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Wildlife management, conservation interventions and wildlife research programs often

involve capture, manipulation and transport of wild animals. Widespread empirical

evidence across various vertebrate taxa shows that handling wildlife generally induces

a severe stress response resulting in increased stress levels. The inability of individuals

to appropriately respond to rapidly changing environmental conditions during and after

manipulations may have deleterious and long-lasting implications on animal welfare.

Therefore, mitigating stress responses in the frame of conservation interventions is

a key animal welfare factor. However, we have a poor understanding of the metrics

to adequately assess and monitor the dynamic physiological changes that animals

undergo when subjected to stressful procedures in wild or captive conditions. A

growing number of studies provide good evidence for reciprocal interactions between

immune processes and stress. Here, we review the existing literature on a relatively new

technique—Leukocyte Coping Capacity (LCC), a proxy for stress quantifying oxygen

radical production by leukocytes. We discuss the strength and weaknesses of this

immunological approach to evaluate stress, the individual capacity to cope with stress

and the resulting potential implications for animal welfare. Additionally we present new

data on LCC in captive roe deer (Capreolus capreolus) under long-time anesthesia and

free-ranging Asiatic wild asses (Kulan; Equus hemionus kulan) were LCC was used to

assess stress levels in animals captured for a reintroduction project.

Keywords: stress, leukocyte coping capacity, endocrine-immune interaction, animal welfare, wildlife

management, conservation interventions

STRESS AND ANIMAL WELFARE

With increasing human impact on natural ecosystems, the need for “hands-on” wildlife
conservation and management is on the rise [e.g., (1–3)]. Conservation interventions frequently
require capture, manipulation and transport of individuals, but the concomitant and potential long-
lasting effects on the target animals are often overlooked (4–7). Only few studies have investigated
the impacts of conservation activities on wildlife health and welfare (8–10).
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The broad definition of “Animal welfare” involves the well-
being of animals based on the underlying psychological and
physiological ability of the individual to cope with changes in its
immediate environment (11–13). Difficulties or the inability to
cope with environmental pressures can lead to stress and hence
potential negative impacts on animal health and well-being as
well as decreased resilience (14–16). Moberg (17) proposed that
determining to which extent an animal is impacted from stress
due to changes in its biological functions, thereby entering a pre-
pathological state, is the only defensible measurement of well-
being in animals (17, 18). Accordingly, the definition of potential
stressors and the further development of methods tomeasure and
assess stress responses are crucial for the evaluation of wildlife
welfare (19–21).

The term “stress” is a notoriously ambiguous concept in
biology and medicine. After the earlier definitions of the term
by Cannon (22) and Selye (23) which were broadly based on the
“non-specific responses of the body to any demand for change”
[see (24), for a comprehensive review on the definition of stress]
Sterling and Eyer (25) and later (16, 26) introduced the concept
of “Allostasis.” This concept can be summarized as the process of
“achieving stability of the internal milieu (homeostasis) through
change.” This definition accounts for daily and circannual
physiological adjustments that constantly occur during the life
cycles of animals. More recently the allostasis concept was
extended within the reactive scope model, which integrates
the importance of species developmental strategies and their
potential long-lasting impact in priming and programming later
life stress responses (24).

Beyond the mere definition of stress, which due to the
complexity and multi-dimensionality of the phenomenon may
be hard to frame, the main physiological systems for coping
with stressors are relatively well-studied. There are two major
mediators orchestrating the stress response in vertebrates:
(i) catecholamine’s controlled by the sympathetic nervous
system (SNS) and (ii) glucocorticoid stress hormones [GCs;
corticosterone in amphibians, reptiles and birds, cortisol in
most fish and mammals—(27)] modulated by the Hypothalamic-
Pituitary-Adrenal axis (HPA-axis). Activation of the SNS triggers
the release of catecholamine’s within milliseconds after the onset
of a stressor for immediate responses such as the “fight or
flight” response [Cannon (22), recently reviewed by Romero
and Wingfield (28)]. The HPA axis response is slower (within
minutes) and acts on various physiological pathways to adjust
essential bio-regulatory mechanisms in response to stressors,
such as extreme weather conditions, predator exposure, or
shortages of food (15, 29). This is primarily achieved by up-
regulating key body functions, including cardiac-, respiratory-
and brain-activity as well as energy mobilization at the expense
of other processes such as growth, reproduction, immunity
or the balance between oxygen radicals and the antioxidant
system (29–31).

