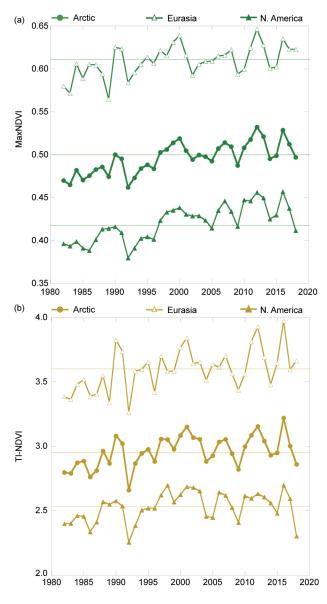


Fig. 5.26. (a) MaxNDVI and (b) TI-NDVI for Eurasia (top), Arctic as a whole (middle), and North America (bottom) for 1982–2018. Horizontal lines are the means for each time series.

j. Ozone and UV radiation—G. H. Bernhard, V. E. Fioletov, J.-U. Grooß, I. Ialongo, B. Johnsen, K. Lakkala, G. L. Manney, and R. Müller

The release of man-made substances that deplete Earth's ozone layer, such as chlorofluorocarbons (CFCs), has reinforced the chemical destruction of ozone in the polar stratosphere. The resulting ozone loss has led to increased UV radiation with adverse effects on human health (e.g., sunburn) and Earth's environment (EEAP 2019). Chemical processes that drive ozone depletion are initiated at temperatures below about 195 K (-78°C) in the lower stratosphere, at an approximate altitude of 15-25 km. These chemical processes lead to the formation of polar stratospheric clouds (PSCs), which act as a catalyst to transform inactive forms of chlorine-containing substances (e.g., HCl and ClONO₂) to active, ozone-destroying chlorine species such as chlorine monoxide (ClO). Chemically-induced loss of polar ozone occurs predominantly during winter and spring (WMO 2018a), hence November 2017-April 2018 is emphasized in this report.

Chemical destruction of ozone was unusually large over the winter/spring 2017/18. Temperatures in the lower Arctic stratosphere dropped below the threshold for PSC formation in mid-November 2017, approximately 15 days earlier than typical, and remained below the average temperature in the observational record (1979-2016) through mid-February 2018. On 12 February, a major sudden stratospheric warming event split the polar vortex (i.e., the low-temperature cyclone in which most of the springtime chemical ozone destruction occurs), and lower stratospheric temperatures abruptly rose above the threshold temperature for PSC formation (Karpechko et al. 2018; Rao et al. 2018). The larger of the two offspring vortices remained intact, and chemical destruction of ozone continued within its boundary until late March. Despite this event, vortexaveraged ozone mixing ratios (OMRs; a measure of ozone concentrations) observed by the Microwave Limb Sounder (MLS) during February 2018 were the lowest in the MLS observational record (2004-17; Fig. 5.27). Although chlorine was not fully deactivated until late March, according to MLS measurements, OMRs within the vortex started to increase in early March, partly due to influx of ozone from higher altitudes. Vortex-averaged OMRs between March and early April 2018 were among the lowest in the MLS record, with lower values only in 2011 and 2016, the years with the largest chemical ozone loss observed to date (Fig. 5.27).

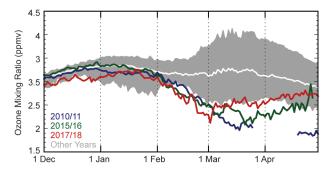


FIG. 5.27. Average ozone mixing ratios (ppmv) measured by Aura MLS at an altitude of ~18 km for the area bounded by the polar vortex. Data from 2017/18 (red), 2015/16 (green), and 2010/11 (blue) are compared with the average (solid white) and minimum/maximum range (gray shading) from 2004/05 to 2016/17, excluding 2010/11, 2015/16, and 2017/18. Gaps in the record for 2010/11 are due to missing data.

The evolution of the Arctic total ozone column (TOC; i.e., ozone amounts integrated from the surface to the top of the atmosphere) in March 2018 is compared to the 1979–2017 observational record in Fig. 5.28. March TOC is evaluated because chemically induced Arctic ozone loss typically has the largest variability in this month (Fig. 5.27; WMO 2018a). The minimum Arctic daily TOC measured by satellites in March 2018 was 380 Dobson units (DU), which was 1.2% (4 DU) above the average of the observational record (376 DU) and 3.7% (14 DU) above the average when MLS data are available (2005–17).

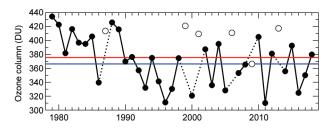


FIG. 5.28. Area-averaged monthly minimum total ozone column (DU) for Mar poleward of 63° equivalent latitude (Butchart and Remsberg 1986). Open circles represent years in which the polar vortex broke up before Mar, resulting in relatively high values due to mixing with lower latitude air masses and a lack of significant chemical ozone depletion. Red and blue lines indicate the average TOC for 1979–2017 and 2005–17, respectively. Data are adapted from Müller et al. (2008) and WMO (2018), updated using ERA-Interim reanalysis data (Dee et al. 2011). Ozone data from 1979–2016 are based on the combined total column ozone database version 3.4 produced by Bodeker Scientific (www.bodekerscientific.com/data/total-column -ozone). Data for 2017/18 are from OMI.

