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Sammendrag 
 
Hanssen, F., D.N. Barton, M. Nowell, Z. Cimburova 2019.  Mapping urban tree canopy cover 
using airborne laser scanning – applications to urban ecosystem accounting for Oslo. NINA 
Report 1677. Norwegian Institute for Nature Research. 
 
Økosystemregnskap kan gi bykommuner informasjon om deres naturkapital og grønne infra-
struktur.  Kommuner kan rapportere om naturkapital på linje med rapportering om annen kom-
munal infrastruktur som krever investering og vedlikehold. Økosystemregnskap viser endring 
over tid i areal, vegetasjonstilstand, økosystemtjenester og deres økonomiske verdi.  
 
Spesielt bytrær bidrar med en rekke opplevelse-  og regulerende økosystemtjenester til byens 
innbyggere, og utgjør habitat for dyreliv i byen. Det er imidlertid ikke vanlig å føre regnskap over 
trær i byggesonen, og ihvertfall ikke på privat eiendom.   Spesialiserte modeller, som f.eks. i-
Tree Eco1, kan beregne regulerende økosystemtjenester fra trær. De er avhengige av kvantifi-
sering av trekrone-volum for å beregne bladareal (som også avhenger av treslag). Treets høyde, 
krone-størrelse og lokalisering i bybildet er også viktig for visuelle og estetiske effekter i ulike 
private og offentlige byrom. 
 
I denne rapporten tester vi mulighetene for å beregne trekrone - egenskaper ved hjelp av laser 
scannede data fra fly – «airborne laser scanning» (ALS).  Vi bruker eksisterende ALS data og 
ortofoto fra Norge Digitalt2 3, og demonstrerer en metode for identifisering av individuelle trekro-
ner i byggesonen.  Dette gir et nytt perspektiv på bylandskapet.  Trær definerer byen like mye 
som bygg, som vist i figur 1 nedenfor. 
 

 
 
Figur 1: Sammenligning av bygnings- og trestruktur i Oslo 

I rapporten vurderer vi også endringer i antall trær og trekroner for årene ALS data for Oslo er 
tilgjengelig: 2011 – 2014 – 2017. Vi demonstrerer ulike kart- og regnskapsfremstillinger av disse 
dataene, med tanke på videreutvikling av Oslo Kommunes grøntregnskap, som en del av miljø- 

                                                   
1 https://www.itreetools.org/eco/ 
2 https://hoydedata.no/LaserInnsyn/ 
3 https://www.norgeibilder.no/  

https://www.itreetools.org/eco/
https://www.norgeibilder.no/
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og klimarapportering i Oslo Kommune.  Vi rapporterer om endringer i trekrone-dekke for områder 
av spesiell interesse for bevaring av store trær.   
 
Tabell 1: Trekrone-dekke sammenlignet med annen arealbruk i Oslo 2017 

    Indre by  
(innenfor ring 2) 

Oslo's byggesone  
totalt 

Tette flater (ha)   1149 9761 
 Bygg 385 1880 
 Transport 183 1185 
  Andre flater 581 6696 
Permeable flater (ha) 69 3587 
 Grøntområder 68 3366 
 Dyrket 1 222 
Vann (ha)   6 107 
 Ferskvann 5 105 
  Sjø 1 2 
Trekrone areale* (ha) 205 4384 
*Trekroner overlapper andre arealtyper unntatt bygg.   

 
Hovedresultater i rapporten: 
 
- I 2017 var det det 4384 hektar med trekrone-areal i byggesonen.  Dette er over to ganger så 

stort som byens takareal i byggesonen. Innenfor Ring 2 var trekrone-arealet 205 hektar. Dette 
er et større areal til sammen enn arealet til transport, og mer enn halvparten så stort som 
takarealet i indre by. Trekrone-regnskapet konstaterer betydningen av trær som en hoveddel 
av byens infrastruktur.   

 
- Antall større trær (>10m) har økt i tiden 2011-2017 i byen som helhet, og har vært omtrent 

konstant for mindre trær.   
 
- I området dekket av Småhusplanen er det motsatt. Antall trær over 10m har blitt redusert, mens 

antall mindre trær har økt i samme område. Dette kan tyde på en fortettingseffekt som går 
spesielt utover store trær.  Samtidig med vesentlige tap av store trær plantes det en del nytt i 
samme område.   

 
- Den totale endringen i trekrone-volum er mindre omfattende i prosent enn for endring i antall 

trær.  Det kan tyde på at endring i regulerende økosystemtjenester fra trær – som avhenger av 
bladareal – ikke er så stort som endringen i antall store trær skulle tilsi. Dette må vurderes 
lokalt, men kan skyldes bedre lysforhold for gjenværende trekroner. 

 
Rapporten ender med en vurdering av kvaliteten på ALS data i forhold til ulike formål. ALS data 
er så langt bestilt av kommunen fra private leverandører hovedsakelig for identifisering av ter-
rengforhold, bygg og annen teknisk infrastruktur. En begrensning i ALS data bestilt av kommu-
nen hittil er mangler eller variasjon i klassifisering av vegetasjon og tetthet av laser-punkter. For 
fremtidig laserskanning anbefaler vi at kommunen prioriterer klassifisering av vegetasjon i ulike 
høyder, og tar i bruk en mest mulig homogen punkt-tetthet.  Dette vil øke sammenlignbarheten 
over tid.  Med disse forbedringene vil det være mulig å inkludere kartlegging av trekrone-areal i 
kommunens fremtidige Grøntregnskap. 
 
Frank Hanssen, NINA, frank.hanssen@nina.no; David N. Barton, NINA,  david.barton@nina.no  
Megan Nowell, NINA,  megan.nowell@nina.no;   Zofie Cimburova, NINA, Zofie.cimbu-
rova@nina.no  

mailto:frank.hanssen@nina.no
mailto:david.barton@nina.no
mailto:megan.nowell@nina.no
mailto:Zofie.cimburova@nina.no
mailto:Zofie.cimburova@nina.no
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Abstract 
 
Hanssen, F., D.N. Barton, M. Nowell, Z. Cimburova 2019.  Mapping urban tree canopy cover 
using LIDAR – applications in urban ecosystem accounting for Oslo.  NINA Report 1677. Nor-
wegian Institute for Nature Research. 
 
Ecosystem accounting applied to urban areas aims to provide municipal authorities with infor-
mation on their natural capital, changes in physical assets over time, ecosystem services pro-
vided and their monetary value. Trees in urban areas are providers of a range of cultural and 
regulating ecosystem services of potential benefit to urban inhabitants. Tree canopy is not usu-
ally identified in landcover mapping of urban built zones. Specialised models for computing eco-
system services from urban forests, such as i-Tree Eco4, rely on inventorying or sampling at the 
level of individual trees. This is necessary in order to identify tree canopy volume which is a key 
predictor of regulating ecosystem services.  Individual tree height, canopy size and location are 
also key to evaluating visual impacts of trees in private and public open spaces.   
 
Mapping tree canopy provides a new way of seeing the urban landscape. Trees define the urban 
form of Oslo as much as buildings do, as illustrated in figure 2 below. 
 

 
 
Figure 2: A comparison of the built-up areas and the tree covered areas in Oslo 

 
In this report we demonstrate the use of available airborne laser scanning (ALS) and orthophoto 
data from Digital Norway5 6, for the segmentation of individual tree crowns.    
 
In our study tree crown segmentation for 2011 – 2014 – 2017 in Oslo’s built zone was compared 
to demonstrate different map and tabular approaches to urban tree accounts for different policy 
analysis purposes. We evaluate the trend in tree canopy characteristics in suburban “small 
house areas” currently undergoing urban densification.  
 
 

                                                   
4 https://www.itreetools.org/eco/ 
5 https://hoydedata.no/LaserInnsyn/ 
6 https://www.norgeibilder.no/ 

https://www.itreetools.org/eco/
https://hoydedata.no/LaserInnsyn/
https://www.norgeibilder.no/
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Table 2: Tree canopy cover compared to other landcover in Oslo 2017 

    Inner city  
(within ring road 2) 

Total within  
Oslo's built zone 

Sealed surfaces (ha)   1149 9761 
 Buildings 385 1880 
 Transport 183 1185 
  Other surfaces 581 6696 
Unsealed surfaces (ha) 69 3587 
 Green spaces 68 3366 
 Agriculture 1 222 
Water (ha)   6 107 
 Freshwater 5 105 
  Sea 1 2 
Tree canopy cover* (ha) 205 4384 
*Tree canopy can overlap other surfaces, except buildings  

 
Main results include:  
 

- total tree canopy cover within Oslo’s built zone in 2017 was 4384 hectares, more than 
twice the surface area of buildings in the built zone. Even within the inner city (ring 2), 
the tree canopy cover was 205 hectares, greater than the combined surface area of 
roads, and more than half the surface area of all buildings.   
 

- in the city as a whole, trees > 10 m increased in numbers between 2011-2017, while in 
the Småhusplan area the number of tall trees decreased in the same period. In the 
Småhusplan area the number of small trees < 10 m high increased, while for Oslo as a 
whole it was roughly constant. 
 

- The change in the total tree canopy volume of large trees is less pronounced in percent-
age terms than the change in number of tall trees. This means that the change in regu-
lating services – which depend on canopy volume and leaf area index – may be less 
pronounced than changes in the number of trees would indicate.   

 
The report ends with a discussion of the limitations in the vegetation classification using ALS 
data, which thus far has primarily been classified for the purpose of identifying terrain conditions, 
buildings and other technical infrastructures. In order to do this consistently, future airborne laser 
scanning projects should include classified vegetation points, and in addition have a uniform 
point density between the accounting periods. With these improvements we recommend that 
Oslo municipality in future includes tree canopy accounting in their green accounts.    
 
 
Frank Hanssen, NINA,  frank.hanssen@nina.no  
David N. Barton, NINA,  david.barton@nina.no  
Megan Nowell, NINA,  megan.nowell@nina.no 
Zofie Cimburova, NINA, Zofie.cimburova@nina.no  

mailto:frank.hanssen@nina.no
mailto:david.barton@nina.no
mailto:megan.nowell@nina.no
mailto:Zofie.cimburova@nina.no
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Forord 
 
Forskningsprosjektet Urban Experimental Ecosystem Accounting (URBAN EEA) har som mål å 
teste metoder for økosystemregnskap som nå utvikles for nasjonalregnskap, tilpasset bykom-
muners behov for tiltaksvurderinger og arealplanlegging. URBAN EEA utprøver metoder for å 
kartlegge endring og tilstand av bynatur, fysisk tilgjengelighet og bruk av økosystemtjenester, og 
monetær verdisetting av byers naturkapital 
 
Oslo Kommune ga i 2018 ut sitt første 
Grøntregnskap (Oslo kommune, Plan- og 
bygningsetaten, 2018)7 som kartlegger en-
dringer i ‘faktisk’ grønt i byggesonen mellom 
2013-2017 ved bruk av infrarøde ortofoto.   
 
Metoden som diskuteres i denne rapporten er 
et komplement til Oslo’s Grøntregnskap med 
informasjon om kvalitetene på grønnstruktu-
ren, med fokus på trekroner. Metodene viser 
hvordan man kan identifisere trekroner enkelt-
vis, og identifisere trekrone høyde, areal og 
estimere trekrone-volum 
 
Vi håper arbeidet kan bidra til fremtidige opp-
dateringer av Oslo’s Grøntregnskap og være 
til inspirasjon for andre bykommuner som ønsker å kartlegge deres naturkapital. 
 