In general shorter-term/acute stress responses are thought
to have an adaptive fitness value, whereas longer-term/chronic
exposure to stress are generally associated with persistent
immune modulation and an increase in susceptibility to diseases
(17, 26, 29, 32). However, nature, duration and magnitude of

stressful events are likely to be fundamental in determining the
biological benefits or costs of exposure to stress (29, 33). There
is growing evidence suggesting that the long-term and repeated
exposure to moderately challenging stressors is associated with
positive, rather than negative, organismal outcomes, improving
survival and delaying the onset of reproductive senescence (34,
35). It is therefore key to assess and quantify how and to
which extent differing stressors such as those provoked during
wildlife and conservation management activities (i.e., capture,
handling, transport, relocation) impact on individual responses
and consequently on animal welfare (36, 37).

MEASURING STRESS

Stress responses vary vastly among species as well as within
individuals of the same species (28, 38–40), are modulated by
season, time of day (41) and can be triggered by a great variety
of stressors (42). Moreover, stress responses involve several
physiological processes in parallel and are therefore difficult
to measure and to assess, particularly with the small sample
sizes typical in field studies of wildlife species (43). Currently
physiological stress responses in wildlife are assessed with a
variety of techniques (20) including measuring GCs in various
tissues (44–46), changes in blood chemistry and hematology
(47) and behavioral alterations, such as exploratory or avoidance
behaviors (48). Measuring GCs has generally been adopted as a
standard procedure to estimate individual stress levels. However
an elevation of GCs does not necessarily always indicate a
state of stress or discomfort, as baseline and stress GCs levels
can fluctuate hugely among an individual’s life history stages
(49, 50). Therefore, the use of GCs as a single metric to gain
a comprehensive understanding of individual stress conditions
is limited (50). While there has been an over-reliance upon
GCs, other pathways of the stress response, such as endocrine-
immune interactions as proxies for stress and animal welfare,
are surprisingly understudied. In order to better understand the
causalities and complex mechanisms within the stress response
and its implications for animal welfare, it is imperative to
integrate different approaches to better assess and interpret the
phenomenon of stress (43, 51).

IMMUNE MARKERS AS A POTENTIAL
PROXY FOR STRESS AND ANIMAL
WELFARE

Several studies provide solid evidence for the strong and
reciprocal interaction between immune processes and stress (52–
54). It is now widely accepted that the immune system and
the neuroendocrine system form an integrated and evolutionary
highly conserved element of physiology across phyla (55,
56). Therefore, direct and indirect stress-induced effects on
quantitative and functional immune parameters can serve as
additional markers to assess stress and wildlife welfare. The best
established andmost commonly used immune parameter applied
across all five vertebrate taxa is the stress-related change in
immune cell distribution (i.e., leukocyte profiles). Higher stress
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levels are associated with an increase of neutrophil granulocytes
(heterophils in bird and reptile species) and a decreae of
lymphocytes in the bloodstream and hence an increase in
neutrophil to lymphocyte ratio [N:L; (57)] [for review see (47,
58)]. Singh (59) lists acute phase response protein levels, natural
serum antibody levels, the phagocytic capacity of Natural Killer
cells, γδ- receptor positive T-lymphocytes, and stress-induced
changes in inflammatory cytocine levels (interleukines and tumor
necrosis factors) as innate immune markers which can be used
to infer welfare outcomes. Another interesting immunological
marker for stress is neopterin, a pteridine derivate synthetized
by monocytes and macrophages upon inflammatory cytokine
stimulation. Serumneopterin levels in pigs significantly increased
after a 30min transport phase and could be a useful marker
to quantify acute/short-term stress-induced cellular immune
stimulation (60). Another promising immune marker appears
to be Immunoglobulin A (IgA) and in particular its secretory
form (SIgA) the major antibody of mucosal immune defense
in mamals and birds. The review by Staley et al. (21) reports
that long-term examinations of IgA levels reveal consistent
patterns with a suppression of SIgA after periods of psychological
or physical chronic stress. In contrast, situations with good
or enhanced welfare, lead to increased SIgA levels suggesting
that this marker can be a suitable immunological proxy for
animal welfare.