Spatial deviations of monthly average TOCs from historical (2005-17) averages (Figs. 5.29a,b) were estimated using ozone monitoring instrument (OMI; co-located with MLS on the Aura satellite) measurements. Despite the low ozone concentrations inside the lower stratospheric polar vortex during March (Fig. 5.27), TOCs over most regions of the Arctic were well above average (Fig. 5.29a) because Arctic TOCs are predominantly controlled by dynamical processes such as the transport of ozone-rich air from lower latitudes (Manney et al. 2011). Chemical loss in 2018 was only a secondary factor in controlling TOC within the vortex and a negligible factor outside the vortex. Average TOCs for March 2018 were about 15% higher than the long-term mean over Scandinavia, the Norwegian Sea, Greenland, and northeastern Canada; 10% lower over north-central Siberia; and 10% higher over northeastern Siberia (Fig. 5.29a). By July, monthly TOC anomalies showed a distinct geographical pattern that was significantly different from March (Fig 5.29b): TOCs were about 5% below the long-term average over Scandinavia and northwest Russia and 5% above the long-term average over Greenland, northeastern Canada, and the North Pole.

The ultraviolet index (UVI) is a measure of the ability of UV radiation to cause erythema (sunburn) in human skin (WHO 2002). In addition to its dependence on TOC, UVI depends on the sun's angle, cloud cover, and surface albedo (Weatherhead et al. 2005). In the Arctic, the UVI scale ranges from 0 to about 7, with the smallest annual peak radiation levels (UVI values <4) observed at sites closest to the North Pole. UVI values ≤5 indicate low-to-moderate risk of erythema (WHO 2002).

UVI anomalies are assessed using both satellitebased OMI and ground-based measurements, with the former providing better spatial coverage and the latter providing greater regional accuracy (Bernhard et al. 2015). Figures 5.29c,d quantify the spatial differences in monthly average noontime UVIs from historical (2005–17) averages based on OMI measurements. Figures 5.29c,d also indicate anomalies calculated from ground-based measurements at nine research stations located throughout the Arctic and Scandinavia.

Areas with high UVIs roughly match areas with low TOCs and vice versa, but UVI anomalies have larger spatial variability because of their added dependence on cloud cover (Fig. 5.29). In March 2018, average noontime UVIs calculated from OMI observations and ground-based measurements were 0%–15% below historical averages with a few exceptions, such as northwestern Siberia, where UVIs were

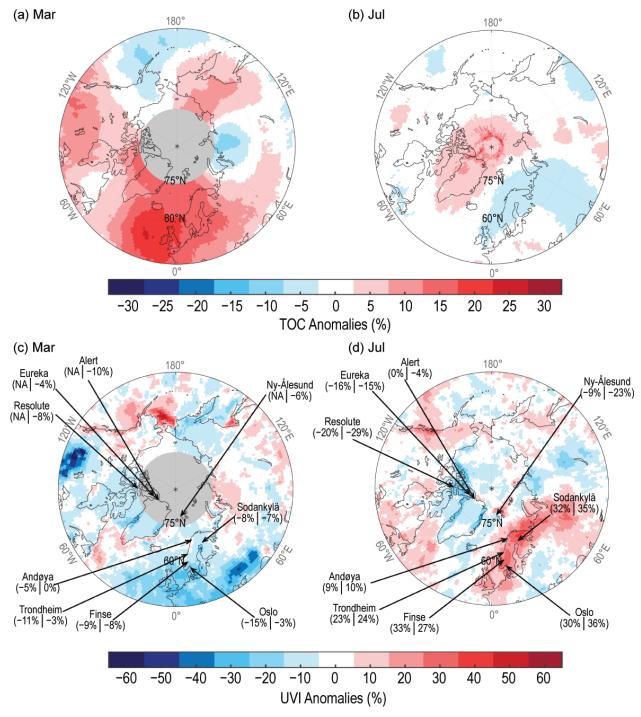


FIG. 5.29. Anomalies of TOC (%) for (a) Mar and (b) Jul 2018. Noontime UVI (%) for (c) Mar and (d) Jul 2018. Anomalies are relative to 2005–17 averages. Maps are based on the OMTO3 Level 3 total ozone product (Bhartia and Wellemeyer 2002). (c) and (d) also compare UVI anomalies from OMI (first value in parenthesis) with ground-based measurements at nine locations (second value presented). Gray shading indicates areas where no OMI data are available.

actually elevated by several percent (Fig. 5.29c). Large positive UVI anomalies were observed over Scandinavia in May and July, with a 20%–40% range in both months (absolute anomalies of up to 1.4 UVI units). In July, areas of high UVI (Fig. 5.29d) and low ozone (Fig 5.29b) were correlated. However, these large UVI anomalies cannot be explained by low TOCs alone and were partly caused by exceptionally long periods of clear skies and record dry and warm conditions. For example, at Sodankylä, the mean temperature in July 2018 was 5.6°C above the 1981–2010 average and the sunshine duration in 2018 was 405 hours, exceeding the 1981–2010 average of 245 hours by 65%. Anomalies at Trondheim, Oslo, and Sodankylä have exceeded historical means by 2.1, 2.3, and 2.5 standard deviations, respectively. In contrast to high UV radiation levels in Scandinavia, UV indices measured during July in northern Nunavut, Canada, were up to 29% below the long-term mean. UVI anomalies for the rest of the Arctic remained within \pm 20% with few exceptions such as the eastern coast of Greenland (Fig. 5.29d). Generally, OMI observations are consistent with ground-based measurements (Fig. 5.29d).