Rapporten er skrevet på engelsk for å gjøre arbeidet tilgjengelig for internasjonale forsknings-
miljøer som tester økosystemregnskap i andre byer i verden, i forbindelse med FNs revidering 
av standarder for økosystemregnskap. 
 
 
Oslo, Mai 2019 
 
Frank Hanssen og David N. Barton  

                                                   
7 https://www.oslo.kommune.no/getfile.php/13300369-1539862391/Innhold/Politikk%20og%20admi-
nistrasjon/Etater%2C%20foretak%20og%20ombud/Plan-%20og%20bygningseta-
ten/Gr%C3%B8ntregnskap%20-%20fagrapport.pdf  

 
Bytrær ved Oslo Rådhus.                     Photo: David N. Barton            
 

https://www.oslo.kommune.no/getfile.php/13300369-1539862391/Innhold/Politikk%20og%20administrasjon/Etater%2C%20foretak%20og%20ombud/Plan-%20og%20bygningsetaten/Gr%C3%B8ntregnskap%20-%20fagrapport.pdf
https://www.oslo.kommune.no/getfile.php/13300369-1539862391/Innhold/Politikk%20og%20administrasjon/Etater%2C%20foretak%20og%20ombud/Plan-%20og%20bygningsetaten/Gr%C3%B8ntregnskap%20-%20fagrapport.pdf
https://www.oslo.kommune.no/getfile.php/13300369-1539862391/Innhold/Politikk%20og%20administrasjon/Etater%2C%20foretak%20og%20ombud/Plan-%20og%20bygningsetaten/Gr%C3%B8ntregnskap%20-%20fagrapport.pdf
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Foreword 
 
The Urban Experimental Ecosystem Accounting 
(URBAN EEA) project aims at testing ecosystem ac-
counting methods designed for national accounts at the 
local level in support of municipal policy and planning.  
URBAN EEA tests mapping methods to account for 
changes in the extent, condition, supply, use and mon-
etary value of urban nature within the Greater Oslo area.    
 
Oslo Municipality recently completed the city’s first 
green account (Grøntregnskap) documenting the 
change in vegetation cover within the city in the period 
2013-2017 using infrared orthophoto (Oslo kommune, 
Plan- og bygningsetaten, 2018)8.  The approach docu-
mented in the present report uses LiDAR data as a com-
plement to the city’s green accounts, providing infor-
mation on the condition of green cover with a focus on 
tree canopy.  The methods demonstrated here help to 
segment the individual tree canopies and information 
about their canopy height, crown diameter, their 3D sur-
face area and volume.  
 
We hope that this work provides support to Oslo in future updates of their green accounts, and 
provides examples for other urban municipalities in Norway.   
 
 
 
Oslo, May 2019 
 
Frank Hanssen and David Barton 
 

                                                   
8 https://www.oslo.kommune.no/getfile.php/13300369-1539862391/Innhold/Politikk%20og%20admi-
nistrasjon/Etater%2C%20foretak%20og%20ombud/Plan-%20og%20bygningseta-
ten/Gr%C3%B8ntregnskap%20-%20fagrapport.pdf  

 
Studenterlunden          Photo: David N. Barton 

https://www.oslo.kommune.no/getfile.php/13300369-1539862391/Innhold/Politikk%20og%20administrasjon/Etater%2C%20foretak%20og%20ombud/Plan-%20og%20bygningsetaten/Gr%C3%B8ntregnskap%20-%20fagrapport.pdf
https://www.oslo.kommune.no/getfile.php/13300369-1539862391/Innhold/Politikk%20og%20administrasjon/Etater%2C%20foretak%20og%20ombud/Plan-%20og%20bygningsetaten/Gr%C3%B8ntregnskap%20-%20fagrapport.pdf
https://www.oslo.kommune.no/getfile.php/13300369-1539862391/Innhold/Politikk%20og%20administrasjon/Etater%2C%20foretak%20og%20ombud/Plan-%20og%20bygningsetaten/Gr%C3%B8ntregnskap%20-%20fagrapport.pdf
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Abbreviations 
 
ALS - Airborne Laser-Scanning  

ASPRS - American Society for Photogrammetry and Remote Sensing  

CHM - Canopy Height Model 

daa - Acres 

DTM - Digital Terrain Model  

LAS-format - an industry-standard binary format for storing airborne LiDAR data  

LiDAR - Light Detection And Ranging 

GVI - Green View Index 

NDVI – Normalized Difference Vegetation Index 

RGB - Red-Green-Blue  

TGI - Triangular Greenness Index  
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1 Introduction 
 
The URBAN EEA project9 conducts research on ecosystem services from urban green infra-
structure in the Oslo Region, from individual city trees and green spaces in the built area to peri-
urban forest and cultivated land. The project contributes to research and development on the 
UN’s Experimental Ecosystem Accounting (EEA) and its application to urban areas.   
 
Ecosystem accounts have the potential to be part of a system of integrated municipal accounts, 
and to contribute to a wider set of indicators for municipal reporting and assessment of climate 
and environmental policy. Figure 3 provides a conceptual model of how a system of ecosystem 
accounts might be integrated within a system of municipal accounts, in support of policy.   

 
Ecosystem accounting provides a framework and ‘production line’ for the information on urban 
ecosystems needed to compare the contribution of urban nature to the urban economy and well-
being. The biophysical mapping of urban nature that is required to build ecosystem accounts 
also contributes to (non-monetary) ecological and socio-cultural indicators for municipal policy 
assessment. A basic objective of mapping methods in urban ecosystem accounting is to make 
green infrastructure as visible to planners as is built infrastructure. The long-term aim is to con-
tribute to a suite of indicators reflecting different types of policy priorities and values with which 
to assess municipal policy targets. In this report we demonstrate a city-wide methodology for 

                                                   
9  https://www.nina.no/english/Fields-of-research/Projects/Urban-EEA  

 

 
Figure 3 Framework for a system of integrated municipal accounts, municipal reporting and assessment of 
climate and environmental policy.  This report provides examples of accounts outlined in green. 
 Source: Barton et al. 2017 

https://www.nina.no/english/Fields-of-research/Projects/Urban-EEA
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accounting for tree canopy cover in the built area of Oslo, including 
tree canopy area (1. extent account) and tree canopy surface area 
and volume (2. condition account) (Figure 3). Canopy cover surface 
area is a key input to the i-Tree Eco10 tool which is used worldwide 
to estimate regulating ecosystem services of urban forests and their 
monetary value.   Mapping of tree canopy can also be used to make 
inventories of urban trees for specific management purposes, such 
as monitoring of large trees on municipal land, or inventories of all 
regulated trees (DBH>90cm) in private gardens.  
 
1.1 Why account for urban tree canopy? 
 
There are a number of other non-monetary reasons why – in the general context of awareness 
raising about urban green – accounting for urban tree canopy cover is important to consider with 
specific indicators. Tree canopy is the most important green structure by surface area in the built 
area of Oslo.  
 
There is an increasing awareness about the value of urban tree canopies, and their contribution 
to urban quality of life, neighbourhood cohesion, wildlife habitat, and ecosystem services such 
as air-pollution mitigation, carbon storage, runoff control and temperature regulation.  To manage 
urban trees it is necessary to know where they are and what condition they are in. There is an 
increasing demand for cost-effective and standardised procedures for automated production of 
high-resolution tree canopy maps.  
 
Using results from tree canopy mapping in this report we can now document what visitors to Oslo 
remark upon when approaching Oslo from the air or sea, but which many living within Oslo may 
take for granted. Oslo’s built zone has more tree canopy area seen from above than building roof 
area (Table 3).   
 
 Table 3 Tree canopy cover in Oslo (2017) 
 

    Inner city                  within 
ring road 2 Total Oslo's built zone 

Sealed surfaces total (ha) 1149 9761 
 Buildings 385 1880 
 Transport 183 1185 

  Other surfaces 581 6696 
Unsealed surfaces total (ha) 69 3587 

 Green spaces 68 3366 
 Agriculture 1 222 

  Tree canopy* 205 4384 
Water (ha) Freshwater 5 105 
*Tree canopy can overlap other surfaces, except buildings 

 
In terms of human habitat structure trees are more ubiquitous in Oslo as a whole than buildings.   
Tree canopy is as much a physical ‘place maker’ in Oslo as are buildings. Tree canopy cover 
within Oslo’s built zone defines Oslo’s visual landscape as much as, or more than buildings do 
(Figure 4 and 5).   
 

                                                   
10 https://www.itreetools.org/eco/  

In the context of access 
to nature Oslo is some-
times referred to as “the 
blue and the green and 
the city in between”.   
 
This report documents 
“the green in between” 
within the city’s built 
zone. 

https://www.itreetools.org/eco/
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Figure 4. Building surface and tree canopy surfaces as physical infrastructure in Oslo’s built zone. Tree can-
opy is a physical ‘place maker’ throughout the city.                                                 Map: Megan Nowell, Data: PBE 

 

 
Figure 5: Oslo’s green infrastructure is not only its parks – city trees are ubiquitous and define the city fabric.    
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Seen from Oslo fjord the vertical green surface of tree canopies in the urban landscape is notable 
(Figure 6). 
 
At street level the visual impact of tree canopy is 
several times as large by surface area as seen 
from above.  The proportion of a street view filled 
with vegetation has been computed by MIT 
Senseable City Lab using the Green View Index 
(GVI).   Oslo has one of the highest GVI’s of cities 
in their Treepedia database11 at 28,8%. That 
means that on average almost one third of street 
views in Oslo are described by tree canopy.   The 
GVI is an indicator of a sample of Oslo’s street 
trees limited to locations with Google Street 
Views.  But it is indicative of new ‘big data’ ap-
proaches to accounting for urban green infrastruc-
ture. Using a combination of remote sensing data 
including Airborne Laser-Scanning and orthopho-
tos, the method in this report provides an ap-
proach to carrying out a full inventory of city trees 
in an urban built zone. 
 
One of Oslo’s mottos is “the blue and the green 
and the city in between”.  With the methods in this 
report we show how to account for “the green in 
between” the built zone. 
 