LEUKOCYTE COPING CAPACITY AS A
PROXY FOR STRESS

Polymorphonuclear leukocytes (PMNLs), i.e., primarily
neutrophil granulocytes in mammals (61) and heterophil
granulocytes in birds (62), are the first line of innate immune
protection in vertebrates. They become activated when binding
to surface peptides of pathogens or by the stress-related
activation of their α- and β-adreno- (63, 64) and glucocorticoid
receptors (65). Once activated, PMNLs perform the so called
‘oxidative burst’ and produce superoxide free radicals as the
basis for a suite of anti-pathogenic reactive oxygen species
(ROS) generated upon the NADPH oxidase enzyme complex
(66). An example emphasizing the biological significance of
this innate immune reaction is chronic granulomatous disease
(CGD), an inherited immunodeficiency in humans, where
PMNLs are not able to generate ROS upon stimulation. CGD
and an insufficient oxidative burst response in general, are
characterized by recurrent bacterial and fungal infections and a
set of inflammatory complications with not uncommonly, lethal
outcome (67, 68).

In wildlife the initial stress-induced oxidative burst of PMNLs
acts as immediate protection against invading pathogens in the
case of injury by a predator (69, 70). However, the capability of
PMNLs to produce further ROS after the initial (stress induced)
burst is curtailed to protect the organism from over-activation
of PMNLs while reducing free radical damage of surrounding
tissues (71, 72). Therefore, during short-term stress PMNL
ROS production denotes an immediate stress response which is
rapidly curtailed (71, 72). On the other hand, if stress conditions

persist, this innate immune response is diminished to depleted
with detrimental impacts for the health, welfare and survival of
the individual (70, 73–75).

McLaren et al. (76) developed a method called Leukocyte
Coping Capacity (LCC), using PMNLs and the change in
their reactivity as bio-indicators for measuring stress events
(76). PMNLs have over 150 different receptors which are
sensitive to varied stress signals in the organism, including
plasma endocrine factors, changes in blood biochemistry and
red cell hemodynamics, changes of cytokine levels and mediators
released by the HPA axis and the SNS (72). This synchronous
sensitivity to several stress mediators and an array of stress-
related physiological changes emphasizes PMNLs as excellent
indicators in evaluating stress levels (77). The technique relies
on the observation that PMNLs of stressed individuals have a
reduced capacity to produce ROS in response to a secondary
(chemical) external stimulus (78). Thus, low LCC levels in an
individual indicate a decreased innate immune response and
increased stress levels.

Despite the sensitivity of PMNLs to an array of constituent
mediators of the stress response, the physiological relevance
of the method is promising for the following reasons: (i)
PMNLs remain in their natural environment, i.e., in whole
blood, allowing dynamic, and three dimensional interactions
with other surrounding blood cells (e.g., macrophages or
erythrocytes) as well as cell–cell interactions within and among
different leukocyte cohorts, (ii) the method does not necessitate
centrifugation known to change cell reactivity and also avoids
“plating out” cells on glass slides as in other approaches
to determine PMNL activation [Nitro blue tetrazolium test—
Montes et al. (79)], minimizing the disruption of important
cell signaling pathways and maintaining PMNL responsiveness
and integrity, (iii) the response can be followed in real-time
via direct quantitative chemiluminescence readings (80), (iv)
the interaction between the immune- and stress systems is
evolutionary highly conserved and therefore the LCC technique
can be applied potentially across all wildlife species (78, 81, 82).
For further information on details of the LCC protocol see
Supplementary Material S1.