 
 
1.2 Modelling regulating ecosystem services of city trees 
 
The mapping of tree crowns provides information on urban structure at the landscape level, and 
visual qualities of open spaces at the street and property level.  Additionally, the identification of 
tree crown structure is key information in modelling regulating ecosystem services (carbon se-
questration, carbon storage, energy saving effects, air pollution removal, avoided runoff, wildlife 
habitat) and disservices (emission of Volatile Organic Compounds). I-Tree Eco calculates bio-
physical indicators of regulating ecosystem services and monetary values of benefits.  This in-
formation on ecosystem services can be used to further justify municipal funding for city trees as 
is done for other public utilities, and can inform municipal strategies for tree maintenance and 
planting (Barton et al., 2015). 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                   
11 http://senseable.mit.edu/treepedia 
 

 
Figure 6. Oslo’s ‘green in between’ the built 
area, between the Marka forest and 
Oslofjord.                                 Photo: David N. Barton 
 

http://senseable.mit.edu/treepedia
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The ecosystem services modelling tool i-Tree Eco12 requires variables on tree canopy charac-
teristics (Figure 7) which are usually observed through time consuming field surveys from the 
ground. Ecosystem services and the values generated by urban forests can be modelled with 

several different tree appraisal methods. Common to them all is the need to conduct on the 
ground assessments of tree canopy condition.  Ground based tree assessment for a whole city  
can be resource intensive, limited in their spatial coverage and prone to some human appraisal 
error.  Several remote sensing methods are available to observe the extent and condition of 
urban trees. Among the remote sensing methods only LIDAR identifies 3D tree canopy structure, 
surface area and volume. Canopy surface area and volume are related to Leaf Area Index (LAI) 
which is a key indicator in i-Tree Eco of regulating ecosystem services of city trees.   The tree 
crown modelling based on LiDAR data can be combined with available GIS data, ground-based 
tree inventory data and ecosystem service modelling techniques. The longer-term goal is to 
model regulating ecosystem services in i-Tree Eco mainly using remote sensing data, with min-
imal ground truthing. Ground based survey work is still required to obtain species information for 
individual trees and assess tree health, but the measurement of physical tree dimensions can 
largely be carried out by remote sensing.   
 

                                                   
12 https://www.itreetools.org/  

 
Figure 7 Tree characteristics as input to the calculation of different ecosystem services in i-Tree Eco 

https://www.itreetools.org/
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1.3 Tree segmentation approach   
 
Data acquired from Airborne Laser-Scanning (ALS), also called LiDAR data (Light Detection And 
Ranging), contain three-dimensional information that can be used to estimate tree canopy height, 
crown diameter, 3D crown surface area and crown volume. The process of deriving this infor-
mation from LIDAR-data is often referred to as tree canopy segmentation, a process that allows 
a cost-effective and accurate urban forest inventory down to individual trees. 
 
We have implemented a simple Watershed segmentation method using the tree Canopy Height 
Model (CHM) as the basis for tree detection and delineation of individual trees. This method 
assumes that the shape of a tree crown resembles a watershed. Watershed segmentation is an 
image processing technique originally developed to outline drainage basins from a Digital Terrain 
Model (DTM). Conceptually, this technique can be described as gradually filling basins with wa-
ter. Where the water of two adjacent basins connects, a boundary is detected. As the water rises, 
these boundaries delineate each drainage basin. Due to the morphological similarities between 
a DTM and a CHM, this technique has been applied to delineate individual tree crowns from an 
inverted CHM. 
 
The most foremost application of the segmented tree canopies is the ability to have an updated 
inventory for improved management of existing urban trees, tree planting programs, zonal plan-
ning, change detection analysis and mapping and valuation of ecosystem services. 



NINA Report 1677 
 

17 

2 Data 
 
Airborne LIDAR is a surveying method that measures the distance to a target (i.e. a tree) by 
illuminating it with laser light pulses. The reflected pulses are measured with a sensor. Differ-
ences in laser return times and wavelengths are used to make digital 3-D representations of the 
target. LiDAR is often called laser scanning and 3-D scanning, with terrestrial, airborne, and 
mobile applications. In this study we have used data from an airborne laser scanner as illustrated 
in figure 8 below. 
 

 
Figure 8: The principles of airborne laser scanning          

LIDAR- data from three different laser- scanning projects in Oslo (scanned in 2011, 2014 and 
2017) was downloaded from the national archive for elevation data in Norway13. LIDAR data is 
a point cloud where each point can be classified into several categories. These categories are 
defined by the American Society for Photogrammetry and Remote Sensing (ASPRS, 2010). Ta-
ble 4 lists the ASPRS- categories classified in the downloaded LIDAR data from Oslo, whereas 
table 5 gives an overview of the average point density, point classification and RGB - colour 
information in the data. 
 
Table 4: Applied ASPRS classification codes (ASPRS, 2010). 

ASPRS code Meaning 
1 Not classified 
2 Ground 
3 Low vegetation 
4 Medium vegetation 
5 High vegetation 
7 Low and high points (noise) 
9 Water 
10 Points on bridge 
24 Power line 

 

Table 5: Overview of the applied LIDAR data from Oslo 

 Average point 
density per m2 

Point classification RGB- colour  
information 

Oslo 2011 (Blom ASA, 2012) 43 1-2-3-4-5-7-9-10-24 Yes 
Oslo 2014  (Blom ASA, 2014) 25 1-2-7-10 Yes 
Oslo 2017 (Terratec AS, 2017) 10 1-2-7-10-13 No 

 
 
                                                   
13 https://hoydedata.no/LaserInnsyn/  

https://hoydedata.no/LaserInnsyn/
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3 Study area 
 
Our study area is Oslo Municipality’s built zone (figure 9).  
 

 
Figure 9: Coverage map of scanning blocks in the Oslo 2017 laser scanning project (Terratech, 2017). The scale 
from light blue to dark blue indicates the point density from low to high in the scanning blocks.  

Detailed topographical mapping data14 have been used as analysis masks to flag trees that are 
mistakenly segmented in built up areas (buildings and other physical infrastructures). Adminis-
trative borders, such as municipality borders and city region borders have been used as pro-
cessing extents. Finally, vegetation masks (the Topographical Greeness Index, described in sec-
tion 4.2) have been derived from available orthophoto imagery15. 
  

                                                   
14 https://kartkatalog.geonorge.no/metadata/geovekst/felles-kartdatabase-fkb/0e90ca71-6a02-4036-
bd94-f219fe64645f 
15 http://norgeibilder.no/  

https://kartkatalog.geonorge.no/metadata/geovekst/felles-kartdatabase-fkb/0e90ca71-6a02-4036-bd94-f219fe64645f
https://kartkatalog.geonorge.no/metadata/geovekst/felles-kartdatabase-fkb/0e90ca71-6a02-4036-bd94-f219fe64645f
http://norgeibilder.no/
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4 Methods 
 
Tanhuanpää et al. (2014) describe two main methods for extracting tree canopy and forest char-
acteristics using airborne LiDAR, respectively the Area-based method (Næsset, 2002) and the 
Individual Tree Detection method (Hyyppä & Inkinen, 1999). The Area-based method is founded 
on statistical dependencies between ALS-parameters (e.g. relative and absolute height of laser 
echoes) and forest variables collected in the field. The Individual Tree Detection method helps 
to delineate tree crowns either directly from the LIDAR- point cloud (Zhang et al., 2015) or indi-
rectly from a LiDAR-derived canopy height model (CHM).  
 
The LiDAR-derived canopy height model interpolates a raster surface from LiDAR points hitting 
the tree canopy surface. A range of methods have been developed on this principle, all being 
favoured for their processing speed and the accessibility to software that commonly uses regu-
larly spaced data such as e.g. raster’s (Zhang et al., 2015).  
 
For this study we have implemented a simple Watershed segmentation method on a filtered 
CHM (Pyysalo & Hyyppa 2002, Suárez et al. 2005). As we only have classified vegetation points 
from 2011, it was necessary to tag unclassified vegetation points (from 2014 and 2017) located 
inside vegetated areas. In the absence of high-resolution IR- imagery (and a corresponding 
NDVI- mask) we choosed to calculate a simplified vegetation mask based on the Triangular 
Greenness Index (TGI) described by Hunt et al., 2013. Finally, objects incorrectly segmented as 
trees were masked out using a mask of buildings and other technical infrastructures. 
 
The process of segmenting tree canopy from LIDAR in this study is organised as stepwise work-
flows. Each workflow is organised as stringed sequences of certified geoprocessing tools and 
algorithms in the ESRI visual programming interface Model builder (ArcGIS 10.6). This platform 
was selected for its powerful raster processing capabilities. 
 
4.1 Organising the LIDAR point cloud 
 
The big amount of LIDAR data (2011, 2014 and 2017 
was downloaded from https://hoydedata.no/LaserInn-
syn/ as tiles in the LAS-format (an industry-standard bi-
nary format for storing airborne LiDAR data) and scripted 
into city region folders (1 folder per region per year, in 
total 16 regions per year for Oslo).  
 
For each city region in Oslo a LAS Dataset was created 
using the “Create LAS Dataset” tool (see figure 10). A 
LAS dataset stores references to LAS files on disk and 
allows us to examine the LAS files in their native format, 
quickly and easily, providing detailed statistics and area 
coverage. A LAS dataset can also store references to 
feature classes containing surface constraints such as 
breaklines, water polygons, area boundaries, or any 
other types of surface features that is to be enforced in 
the LAS dataset. 
 

In brief 
 
Due to the voluminous amount of 
data, the LIDAR point cloud is of-
ten divided into numerous data 
tiles by the data provider.  
 
The purpose of this step is to opti-
mize the data prior to the tree can-
opy segmentation process. For 
this purpose, we created a map in-
dex that reference all the data tiles 
and their associated surface char-
acteristics (see figure 10).  
 

https://hoydedata.no/LaserInnsyn/
https://hoydedata.no/LaserInnsyn/
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Figure 10: LAS Dataset for the city region St. Hanshaugen (2017) 

 
4.2 Creating a vegetation mask for the tree canopy segmentation 
 
As there were no resources available for classification 
of vegetation points, we had to rely on the existing veg-
etation points in the Oslo 2011 data (Class 3: Low veg-
etation, Class 4: Medium vegetation and Class 5: High 
vegetation). Unfortunately, as described in Chapter 1, 
the Oslo 2014 and 2017 data lack classified vegetation 
points. To overcome this lack of vegetation points (in the 
2014 and 2017 Oslo data) and support the classified 
vegetation points from the Oslo 2011 data we decided 
to derive available Red-Green-Blue (RGB) values from 
the LIDAR – data, create orthophoto image tiles (at a 
spatial resolution of 1 x 1 meter) and from them derive 
a vegetation mask based on a visible band index for re-
mote sensing of chlorophyll. For this purpose, we ex-
tracted available RGB-values from the Oslo 2011 and 
2014 LIDAR data (there were no RGB-values in the 
Oslo 2017 LIDAR dataset). High resolution NDVI-data 
(Normalised Difference Vegetation Index) derived from 
Sentinel 2 or other RS sensors could have been used as an alternative vegetation mask but was 
not considered due to its relatively low spatial resolution (10 x 10 m). We did not have access to 
high-resolution IR- imagery and could therefore not implement a high-resolution NDVI-mask. 
 
The RGB values were extracted and converted into orthophoto image tiles with the “Create LAS 
Dataset” tool and the “LAS dataset to Raster” tool (figure 11 and 12). As a part of this workflow 
we used a Binning interpolation to determine the RGB values of the three-band image tiles. 
This interpolation provides a Cell Assignment Method for determining each output cell using 
the points that fall within its extent, along with a Void Fill Method to determine the value of cells 
that do not contain any LAS points. In this workflow we used the Cell Assignment Method 

In brief 
 
Classification of vegetation points 
in the LIDAR point cloud is essen-
tial for tree canopy segmentation. 
This classification can be per-
formed by the data provider or in-
ternally if resources are available. 
 
The purpose of this step is to com-
pensate for unclassified vegetation 
points in the 2014 and 2017 LIDAR 
data. For this purpose, we derived 
spatial information about leaf chlo-
rophyll. content from aerial im-
agery. 
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“NEAREST”. This method uses a Nearest Neighbour assignment to determine the cell value. 
As Void Fill Method we used the “NATURAL_NEIGHBOR” method which uses natural neigh-
bour interpolation to determine the cell value. 
 

 
Figure 11: The orthophoto workflow 

 

 
Figure 12: Interpolated LIDAR Ortophoto for 2014 in the city district Ullern.. 

The vegetation mask was derived from the orthophoto image tiles using the Triangular Green-
ness Index (TGI) (Hunt et al., 2013). The TGI is defined as the area of the triangle defined by the 
reflectance signals for red, green, and blue (figure 13). Hunt et al. (2013 used Band 1, 2, and 3 
of the Landsat Thematic Mapper instrument. Hunt et al. (2013) studied several vegetation indices 
from corn fields in Nebraska. They measured chlorophyll with a handheld meter and collected 
optical data from the Landsat, aircraft, and field instruments. Optical bandwidths were mathe-
matically combined to simulate digital camera results. Hunt and his co-workers (2013) correlated 
the results from over twenty different vegetation indices against their field-based chlorophyll 
measurements and TGI was found to be one of the best. Also, TGI proved to be relatively insen-
sitive to the size of the plants’ leaves (described by the leaf area index). 
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Figure 13: The area of the triangle defined by the reflectance signals for red, green, and blue (Hunt et al., 2013) 

McKinnon and Hoff (2017) used peak wavelength sensitivities (Red = 625 nm, Green = 525 nm, 
Blue = 460 nm) of a typical CMOS camera sensor (Complementary Metal Oxide Semiconductor) 
in their work, and normalized them the by the green signal as explained in equation 1 below: 
 
Topographical Greeness Index (TGI) = TGreen – 0,39 * RRed – 0.61 * RBlue      (1) 
 
We calculated the TGI > 0 from the interpolated RGB bands with the use of equation 1 in the 
“Raster Calculator tool” (figure 14):  
 
TGI = ("%Band2%" - (0.39 * "%Band1%") - (0.61 * "%Band3%")) >= 0 
 

 
 
Figure 14: The Triangular Greeness Index (TGI) workflow 
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The TGI-raster tiles were then reclassified (1=vegetation, 0 non-vegetation), converted to poly-
gon tiles and merged into one TGI vegetation mask for each city region. As shown in figure 15, 
the TGI vegetation mask corresponds relatively well to vegetated areas. There are however 
some deviations, especially in shadowed areas next to buildings. 
 

 
Figure 15: The Triangular Greeness Index (TGI) mask for the URBAN EEA field sample block 150 in the city 
district Ullern. 
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4.3 Segmenting tree canopy 
 
The tree canopy segmentation workflow consists of 3 steps 
(figure 16). Due to heavy raster processing the segmenta-
tion had to be done stepwise at a city region level. 
 
1. Calculate the Canopy Height Model (CHM) 
2. Preparing the CHM 
3. Segmentation of trees and tree canopy delineation 
 
 
 
 
 

 
 
Figure 16: The tree canopy segmentation workflow with input data (turquoise boxes), functions (grey boxes), 
intermediate results (yellow boxes) and the final results (green boxes). Part 1 of the workflow represent the 
calculation of the Canopy Height Model (CHM), part 2 represent the preparation of the CHM and part 3 represent 
the segmentation of tree tops and the delineation of tree canopies. A larger version of this figure is enclosed in 
the report appendix. 

 

In brief 
 
The purpose of this step is to iden-
tify the treetops and tree canopies 
of all trees in Oslo above 2.5 m. 
For this purpose, we utilize the tree 
canopy model, and a method that 
assumes that the shape of an up-
side-down tree crown resembles a 
drainage basin, and that the 
treetop resembles its drainage 
point.  
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4.3.1 Calculate the Canopy Height Model (CHM) 
 
The Canopy Height Model (CHM) is calculated as the differ-
ence between the Digital Terrain Model (DTM) and the Digital 
Surface Model (DSM), as illustrated in figure 17. 
 

 
Figure 17: The Canopy Height Model (CHM) 

The DSM is first created as a LAS Dataset (Point cloud) based on class codes 1-3-4-5 (all re-
turns). Class code 1 represents unassigned points that often contain unclassified vegetation 
points (valid for the Oslo 2014 and 2017 data). The DSM LAS Dataset was converted to a DSM 
integer raster (0.5 x 0.5 m) using a Binning interpolation type (with a Maximum Cell Assignment 
Type and a Linear Void Fill Method). The DTM was created the same way as a LAS Dataset 
(Point cloud) based on class code 2 (all returns). The DTM LAS Dataset was then converted to 
a DTM integer raster (spatial resolution of 0.5 x 0.5 m) using a Binning interpolation type (with 
an Average Cell Assignment Type and a Linear Void Fill Method). The CHM is given by the 
difference between the DSM and the DTM (figure 18, left image). CHM-pixels outside vegetated 
areas (figure 18, right image) and tree canopies below 2.5 m are set to NoData. 
 

  
Figure 18: The CHM (to the left) and the TGI- vegetation mask (to the green) in the city district Ullern (based on 
Oslo 2014 LIDAR- data). The colour scale describes the transition from lower CHM (in dark grey) to higher CHM 
(in white).    

 

In brief 
 
The purpose of this step is to cal-
culate the height of the tree can-
opy, given by the elevation differ-
ence between the Digital Terrain 
Model and the Digital Surface 
Model 
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4.3.2 Preparing the CHM 
 
For this study we have implemented a simple Water-
shed segmentation method using CHM as the basis for 
detection and delineation of individual trees within an 
urban environment (Pyysalo & Hyyppa 2002, Suárez et 
al. 2005). This method assumes that the shape of a tree 
crown resembles a watershed. The method is an image 
processing technique developed to outline drainage ba-
sins from a DTM. Conceptually, this technique can be 
described as gradually filling basins with water. Where 
the water of two adjacent basins connects, a boundary 
is detected. As the water rises, these boundaries delin-
eate each drainage basin (S. Beucher & Lantejoul, 1979). Due to the morphological similarities 
between a DTM and a CHM, this technique has been applied to delineate individual tree crowns 
from an inverted CHM (Chen et al., 2006).  
 
First the CHM was smoothed using Maximum Statistics enabled by the “Focal Statistics tool”. 
The purpose of this operation is to find the Local Maxima (figure 19) (Franceschi, 2017), using a 
circular neighbourhood search filter diameter of 3 m. It is challenging to find a perfect search 
filter as this varies locally and often is species specific, based on the morphological structure of 
the different tree species. After some visual inspections in orthophotos and using best practices 
from literature (see Barnes et al., 2017), we decided to use a search filter of 3 m (in diameter). It 
should however be underlined that this is fixed proxy that will probably have a best fit for larger 
trees. 
 

 
Figure 19: Smoothing of the CHM by the Local Maxima filter. Green area are lower CHM values whereas red 
areas represent higher CHM values. 

In brief 
 
The purpose of this step is to invert 
the CHM to imitate a drainage ba-
sin, and then calculate the internal 
flow direction between each cell 
within the imitated drainage basin 
resembling the tree canopy 
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The smoothed CHMs were then inverted by negating the elevation values in the raster. The 
negated CHM raster was then treated as an imitated watershed. To determine the direction of 
flow from every cell in the inverted CHM we used the “Flow Direction tool” and the eight-di-
rection (D8) flow model that assumes that there are eight valid output directions representing 
the eight neighbouring cells into which flow could travel (Jenson and Domingue,1988). Following 
this approach, the flow direction is determined by the direction of the maximum drop from each 
cell, as expressed in equation 2 below. 
 
Maximum_drop = Change_in_z-value / distance * 100          (2) 
 
The distance between cells is calculated between the centroids of the cells. The cell size of our 
negated CHM is 0.5 x 0.5 m, which gives a distance between two orthogonal cells of 0.5 meter, 
and a distance between two diagonal cells of 1 meter (the square root of 1). If the maximum 
descent to several cells is equal, the neighbourhood will be enlarged until the steepest descent 
is found. When a direction of the steepest descent is identified, the output cell is coded with the 
value representing that direction. If all neighbours are higher than the processing cell, it will be 
considered noise, be filled to the lowest value of its neighbours, and have a flow direction toward 
this cell. However, if a one-cell sink is next to the physical edge of the raster or has at least one 
NoData cell as a neighbour, it is not filled due to insufficient neighbour information. To be con-
sidered a true one-cell sink, all neighbour information must be present. If two cells flow to each 
other, they are sinks and will have an undefined flow direction (Jenson and Domingue (1988).  
 
4.3.3 Segmentation of trees and tree crown delineation 
 
In this step of the segmentation workflow we have used 
the “Focal flow tool” to detect the local maxima of each 
tree (representing the tree tops) and the “Watershed 
tool” to delineate the CHM watersheds (representing 
the tree crowns).  
 
The Focal Flow tool uses a "moving window" to iden-
tify which of a cell's eight neighbours flows into it. A flow 
in this context is defined by any cell within the neighbourhood that has a higher value than the 
processing cell itself. To test if a neighbourhood cell flows into the processing cell, the value of 
each neighbourhood cell is subtracted from the processing cell. A positive value means that the 
neighbourhood cell does not flow into the processing cell, where as a negative value mean that 
it does. Where no cells flow into the processing cell the value will be 0. The combination of flow 
from multiple neighbourhood cells into a single processing cell is accomplished through the bi-
nary representation of the processing cell. Each bit of the binary representation for the pro-
cessing cell correlates to a neighbourhood cell location. The cell to the immediate right of the 
processing cell is given the value 1, the neighbour to the lower right is 2, the neighbour directly 
below is 4, and so forth—until the value of 128 (powers of two, since representation occurs in 
binary) is reached for the last neighbour to the upper right (figure 20).  
 

 
Figure 20: Focal Flow direction encoding 

In brief 
 
The purpose of this step is to de-
tect the drainage points (treetops) 
and delineate the drainage basin 
(tree crowns) 
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If a neighbourhood cell flows into the processing cell, the bit that represents the neighbourhood 
location is turned on or assigned to 1. Conversely, if a neighbourhood cell does not flow into the 
processing cell, the bit that represents the location is turned off, or assigned to 0. Once all neigh-
bourhood locations have been tested for flow, none, one, several, or all bits can be turned on 
(assigned a 1). The binary representation for all bits is converted back to base10 bit value in 
accordance with the flow-bit pattern. The base10 bit value is then assigned to the processing cell. 
This encoding assigns a unique number to each possible combination of upstream numbers. 
The total number of combinations of flow into a processing cell is 255. Cells with a 0 value are 
equal to the individual tree tops. 
 
Finally, we segmented the tree crowns from the flow direction map (described above) using the 
“Watershed tool”. A watershed is the upslope area that contributes a flow (e.g. water) to a lower 
common outlet or drainage point (in this case the tree tops). The boundaries between the water-
sheds represent the tree canopy delineations. The steps in section 4.3.1, 4.3.2 and 4.3.3 are 
illustrated in figure 21 and the corresponding tree canopy segmentation is illustrated in figure 22. 
 

 
Figure 21: Image 1 illustrate the tree Canopy Height Model (CHM). Image 2 illustrate the inverted CHM. Image 
3 illustrate the calculated drainage basin (resembling the tree crown) and its drainage point (resembling the 
treetop). Image 4 illustrate the re-inverted tree crown and treetop features. 