The method provides several additional technical advantages:
(i) a relatively small amount of blood (i.e., 20 µl) is needed
to perform the assay, making it applicable for small vertebrate
species, e.g., rodents, passerine bird or bat species; (ii) the
procedure is rather simple, minimizing sources for error, and (iii)
the response can be measured via a portable Chemiluminometer
(e.g., Junior LB 9509, EG & G Berthold, Germany) providing
immediate results, which is a great advantage in field studies in
free-living animals.

Confounding Factors and Constrains
Measuring stress with the LCC protocol is still relatively novel.
There are several aspects which require further experimental
testing to establish the diagnostic efficacy of the methodology.
It should be noted that studies investigating the relationship of
LCC to more commonly used proxies for stress (e.g., heart rate,
N:L ratio, blood glucose or circulating cortisol levels) did not
find correlative relationships (77, 83, 84). This lack of correlation
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may be explained by large individual variation in stress responses
as well as by differing physiological strategies to cope with
stress and/or the diverging operative time frames of pathways
and mediators involved into the stress cascade (39, 40, 43).
An additional explanation may be the synchronous sensitivity
of PMNLs to several stress related changes (77). During
infection and disease a multitude of immunological factors are
altered. Neutrophil “priming” agents such as chemoattractants
(e.g., bacterial peptides/proteins), inflammatory cytokines (e.g.,
tumor necrosis factor alpha) or Toll-like receptor agonists (e.g.,
endotoxins) all have the potential to increase PMNL ROS
production (72, 85) and potentially bias LCC dynamics. Gonadal
steroids (e.g., androgens and estrogens) may have direct effects
on the ROS production of PMNLs and alter LCC responses
during times of reproduction, although previous studies on
this topic provided contrasting results (86–88). Future studies
will need to assess stress hormone, and gonadal steroid effects
on the LCC response in order to better elucidate functional
endocrine-immune interactions that could be linked with animal
welfare. We also need further studies to elucidate the down-
stream mechanisms triggering PMNL activation and relevant
time windows in which these pathways do operate. However,
there are no clear physiological profiles of ensured welfare within
a species or even between individuals. Hence future studies
should aim for a systematic, multivariate approach including
several parameters of physiological and behavioral nature to gain
more insight toward the validity of potential tools such as LCC to
assess stress and welfare (89–92).

Capture and handling of wildlife species often involve
anesthesia of individuals with varying protocols which are
constantly adapted for animal safety and welfare reasons (93, 94).
Anesthetic agents have the potential to decrease PMNL oxidative
burst capacity in humans. This decrease has been shown for
opioids (morphine), thiopental, propofol, midazolam, volatile
anesthetics (i.e., halothane, isoflurane, and sevoflurane) and
local anesthetics (lidocaine, bupivacaine). In contrast ketamine
and synthetic opioids (fentanyl, remifentanil, and alfentanyl)
did not alter PMNL ROS production (95, 96); for review see
Kurosawa and Kato (97). However, despite some studies in
humans [e.g., (98, 99)] and one in a fish species (100), studies on
the effect of anesthetic agents on PMNL function in wildlife are
to date lacking.

Studies Inferring LCC as a Valid Proxy to
Assess Stress in the Context of Welfare
A review on phagocyte photon emission in response to stress
and disease noted that the capability of PMNLs to emit ROS
reflects the pathophysiological state of the host and that the
magnitudes of stress as well as the presence of pathogens and
disease processes can be estimated (81). A later study in Atlantic
salmon (Salmo salar) revealed that fish subjected to a 2 h period
of confinement stress had a reduction in oxygen free radical
production in isolated PMNLs and therefore a lower oxidative
burst capacity and a debilitated innate immune response (78).
In Table 1, we review a sample of studies inferring LCC as a
valid proxy to assess stress and animal welfare. McLaren et al.