 
Figure 22: Segmented tree tops and delineated tree crowns displayed on the CHM and the TGI vegetation mask. 
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Finally, the diameter for calculation of tree crown volume of the, sometimes irregular, tree crowns 
were approximated circularly using the “Minimum Bounding Geometry (MGB)” tool. This created 
a minimum bounding circle envelope around each tree crown. The attribute table of the MGB 
circle dataset were then joined to the tree crown dataset with the help of the unique CROWN_ID. 
 
4.4 Estimating tree canopy surface and volume 
 
The tree canopy volume can be used to approximate 
the Leaf Area Index (LAI). There are several ways to 
estimate the volume of our segmented tree canopies 
from Oslo. For this study we are comparing three meth-
ods, namely standard ArcGIS 2D area surface, simpli-
fied geometrical 3D area surface (Nowak,1996) and a 
simplified volume of a cone resembling a tree crown.  
 
The 2D area surface of each tree crown feature is auto-
matically calculated (according to the units of the actual 
coordinate system) when data are stored in a geodata-
base. The Surface Area of a 3D shape (e.g. a tree 
crown) is the total area of the outside of that shape. De-
pending on the complexity of the shapes form, the 3D area can be calculated at different com-
plexities and with many different equations. We chose to calculate the simplified geometrical 3D 
surface area (Nowak 1996) according to equation 3: 
 
𝑺𝑺 𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈 = �𝝅𝝅∗𝑫𝑫∗ (𝑯𝑯+𝑫𝑫)

𝟐𝟐
�                                                                                                                 (3) 

 
Where D is the minimum bounding circle diameter around each segmented tree crown and H is 
the segmented tree top height: 
                           
The simplified volume of the tree crowns was calculated using the formula for the volume of a 
cone, according to equation 4: 
 
𝑽𝑽𝒈𝒈𝑽𝑽𝑽𝑽𝒈𝒈𝒈𝒈 = 1

3
∗  𝜋𝜋 ∗  𝑟𝑟2 ∗ ℎ                                                                                                (4) 

 
Where r is the half of the minimum bounding geometry diameter of each segmented tree crown 
and h is the height of each segmented tree. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In brief 
 
The purpose of this step is to esti-
mate tree canopy surface and vol-
ume. The tree canopy volume will 
be combined with tree species in-
formation to estimate the Leaf 
Area Index (LAI) as a condition in-
dicator and input to the i-Tree Eco 
model for calculating regulating 
services of city trees. 
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4.5 Masking out false trees 
 
To remove objects incorrectly segmented as trees, we 
applied a mask of buildings and other technical infra-
structures (point and linear features were buffered with 
1 meter). Segmented trees with tree tops located inside 
this mask were excluded. In addition, we also filtered out 
all segmented trees having an invalid tree canopy height 
(see figure 23). Statistics about this are presented in 
Chapter 5. One consequence of this masking process 
is that actual trees (within the vegetation mask) under power lines or close to buildings, monu-
ments, powerline poles, tele-communication poles, street light poles and traffics signs etc. will 
be excluded.     
 

  
Figure 23: The image to the left displays the unmasked trees (in red) and the building mask (blue). The image 
to the right displays the trees (in red) remaining after filtering for interception with the building mask (blue). 

 
 
 
 

In brief 
 
The purpose of this step is to re-
move objects (buildings and tech-
nical infrastructure) that are incor-
rectly segmented as trees. 
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5 Modelling results 
 

5.1 Number of trees 
 
The LIDAR-based tree segmentation model identifies tree tops (point dataset) and tree crowns 
(polygon dataset) for all trees above 2.5 m (figure 24, 25 and 26), following the same definition 
as Tanhuanpää et al. (2014). The corresponding data attribute information is described below in 
table 6: 

 
Table 6: Calculated outputs 

CrownID The unique ID of each segmented tree 
2DAREA The 2D surface area of each segmented tree crown 
PERIMETER The perimeter of each segmented tree crown 
G_ELEV  The ground elevation of each segmented tree 
C_ELEV  The canopy height (tree top height) of each segmented tree 
MGBDIAM  The minimum bounding geometry diameter of each segmented tree crown 
SGeom Simplified geometrical 3D area surface 
Volume Simplified volume of the tree crown 

 

 
Figure 24: Masked (filtered for buildings and technical infrastructures) tree segmentation 2011 in the URBAN 
EEA field sample block 150 in the city district Ullern. 
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Figure 25: Masked (filtered for buildings and technical infrastructures) tree segmentation 2014 in the URBAN 
EEA field sample block 150 in the city district Ullern. 

 
Figure 26: Masked (filtered for buildings and technical infrastructures) tree segmentation 2017 in the URBAN 
EEA field sample block 150 in the city district Ullern. 
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The canopy height is estimated at the top of the tree, 
and the tree crown is delineated at the lowest part of 
the tree crown. The 2011 segmentation resulted origi-
nally in a total amount of 372 404 trees. Of this, 1,73 % 
(6448) of the segmented trees was located inside the 
FKB-mask. The masked 2011 dataset   contains 365 
956 individually segmented tree canopies (328 963 in 
the built-up zone and 67 536 in the Småhusplan-area).  
The Small House Plan (Småhusplan) area is identified 
separately because it is subject to urban densification 
and special regulations for felling of large trees. The 
2014 segmentation resulted originally in a total amount 
of 421 913 tree canopies. Of this, 4,15 % (17 548) of 
the segmented canopies was located inside the FKB-
mask. The masked 2014 dataset contains 404 365 can-
opies (345 766 in the built-up zone and 64 037 in the 
Småhusplan-area). Finally, the 2017 segmentation resulted originally in a total amount of 420 
660 tree canopies. Of this, 6,48 % (27271) of the segmented trees were located inside the FKB-
mask. The masked dataset contains 393 389 trees (352 288 in the built-up zone and 63 189 in 
the Småhusplan-area).  
 
 

5.2 Canopy height, area and volume 
 
Table 7 shows that the median tree canopy heights for the Oslo built-up-area spans from 15 m 
(2011), to 15 m (2014) and 16 m (2017). For the same area the median tree canopy area spans 
from 93.67 m2 (2011), to 102.85 m2 (2014) and 101.51 m2 (2017). The median tree canopy vol-
ume spans from 849,9 m3 (2011), to 961,8 m3 (2014) and 953,4 m3 (2017). The statistical distri-
bution of the tree canopy height, 2D/3D canopy area and canopy volume are displayed in Figure 
27, 28 and 29. 
 
Table 7: Tree height 2D- and 3D tree crown area and Volume statistics for segmented trees in the Oslo built-
area.  

  Canopy Height (m) 2D canopy area (m2) 3D canopy area (m2) Canopy volume (m3) 

Min. Median Max. Min. Median Max. Min. Median Max. Min. Median Max. 

2011 2.5 15.0 50.0 1.0 93.7 4005.1 25.8 711.5 23789.5 6.6 849.9 118217.3 

2014 2.5 15.0 50.0 0.6 102.9 1826.0 21.4 770.6 20714.7 4.8 961.8 68764.7 

2017 2.5 16.0 50.0 0.2 101.5 2704.1 4.3 768.4 36999.0 0.4 953.4 174899.8 

 
For the city as a whole the change in number of shorter trees (< 13 m) was variable, while the 
number of taller trees (> 13 m) increased consistently between 2011-2017 (see figure 27). This 
change was observed despite weaknesses in the data which might have tended to overestimate 
the number of tall trees in 2011-2014 due to lacking correction for infrastructure (see reliability 
below). 

In brief 
 
The TGI-corrected infrastructure-
masked Lidar data identified ap-
proximately 393 000 individual 
canopies taller than 2.5 m in Oslo’s 
built zone.  For Oslo as a whole, 
the number of large trees in-
creased (>10 m height), while the 
number of smaller trees fell some-
what.  For the area in the “small 
house plan” the number of large 
trees fell, while small trees in-
creased. 
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Figure 27: Tree canopy height (in m) in the Oslo built-up area. The y-axis represents the number of trees and 
the x-axis represents identified different tree heights from 2.5 (rounded up to 3) to 50 m.  The long tail of the 
distribution above 35 m may be caused by signals of temporary man-made structures such as cranes. 

 
Figure 28: Tree canopy area (m2) in the Oslo built-up area. The y-axis represents the number of trees and the 
x-axis represents classified 2D tree crown area intervals. 

 
Figure 29: Tree canopy volume (m3) in the Oslo built-up area. The y-axis represents the number of trees and 
the x-axis represents classified tree crown volume intervals. 

 
Table 8 shows that the median tree canopy heights for the Oslo Småhusplan area changed from 
14 m (2011), to 11 m (2014) and then to 11 m (2017). For the same area the median tree canopy 
area changed from 95.05 m2 (2011), to 105.74 m2 (2014) to 106.09 m2 (2017). The median tree 
canopy volume changed from 833,2 m3 (2011), to 753 m3 (2014) to 753 m3 (2017).  
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Table 8: Tree height and tree canopy area statistics for segmented trees in the Oslo Småhusplan-area 

  
Canopy height (m) 2D canopy area (m2) 3D canopy area (m2) Canopy volume (m2) 

Min. Med. Max Min. Med. Max. Min. Med. Max. Min. Med. Max. 

2011 2.5 14 50 1.8 95.1 4005.1 25.8 710.5 23616.8 6.6 833.2 118217.3 

2014 2.5 11 46 3.9 105.7 1460.2 62.3 209.7 15138.2 22.0 753.0 52637.3 

2017 2.5 11 44 0.2 106.1 1782 4.3 712.8 19154.7 0.4 753.0 82249.5 

 
 
The statistical distribution of the tree canopy height and canopy volume in the Småhusplan area 
are displayed in figure 30 and 31.    
 

  
Figure 30: Tree canopy height (in m) in the Småhusplan area (policy focus). The y-axis represents the number 
of trees and the x-axis represents the different tree heights from 2.5 (rounded up to 3) to 50 m. The long tail of 
the distribution above 35 m may be caused by signals of temporary man-made structures such as cranes. 
 

 
Figure 31: Tree canopy volume (in m3) in the Småhusplan area (policy focus). The y-axis represents the tree 
canopy volume (in million m3) and the x-axis represents the different tree heights from 2.5 (rounded up to 3) to 
50 m. 

Between 2011-2017 we observe a clear loss in taller trees (>10 m), but an increase in short trees 
(< 10 m). There is a similar gain in tree crown volume for short trees.  While there is a loss in 
volume for taller trees (10 m - 17 m) there is a gain in estimated total volume for taller trees (18m-
23m), and then a loss in volume for the tallest trees (> 23 m).  Because it is a height specific 
effect in the Småhusplan area it does not seem to be an effect of estimation assumptions or data 
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quality. In the Småhusplan area one possible explanation for this could be adaptation of tree 
canopies to increased light availability caused by the tree thinning associated with construction.  
 
For ecosystem services it implies that the visual effect of loss of individual tall trees, might be 
compensated for over time by growth in overall canopy. This would imply that visual aesthetic 
changes are relatively greater than changes in regulating functions of the tree canopy as a pop-
ulation. 
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5.3 Comparison with field data from Oslo PBE 
 
The Agency for Planning and Building (PBE) in Oslo municipality manages the most complete 
database of private and public trees (point data) in the Oslo built-up area. The FKB tree database 
misses some private garden trees and lacks forest trees. It contains in total 102 329 trees which 
are precisely measured in the field using GPS. As the FKB-database does not contain any tree 
attributes we can only compare it spatially with the ALS segmented trees. 74,7 % (76507) of the 
FKB-trees in the FKB-database overlapped with the unmasked ALS trees in the Oslo built-up 
area. 73.6 % (75311) of the FKB trees overlapped with the masked ALS trees. Figure 32 illus-
trates the differences between the two datasets at different scales.  
 

 
Figure 32: Spatial comparison of the FKB tree dataset (tree tops) and the ALS 2017 tree dataset (tree tops and 
canopies) both unfiltered and filtered for buildings and technical infrastructures. 
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Using the original vegetation classification for 2011 by 
PBE-Oslo Kommune, rather than the TGI-corrected Li-
dar method shown in this report, Barton et al. (2015) re-
fers to approximately 700 000 trees in Oslo’s built zone, 
against approx. 393 000 for 2017 identified in this report.    
PBEs 2011 data used by Barton et al. (2015) counts 
canopy tops which may overestimate the number of 
stems. The TGI-corrected Lidar data segments individ-
ual canopies which may underestimate the number of 
individual stems.  
 
The large difference between the number of trees reported in the City Tree Strategy and our 
results could mainly be explained as a combination of inaccuracy related to the segmentation 
method, the unevenly distributed point density, the lacking vegetation coding in the LIDAR data 
(2014 & and 2017) and the application of the TGI vegetation mask.  
 
The TGI-corrected segmentation method used in this report overestimates tree canopy area rel-
ative to a vegetation classification of the ALS raw data by 95.2 % and underestimates the number 
of individual trees by 72.9 % (2011). The reason for the smaller number of segmented trees from 
2011 (297 679 vs. 728 396 trees) is probably that several crowns are detected as one tree. This 
is probably an underestimating effect of the fixed kernel size (3 m in diameter) of the Local Max-
ima for trees < 30 m. The reason for the larger tree canopy estimation in our segmented tree 
canopies from 2011 (36 474 767 m2 vs. 18 684 601 m2) could be (i) misdetection of other struc-
tures or (ii) limits for tree canopy border in the tree segmentation process (crowns are detected 
larger than they are). It would be necessary to know more about the process used for the seg-
mentation of the PBE ALS 2011 tree data in order to draw further conclusions on the deviating 
results. 
 
Table 9: Comparison of PBE (2011) canopy area and tree number with TGI-corrected tree crown segmentation. 
Tree numbers and tree canopy areas were compared in an intersection of study areas of both datasets to ensure 
comparability.  

 Canopy area   
(tree height 5-35 m) 

Number of trees 
(tree height 5-35 m) 

TGI-corrected segmentation 36 474 767 m2 
 

297 679 

PBE LiDAR estimation (2011) 18 684 601 m2 728 396 

 
 
5.4 Comparison between Sentinel-1&2 (S4N). and Sentinel-2 and 

ALS tree pixels 
 
As a part of the research project Sentinel4Nature “Monitoring and mapping of environmental 
gradients using Sentinel 2 data in combination with supplemental data from Sentinel-1” (Blumen-
trath et al., 2016), tree pixels were segmented at a spatial resolution of 10 x 10 m (figure 33). 
Sentinel-116 carry a C-band Synthetic Aperture Radar (SAR) instrument and has a spatial reso-
lution ranging from 5 to 40 m. Sentinel-217 has a Multi Spectral Instrument (MSI) covering 13 
spectral bands ranging from 443 nm to 2190 nm (including 3 bands for atmospheric corrections), 
a spectral resolution ranging from 1 nm– 180 nm and a spatial resolution of 10, 20 and 60 m.  

                                                   
16 https://sentinel.esa.int/documents/247904/1653440/Sentinel-1_Data_Access_and_Products  
17 http://www.d-copernicus.de/fileadmin/Content/pdf/Sentinels_update_170510_final_printed.pdf  

In brief 
The TGI-corrected segmentation 
method used in this report under-
estimates tree canopy area rela-
tive to a vegetation classification of 
ALS raw data by 95.2 % (2011). 

https://sentinel.esa.int/documents/247904/1653440/Sentinel-1_Data_Access_and_Products
http://www.d-copernicus.de/fileadmin/Content/pdf/Sentinels_update_170510_final_printed.pdf
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To compare the spatial coverage of the segmented ALS tree crown data with the S4N-tree cov-
erage (Sentinel 1 and 2), we rasterized and reclassified the segmented tree data from Oslo 2017 
into the same spatial resolution, position and orientation as the Sentinel-2 tree pixels (figure 33 
and 34). 
 

    
Figure 33: Comparison of Sentinel-2 and segmented LIDAR tree pixels for the Oslo built-up zone medio 2017.   

 

    
Figure 34: Spatial distribution of tree cover detection between Sentinel-2 (2017) and LIDAR (2017) for the 
URBAN EEA sample block 150 in the Ullern city region. 

Comparing the Sentinel-2 and the aggregated ALS tree pixels reveal a relative similar spatial 
distribution pattern. The aggregated ALS tree pixels give a more detailed tree canopy map 
throughout the entire urban landscape. This was expected due to the original segmentation units 
of the ALS tree canopy (0.5 x 0.5-meter pixels) compared to the Sentinel2 tree canopy segmen-
tation units (10 x 10 m).  

Sentinel 2 tree pixels ALS tree pixels 
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Table 10: Comparison of the 2D tree canopy area (given in daa) within the Oslo built-up zone as detected from 
LIDAR and Sentinel2. 

City region (Oslo built-up area  
Lower resolution data overesti-

mates canopy area (y/n) 
ALS 
(daa) 

Sentinel-2 
(daa) 

Alna yes 3379 4506 
Bjerke yes 1491 1584 
Frogner yes 2508 2934 
Gamle Oslo yes 1770 2116 
Grorud yes 2425 2676 
Grünerløkka yes 850 948 
Nordre Aker yes 3719 4680 
Nordstrand yes 6320 8238 
Sagene no 551 516 
Sentrum no 260 243 
St.Hanshaugen yes 846 891 
Stovner yes 2102 2813 
Søndre Nordstrand yes 7482 9324 
Ullern yes 2695 3957 
Vestre Aker yes 6829 7233 
Østensjø yes 2669 4981 

 
Sentinel-2 contain less details and seems to overestimate tree canopy area in the urban land-
scape with many spatially segregated individual trees. Two exceptions are found in the inner city 
and may be in part be explained by misclassification of building sites in ALS data (Sentrum).  
This needs further work as the explanation is not clear-cut for the Sagene district.  At an aggre-
gated city region level, the relationship between the two variables are highly significant (r = 0.98) 
(table 10 above and figure 35 & 36). 
 

 
Figure 35: Statistical distribution of the 2D tree canopy area (given in daa) within the Oslo built-up zone as 
detected from ALS and Sentinel 2. 
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Figure 36: Correlation between the ALS tree canopy 2D area and the Sentinel2 tree cover area within the Oslo 
built up zone.  

As mentioned above, the Sentinel4Nature (S4N) project used Sentinel 1 & 2 to estimate relative 
tree canopy cover for a 10 x 10km study area in Oslo (blue outline), at a pixel resolution of 10 x 
10 m (figure 37, left map). The relative ALS tree canopy area was aggregated to the same pixel 
resolution and compared to the S4N relative tree canopy cover (figure 37, right map).  
 

    
Figure 37: Relative tree canopy cover for a 10x10km study area in Oslo as estimated in the S4N-project (left 
map) and based on the aggregated ALS tree canopy cover (right map). 
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The comparison reveals a very similar spatial configuration of relative tree canopy cover, and a 
tendency that S4N heavily overestimates the relative tree canopy coverage. A statistical pixel-
by-pixel comparison between S4N and the aggregated ALS relative tree canopy coverage esti-
mates reveal a slightly positive, but not significant, relationship between the two variables (r = 
0.63) (figure 38).  
 

 
 
Figure 38: Comparing the relative tree canopy coverage estimates of S4N (Sentinel 1 and 2) and ALS. 
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In Table 11 differences between Sentinel 1&2 and ALS are analysed at the level of SSBs 500 x 
500 m reporting units.   
 
Table 11: Aggregated mathematical 2D tree canopy area difference (SSB500 reporting units) between Sentinel-
2 vs. ALS and Sentinel-1-2 vs. ALS. 

Area categories  
Difference = S1 & 2- ALS  
Number of SSB500 units 

Difference = S2 – ALS 
Number of SSB500 units 

No S1 & 2 data (S4N) 0 0 
No S2 data 0 4 
No ALS data 4 0 
No S2 and no ALS data 0 5 
No S1 & 2 (S4N) and no ALS data 1 0 
-0.1 to -25 daa 1 74 
0.1 to 25 daa 18 139 
25.1 to 50 daa 14 72 
50.1 to 75 daa 22 15 
75.1 to 100 daa 8 1 
100.1 to 125 daa 24 0 
125.1 to 150 daa 52 0 
150.1 to 175 daa 73 0 
175.1 to 200 daa 59 0 
200.1 to 225 daa 32 0 
225.1 to 250 daa 2 0 

 
As table 11 and figure 39 below show, the differences between Sentinel-2 and ALS are largest 
from -25 to 75 daa, whereas the differences between Sentinel-1 & 2 and ALS are largest from 
125 to 225 daa relative canopy.  
 

  
Figure 39: aggregated mathematical 2D tree canopy area difference between Sentinel-2 vs. ALS and Sentinel-
1-2 vs. ALS. The Y-axis represent number of SSB-units and the X-axis represents area classes in daa, 

Comparing the aggregated 2D tree canopy area (SSB500 reporting units) between Sentinel-2 
vs. ALS reveals a highly significant relationship (r = 0.93) between the two variables (figure 40). 
The relationship between Sentinel-1 & 2 vs. ALS is weakly positive, but not significant (r=0.45) 
(table 11, figure 41).    
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In summary, use of Sentinel-2 alone (S2) overestimates 
tree canopy cover in the SSB500 grids with smallest 
tree cover (the most built-up areas).  For larger tree can-
opy areas (> 100 daa) Sentinel-2 and ALS produce sim-
ilar tree canopy extent. This bias in the inner urban area 
can be corrected by combining optical (S2) and radar 
(S1) remote sensing, but increases differences for ar-
eas with greater forest cover in the outer city. The con-
clusion is that the ALS based approach is best for urban 
areas with canopy densities of ca. <20%, while for can-
opy densities > 20% satellite optical remote sensing 
data is enough and more cost-efficient for canopy extent accounting. 
 

 
 
Figure 40: The relationship between 2D tree canopy area (aggregated to SSB500 reporting units) detected by 
Sentinel-2 and ALS. 
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In brief 
 
The ALS based approach is best 
for urban areas with canopy densi-
ties of ca. < 20%, while for canopy 
densities > 20%, satellite optical 
remote sensing data is enough 
and more cost-efficient for canopy 
extent accounting. 
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Figure 41: The relationship between 2D tree canopy area (aggregated to SSB500 reporting units) detected by 
Sentinel-1 & 2 and ALS. 
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6 Discussion 
 
 
6.1 Accuracy 
 
The purpose of this study was to investigate the 
possibilities of utilizing airborne laser scanning 
data (ALS) for mapping of urban trees and their 
geometrical characteristics in Oslo. For this pur-
pose, we have implemented a standard Water-
shed segmentation method implemented on a lo-
cal-maxima filtered Canopy Height Model (CHM). 
This CHM raster-based approach is frequently 
used and often favoured for its efficacy (Zhang et 
al., 2015). 
 