(76) used the LCC method to examine the effects of transport
from a capture site to a field laboratory in wild badgers (Meles
meles). The study showed that transported individuals (ca. 10min
on a trailer pulled by an all-terrain quad) exhibited a detectable
reduction in LCC levels when compared to individuals sampled
directly at the capture site. These data indicate that transport is
likely to be a compounding stressor beyond the capture event
(76). A study on bank voles (Clethrionomys glareolus) and wood
mice (Apodemus sylvaticus) indicates that handling per se is
likely to alter LCC responses. Handled animals (only for 20 s)
showed remarkable reduction in LCC in comparison to non-
handled animals (102). In non-anesthetized European Roe deer
(Capreolus capreolus) LCC levels were negatively impacted by
the time of human presence at the capture site prior to the
actual handling procedure, suggesting that human presence at
the trapping site prior to handling should be minimized (84).
The LCC technique was used to investigate the stress response
caused by capture and subsequent abdominal surgery of free-
ranging brown bears (Ursus arctos) and to evaluate whether
variation in LCC co-varied with other proxies of metabolic and
physiological stress, such as heart rate, N:L—ratio, blood glucose
and circulating cortisol concentrations (83). Their main result
revealed that LCC values following capture were lower in solitary
bears when compared to females with cubs and lower in bears
in poorer body condition when compared to those in good body
condition. LCC levels did not seem to be influenced by the
actual surgical procedure under anesthesia (83). A recent study
comparing blood glucocorticoid levels, hematology, LCC, scrotal,
and perineal temperature, scrotal lesion, and a pain score in two
groups of male calves (Bos Taurus), a ring castration and a sham
castration control group, suggests LCC as an innovative tool for
stress and pain assessment (105).

Within a reintroduction program for conservation purposes
Moorhouse et al. (103) analyzed the impact of housing
conditions, handling procedures and radio-collaring in captive
bred water voles (Arvicola terrestris) via LCC measurements.
The authors found a larger decrease in LCC levels between
week 1 and 2 for individuals that were radio-collared while
this was not the case in non-collared individuals, suggesting
that radio-collaring could be an additional stressor, at least in
this species. In this experiment one group of individuals were
housed in outdoor enclosures and the other group in indoor
laboratory cages. LCC values of both groups decreased constantly
over the 6-week study period, but interestingly, animals housed
indoors and individually in laboratory cages showed lower LCC
values despite the fact that they usually do not live in large
groups and are territorial in the wild (103). This result partially
contrasts results from (101), who examined short-term social
stress by means of body weight change and LCC to test the effects
of group size in captive-bred water voles destined for release
within a reintroduction program. LCC scores were negatively
correlated with group size, suggesting that individuals held in
larger groups experienced higher relative levels of stress and
therefore showed a greater decline in LCC (101). Moorhouse
et al. (103) interpreted the overall continuous decrease in LCC
values as the cumulative result of repeated-handling induced
stress. The latter study and Gelling et al. (101) also suggest
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TABLE 1 | Overview of studies inferring LCC as a valid proxy to assess stress and welfare in animals.

Species Context Change in LCC Remarks References

Badger (Meles meles) Capture, transport, handling ↓ Transport Transport was identified as additional stressor prior to handling (76)

Scandinavian brown bear

(Ursus arctos)

Capture via helicopter,

surgery

↓ Capture Variation in LCC was best explained by social status (83)

↑ During anesthesia Bears in better body condition coped better with capture and

handling

Water vole (Arvicola

terrestris)

Captive housing, social

stress

↓ Group size Individuals held in large groups showed greater declines in LCC (101)

Bank vole (Clethrionomys

glareolus)

Trapping and short handling ↓ Handling Even a short period of 20 s of handling induces a decrease in LCC (102)

Wood mice (Apodemus

sylvatikus)

Note: potential bias by the use of isoflurane during handling

Water vole (Arvicola

terrestris)

Captive conditions,

handling,

↓ Captivity Indoor-housing caused a greater decline in LCC compared to

outdoor- conditions

(103)

Radio collaring ↓ Indoor housing Continuous decrease of LCC over the entire experiment (6 weeks)

↓ Collaring LCC of collared individuals decreased more within the first week of

the exp.