There are, however, several limitations with such 
raster-based approaches. First, when the CHM is 
derived from the LIDAR-point cloud, several errors 
and uncertainties are introduced due to the chosen 
interpolation method and grid spacing (Smith et al., 
2004). These errors and uncertainties may affect 
the subsequent tree segmentation (Suarez et al., 
2005). Second, the smoothing of the rough surface 
of the tree canopy may lead to under- or overesti-
mates of the tree height (Tiede et al., 2005).  
 
Barnes et al. (2017) found that is hard to utilise a 
single segmentation algorithm and one input ALS- 
dataset to assess forest environments comprising 
of mixed stand ages and species. They found that 
the segmentation success is highly sensitive to the 
selection of algorithm, generation method and spa-
tial resolution of the CHM. In addition, the ALS-
data may have several height anomalies that can 
influence the quality of the segmentation accuracy. 
Several error sources are acknowledged as a part 
of the acquisition and processing of ALS data in-
cluding 1) penetration of laser beams through the 
canopy, 2) merging of ALS flight lines, 3) classifi-
cation of ground and non-ground points and 4) in-
terpolation of point clouds to raster data. Many 
studies have implemented image smoothing tech-
niques such as Gaussian filtering to address these problems. More recent solutions have intro-
duced the use of pit-filling algorithms and the application of pit-free CHM generation methodolo-
gies (Barnes et al., 2017). 
 
In this study, we have used existing ALS data for Oslo with average point densities per m2 rang-
ing from 10 (2017), to 25 (2014) to 43 (2011). This spatial and temporal variation in point density 
will certainly influence the precision of the tree canopy segmentation, and the comparison of 
number of trees and tree canopy area between years. In addition, the ALS-data for 2014 and 
2017 are lacking a classification of vegetation (ASPRS codes 11,12 and 13). Beyond these lim-
itations, we have not evaluated the quality of the ALS-data according to the error sources iden-
tified by Barnes et al. (2017).  
 

In brief 
ALS data was available with average 
point densities per m2 ranging from 10 
(2017), to 25 (2014) to 43 (2011).  To 
reduce raster processing time, we 
chosed to interpolate the CHM at 0.5m, 
but this is likely to have affected detec-
tion possibilities for individual small can-
opy sizes.  
 
Further, we chose a Local Maxima filter 
for smoothing the canopy height model 
of 3 m, appropriate for larger trees > 30 
m.  This means that tree canopy areas 
of trees < 30m in height may have been 
under-estimated.  In hindsight this may 
have reduced the ability to detect 
smaller canopy heights typical of urban 
street trees. 
 
Lidar data purchased by Oslo Munici-
pality for 2014 and 2017 were not clas-
sified for vegetation, as they were in 
2011.  Our TGI-corrected Lidar method 
underestimates the total number of 
trees in Oslo. Our analysis of direction 
of change in tree canopy is more relia-
ble, but also contains error. We were 
unable to mask out technical infrastruc-
ture for 2011 and 2014 due to lacking 
FKB-masks. Taken together, changes 
in crown cover of tall trees in 2014 is 
likely to be overestimated relative to 
2011 and 2017. We therefore place 
greater confidence in our identification 
of change in canopy for 2011-2017.   
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The DSM and DTM were interpolated with a spatial resolution of 0.5 m. Barnes et al. (2017) 
found that a spatial resolution of 0.15 m provided a successful delineation of small larch canopies 
(canopy height < 20 m). For large larch canopies (canopy height > 30 m) they found that a spatial 
resolution of 0.5 m gave the most successful delineation. To reduce raster processing time we 
chosed a 0.5 m resolution, but this is likely to have affected detection possibilities for individual 
small canopy sizes.  
 
The diameter of the Local Maxima filter may have a significant influence on the smoothed CHM. 
Chen et al. (2006) recommends a filter size no larger than the smallest tree crown within the 
study area. Barnes et al. (2017) suggests the following LM filter sizes (in diameter) for different 
tree heights: Trees <= 15 m (1 m); trees 15 - 30 m (2 m) and trees >= 30 m (3 m). We smoothed 
our CHMs with a Local Maxima (LM) filter size of 3 m in diameter (equal to 6 pixels). This may 
have under-segmented trees < 30 m. 
 
Clearly, the segmented data should be validated with field measurements of the tree canopy 
height and volume. So far, we have only validated the segmented tree canopy data from 2017 
with the tree point database (managed by the Oslo BYM). Approximately 70 % of the control 
trees coincided spatially with our segmented tree crowns (it should however be noted that the 
control trees do not cover all trees in Oslo). Comparing the XY coordinates of the control trees 
with the XY coordinates of their nearest segmented tree top, shows a mean deviation of 4.7 m, 
a minimum deviation of 0,0046 m and a maximum deviation of 35.1 m. Even though our seg-
mented tree top points may not have accurate position, it should be noted that the location of the 
control points probably have some GPS- offsets. For the future, a minimum required detection 
range precision level should be defined.  
 
 
6.2  Reliability  
 
The input LIDAR-data for the years 2014 and 2017 is missing a vegetation classification. We 
have tried to make the segmentation result data from 2011-2014-2017 as comparable as possi-
ble using the same segmentation procedure corrected with the TGI vegetation mask and filtered 
with the FKB mask for building and technical infrastructure.    
 
6.2.1 Permanent infrastructure 
 
The TGI vegetation mask cannot completely remove all false signals caused by mistaken tree- 
segmentation of vertical man-made structures. To correct for these false signals the segmented 
trees for 2011, 2014 and 2017 were masked with a vegetation mask and FKB building polygons 
dated from mid-2017. Other technical infrastructure such as buildings, traffic and railway instal-
lations, statues and power lines/telecommunication cables (including poles) are masked out in 
the 2017 tree segmentation data using buffered vector data on technical infrastructure from FKB.  
We were not able to mask out technical infrastructure in the 2011 and 2014 tree segmentation 
data because we did not have access to FKB-masks for these years.  
 
The greatest segmentation overestimate occurs in 2014 when Lidar data were not classified for 
vegetation, combined with our lack of masking infrastructure. This tend to overestimate the 
amount of trees for 2014 relative to 2011 and 2017. This suggests that for the city as a whole 
the increase in taller trees between 2011 and 2014 may be smaller, and for 2014-2017, larger 
than what we have modelled (Figure 26). For the Småhusplan area the decrease in large trees 
2011-2014 is larger and for 2014-2017 smaller (Figure 29) than what we have modelled. For this 
reason, we place greater confidence in the overall change 2011-2017 than for intermediate pe-
riods. 
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6.2.2 Temporary infrastructure, construction equipment 
 
In addition, there are some false segmentations due to the presence of larger vehicles, bulk-
containers, mobile cranes, construction sites and newly constructed buildings/infrastructures that 
are not yet registered in FKB (Box 1).    
 

Box 1 LiDAR returns at construction sites and segmentation bias 
   

 
 
 
 
 
 
 

National museum construction site 
October 2016 

 
 
 
 
 
 
 
 

 
Construction cranes at national     

museum 

 
 
 
 
 
 
 
 

 
ALS estimated canopy cover 

2017 due to construction crane 
activity on construction site 

 
Construction sites in Oslo during the analysis period 2011-2017 present a challenge. At con-
struction sites cranes are identified as trees while there may not exist a completed building pol-
ygon with which to mask them out. A possible solution for compilation of urban tree statistics 
may be apply a mask for planned construction sites based municipal building permits. We did 
not have this data available for our analysis. The problem would be localised and more serious 
around urban densification nodes. 
 
6.2.3 Unidentified effects of tree management measures 
 
Figure 27 shows that between 6m and 12m the distribution of tree canopy heights is flat – there 
is an equal number of trees across the city with heights between 6 and 12 m.  This may represent 
the effects of tree planting and management.  Other tree management effects are illustrated in 
Box 2. 
 

Box 2 Sources of classification and segmentation error in managed urban trees 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 

 
Orthophoto 29. September 2011. Note the vegetation identi-
fied in the yellow triangle are pruned tree canopies (>5 m). 
The orange polygon in shade from city hall indicates un-
pruned tree crowns. 

“Leaf-off” orthophoto 6. May 2017 and tree segmentation 
based on 2011 LiDAR dataset.  
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Box 2 illustrates that our canopy segmentation (1) groups several trees with pruned flat canopy 
into a single tree (observe “leaf off” shadows of individual tree trunks), and (2) LiDAR data does 
not identify part of the flat pruned canopy.  Also, only one of the line of Japanese cherry trees to 
the west is identified - this may be due to canopy height near cut-off limit and thinning of canopy. 
 
The image in Box 2 also indicates that building shading may have been an issue for the triangular 
greenness index. We have not controlled for this error, but it would be more likely in central Oslo.  
It is more easily corrected for because most trees in central Oslo near tall buildings are street 
trees managed by the municipality. 
 
6.2.4 Unknown sources of segmentation error 
 
Due to other unknown errors in the segmentation routine some trees lack canopy height infor-
mation or have a suspicious canopy height > 50 m which is the height of the tallest known tree 
in Norway (see table 12).   
 
Year Segmented trees No Canopy height Canopy height > 50 m 
2011 365956 3041 (0.83 %) 1819 (0.49 %) 
2014 404365 24674 (6.10 %) 202 (0.040 %) 
2017 393386 2812 (0.71 %) 106 (0.026 %) 

Table 12: Relative number (%) of segmented trees in Oslo having invalid tree canopy height 

In summary, segmenting tree crowns using remote sensing within an urban environment has a 
number of sources of error. Some of these can be corrected for in future. In our present results 
they limit the extent to which results can be used for localized accounting at tree and neighbour-
hood level. At larger units of spatial analysis such as city districts, and for longer time periods 
such as 2011-2017, random errors will cancel out, while systematic errors will be a smaller pro-
portion of the total. Oslo municipality can also improve the data input by requiring LIDAR data 
suppliers to classify raw data for vegetation. 
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7 Approaches to municipal reporting of changes in 
urban tree canopy at city level 

 
For the built-up zone in Oslo, changes in the tree canopy surface area for different tree canopy 
height bands were calculated between 2011 and 2017. Different ecosystem reporting units can 
be chosen, such as statistical units of 0.25 square km2 from Statistics Norway (figure 42)18, cen-
sus districts (“grunnkretser”) (figure 43), and city district (“bydeler”) (figure 44). Only tree heights 
up to 30m are mapped here due to identification errors with infrastructure for taller height classes 
(see section 5.3). 
 

 
Figure 42: Changes in the tree canopy surface area for different height bands (2011 and 2017) using Statistical 
units of 0.25 square km2 from Statistics Norway.  

 
Figure 43: Changes in the tree canopy surface area for different height bands (2011 and 2017) using Basic 
Statistical units.   

                                                   
18 https://www.ssb.no/natur-og-miljo/artikler-og-publikasjoner/statistical-grids-for-norway  

https://www.ssb.no/natur-og-miljo/artikler-og-publikasjoner/statistical-grids-for-norway
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Figure 44. Changes in the tree canopy surface area for different height bands (2011 and 2017) using City regions. 

Mapping of changes is one of the principle characteristics of ecosystem accounting. The choice 
of statistical reporting unit resolution in mapping ecosystem accounting data is not trivial. Using 
statistical reporting units with different spatial resolution emphasises different “narratives”, and 
policy options.   
 
The Småhusplan area is a focus area for tree conservation policy in Oslo, with permits required 
to cut down large trees.   Tables 12-13 illustrate contrast changes in tree canopy for Oslo’s built 
area as a whole versus the Småhusplan area, recording both additions and losses to the “tree 
crown cover assets” during the accounting periods.   
 
Table 12: Accounting table - the Oslo built-up zone 

 
 
Table 13: Accounting table – the Småhusplan area (policy focus) 

 
 
The overall story of increasing cover of large trees in Oslo, with a decreasing cover for smaller 
trees, is reversed when focusing only on the “Småhusplan” area.  Our modelling shows a loss of 
large trees(> 15 m) while small trees (< 15 m) have increased between 2011-2017.   

2.5-5M 5-10M 10-15M 15-20M 20-25M 25-30M 30-35M 35-40M 40-45M 45-50M
Total 2011 (daa) 257.79 4814.76 8385.30 12537.70 9568.47 3288.69 523.03 78.39 40.89 33.52
Additions (daa) 47.82 241.37 771.33 1916.48 1887.60 917.22 240.71 8.22 0.00 0.00
Losses(daa) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -28.64 -23.46
Total 2014 (daa) 305.61 5056.13 9156.63 14454.18 11456.06 4205.90 763.74 86.61 12.25 10.06
Additions (daa) 40.03 17.21 0.00 0.00 368.59 299.56 82.29 15.89 0.59 0.00
Losses (daa) 0.00 0.00 -39.15 -47.56 0.00 0.00 0.00 0.00 0.00 -4.52
Total 2017 (daa) 345.64 5073.34 9117.48 14406.63 11824.65 4505.46 846.03 102.50 12.84 5.54

Crown cover
Tree height

2.5-5M 5-10M 10-15M 15-20M 20-25M 25-30M 30-35M 35-40M 40-45M 45-50M
Total 2011 (daa) 65.26 1150.11 1821.78 2494.59 1884.17 660.50 122.57 14.79 9.38 5.21
Additions (daa) 67.38 738.94 102.23 9.57 0.00 0.00 0.00 0.00 0.00 0.00
Losses(daa) 0.00 0.00 0.00 0.00 -224.49 -313.23 -71.12 -7.33 -8.59 -4.86
Total 2014 (daa) 132.65 1889.05 1924.01 2504.16 1659.67 347.27 51.45 7.46 0.79 0.36
Additions (daa) 15.73 8.50 80.67 0.00 25.51 8.31 0.45 1.51 0.00 0.00
Losses (daa) 0.00 0.00 0.00 -82.11 0.00 0.00 0.00 0.00 -0.52 -0.36
Total 2017 (daa) 148.38 1897.55 2004.68 2422.04 1685.18 355.58 51.90 8.97 0.27 0.00

Crown cover
Tree height
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8 Summary and recommendations 
 
8.2 Method 
 
The purpose of the study has been to demonstrate the use of airborne laser scanning data to 
inventory and account for changes in all urban tree canopies on public and private land in the 
built zone. Furthermore, we aimed to evaluate existing ALS data for Oslo municipality against 
other methods for detecting urban tree canopy. Finally, we evaluate what municipal policy and 
planning purposes ALS segmented tree canopy can serve, given accuracy and reliability of the 
data. 
 
Due to the voluminous amount of data, we divided the ALS data point cloud into numerous data 
tiles defined by the data provider. The purpose of this first step was to optimize the data prior to 
the tree canopy segmentation process. For this purpose, we created a map index that referenced 
all the data tiles and their associated surface characteristics. 
 
ALS data purchased by Oslo Municipality for 2014 and 2017 were not classified for vegetation, 
as they were in 2011. Because ALS data were not consistently classified into vegetation signals, 
we first created a vegetation mask using a triangular greenness index (TGI) based on light bands 
from aerial photography. The purpose of this step is to compensate for unclassified vegetation 
points in the 2014 and 2017 data.  
 
We identified the treetops and tree canopies of all trees in Oslo above 2.5 m.  We utilized a tree 
canopy model (CHM) that assumes that the shape of an upside-down tree crown resembles a 
drainage basin, and that the treetop resembles its drainage point. We calculated the height of 
the tree canopy, given by the elevation difference between the Digital Terrain Model and the 
Digital Surface Model.   We then invert the CHM to imitate a drainage basin, and calculated the 
internal flow direction between each cell within the imitated drainage basin resembling the tree 
canopy.  The method next detects the drainage points (treetops) and delineates the drainage 
basin (tree crowns).  ALS data was available with average point densities per m2 ranging from 
10 (2017), to 25 (2014) to 43 (2011). To reduce raster processing time we chosed to interpolate 
at 0.5 m, but this is likely to have affected detection possibilities for individual small canopy sizes.  
 
We chosed a Local Maxima filter of 3 meter in diameter for smoothing the CHM, appropriate for 
larger trees > 30 m. This means that smaller trees < 30 m have been under- estimated. Finally, 
we removed objects (buildings and technical infrastructure) that are incorrectly segmented as 
trees. 
 
The tree canopy volume is useful because, combined with tree species information, it can be 
used to estimate the Leaf Area Index (LAI) as a condition indicator and input to the i-Tree Eco 
model for calculating regulating services of city trees.  
 
The TGI-corrected infrastructure-masked Lidar data identified approximately 393 000 individual 
canopies taller than 2.5 m in Oslo’s built zone. For Oslo as a whole the number of large trees 
increased (> 10 m height), while the number of smaller trees declined.  For the area in the “small 
house plan” the number of large trees declined, while small trees increased. 
 
The TGI-corrected segmentation method used in this report overestimates tree canopy area rel-
ative to a vegetation classification of the ALS raw data by 95.2 % and underestimates the number 
of individual trees by 72.9 % (2011). The reason for the smaller number of segmented trees from 
2011 is probably that several crowns are detected as one tree. This is probably an underesti-
mating effect of the fixed kernel size of the Local Maxima for trees < 30 m. The reason for the 
larger tree canopy estimation in our segmented tree canopies from 2011 could mainly be related 
to misdetection of other structures and that tree crowns are detected larger than they are. It 
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would be necessary to know more about the process used for the segmentation of the PBE ALS 
2011 tree data in order to draw further conclusions on the deviating results. 
 
Our TGI-corrected Lidar method probably underestimates the total number of trees in Oslo. Our 
analysis of direction of change in tree canopy is more reliable, but also contains error. We were 
unable to mask out technical infrastructure for 2011 and 2014. Taken together changes in crown 
cover of tall trees in 2014 is likely to be overestimated relative to 2011 and 2017. We therefore 
place greater confidence in our identification of change in canopy for 2011-2017.   
 
Comparing to the use of Sentinel-2 satelite imagery, the ALS based approach is best for urban 
areas with canopy densities of approximately less than 20%, while for canopy densities above 
20%, satellite optical remote sensing data is sufficient and more cost-efficient for canopy extent 
accounting. 
 
8.3 Recommendations 
 
In the preceding pages we have identified a number of limitations in the ALS data used for our 
analysis, methodological choices and data processing assumptions which determine the accu-
racy of our tree canopy inventory and accounting of change over time. Table 14 summarises our 
recommendations for use of the tree segmentation data identified in this report.   
 
Table 14 Spatial scale of accounting and confidence levels. 

Scale Policy and management  
applications 

Notes on limitations  
and uncertainty 

Single tree level Monitoring (i) conservation of large pri-
vate trees circumference > 90 cm in 
“Småhusplan” area,  
(ii) preservation of large trees > 100 cm 

Uncertainty with indirect measure-
ment using allometric equations for 
tree height and canopy width 

Property level  Calculating number of trees and can-
opy cover for blue-green factor (BGF) 

 Prediction of shading and insolation 

 Identifies canopy area on property 
better than number of trees 

 Misidentification of construction 
cranes 

Public parks, 
streets 

Inventory of managed trees’ canopy 
surface and volume for ecosystem ser-
vice estimation 

Higher confidence for open areas and 
streets in low building areas. 

City sub-district 
level 

Green accounts.  Change in neigbour-
hood level access to greenviews per 
capita 

Higher confidence  

City level Green citywide accounts identifying 
change in tree canopy area 

Highest confidence  
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Broadly speaking we would not recommend using our data for monitoring presence/absence of 
individual trees, or the number of trees at property/tree level.  In order to use ALS data for mon-
itoring protection of large trees in the Småhusplan area, for example, the following conditions 
should be met: 
 

- classification of vegetation points in the LIDAR point cloud is essential for tree canopy 
segmentation. This classification can be performed by the data provider or internally if 
resources are available. 
 

- interpolate digital surface and terrain models at the maximum resolution provided by the 
input data 

 
For inventorying tree canopy in public green spaces and accounting for change in canopy at 
aggregate city district level we are confident that the approach demonstrated here provides use-
ful additional information to Oslo municipality’s “green cover” accounts. 
 
From a cost-effectiveness perspective we would recommend continuing using ALS data for ar-
eas of the city with canopy density < 20%.  For areas with higher than 20% canopy density 
satellite data offers equal or better accuracy and is free of charge. 
 
For estimation of ecosystem services of urban trees using i-Tree Eco, it would be desirable to 
have as accurate estimates as possible of tree canopy area and volume. The importance of 
correct segmentation of individual trees would seem to be more important in GIS-based model-
ling of visual impacts of tree crowns, than for regulating services where the exact shape and 
location of tree crown matters less than the total leaf area. In order to increase the accuracy of 
canopy area measurements it is therefore important to choose a smoothing algorithm for the 
canopy height model that segment tree canopy for tree size classes typical of Oslo’s the built 
zone (trees < 30 m tall).    
 
For the future, a similar segmentation could be done in Google Earth Engine using available 
point clouds or pre-processed high-resolution DTMs and DSMs (at minimum 0.5 to 1 m resolu-
tion) from Digital Norway19. In Google Engine a Gaussian softening kernel algorithm would be 
implemented in combination with pit-filling alghoritms. To overcome the problem of using a fixed 
kernel size, the tree-tops (the local maxima) would be identified using a dynamic kernel size that 
changes over the region of interest so that it is most appropriate for “local” average tree height 
and tree canopy diameter. Instead of using a watershed algorithm (which is currently not availa-
ble in Google Engine), a focal mode smoothing function would be iterated multiple times over 
the CHM to segment the individual tree canopies. The accuracy of this approach would also 
need to be validated with ground-truth data or some manually digitized tree canopies. The ad-
vantages of Google Earth Engine are that most of the parrellisation and big data handling is 
managed by Googles infrastructures. This means that one could theoretically scale the analysis 
to segment trees over multiple cities or whole counties. The disadvantages of using Google En-
gine in tree canopy segmentation is that some GIS- algorithms (such as e.g. the watershed al-
gorithm) are not available and thus alternatives have to be used. However, because the Google 
Engine computation environment allows the user to perform large computations on the fly and 
visualize results quickly, one can test a range of other methods that otherwise would be cumber-
some to test using ESRI products like for example ArcGIS. 

                                                   
19 https://hoydedata.no/LaserInnsyn/  

https://hoydedata.no/LaserInnsyn/
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