European roe deer

(Capreolus capreolus)

Capture and handling ↓ Prior to handling LCC levels were negatively correlated with the time of human

presence prior to the handling procedure prior to the handling

(84)

House sparrow (Passer

domesticus)

Capture and handling ↓ Capture, handling Capture induced a decrease in LCC (51)

↑ During confinement LCC of birds kept in a cotton bag recovered during a 30min period

↓ Females Females showed significantly lower LCC levels in response to the

stressor

Rhesus macaques

(Macaca mulatta)

Captive conditions ↓ Caged housing Caging system caused significantly lower LCC responses

compared with open rooms

(104)

Kulan (Equus hemionus) Capture for reintroduction ↓ In agitated indiv. Suggests LCC has the potential to identify high risk candidates Huber et al. this

study

European Roe deer

(Capreolus capreolus)

Long-term anesthesia

monitoring

↑ Until 80min and

↓ thereafter

Suggests LCC as a useful tool for anesthesia monitoring Huber et al. this

study

↓ In winter Marked seasonal difference in LCC with lower levels in winter

Cattle (Bos taurus) Ring castration ↓ Ring castration Lower LCC in ring castrated calves during the degenerative phase

of scrotal tissue

(105)

that the preferred social structure needs to be considered in
order to reduce stress levels and enhance wildlife welfare within
conservation projects. Honess et al. (104) likewise applied the
LCC method (referred to as “neutrophil activation test”) to
assess differences in stress levels between different housing
conditions in a breeding colony of rhesus macaques (Macaca
mulatta). Individuals were housed either in a caging system
(reinforced stainless steel two-tier laboratory cages) or open-
rooms. Animals in the caging system exhibited significantly
lower LCC responses when compared to animals held in open
rooms, indicating that cage housing is associated with diminished
immune function as well as higher stress levels and therefore
impaired welfare (104). The LCC method was recently tested
in an avian species, the house sparrow (51). It was shown that
after an initial decrease LCC levels increased during a 30min
time period after the captive birds where confronted with the
acute stressor of a standardized capture and handling (106).
LCC levels during the acute stress response were compared
to circulating concentrations of GCs (i.e., corticosterone) and
markers of oxidative stress in two different seasons, winter and

spring, respectively. All three methodologies detected significant
changes due to the acute stressor but they were not correlated
with each other. There were marked seasonal differences in GC
response, with higher levels in spring in both sexes. Had the
study measured the classical approach of measuring total GCs,
the most obvious conclusion would have been that individuals
confronted with the same stressor experienced a higher short-
term stress response in spring when compared to winter, with
no difference between sexes. On the other hand, simultaneous
LCC measures revealed similar stress responses during both
seasons with marked sex differences in relative stress levels and
thus in the ability to cope with the stressor. There was no
change in oxidative stress levels at the expense of a decrease
in anti-oxidative capacity (measured as the ability of serum to
neutralize hypochlorous acid) 30min after the acute stress event.
Combining the three methodologies allowed, to some extent, for
a more holistic appreciation of the stress response: the elevation
of GC levels and the neutralizing effect of antioxidants on ROS
in the circulation facilitated the reestablishment of homeostasis
in the organism (Allostasis). This recovery was illustrated by
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FIGURE 1 | LCC peak levels (expressed in relative light units) of free ranging

Asiatic wild ass after capture and handling within a reintroduction project in

Kazakhstan. The LCC of two overly agitated individuals are significantly lower

compared to 10 animals not showing signs of increased agitation. The two

severely stressed kulan were excluded from the transport and translocation for

animal welfare reasons. The asterisk indicates a significant difference of

*p = 0.013.

the increase in LCC within a 30min time period and reflects
the restoration of the capacity to cope with repeated or novel
stress (76). Results from this study clearly highlight the necessity
of increasing the scope and number of physiological systems
within the stress-endocrine-immune interface which need to be
investigated concurrently in future studies to better assess and
understand the complexity of coping mechanisms related to
stress and the impacts on welfare.

In our perspective the above mentioned literature suggests
LCC as a useful tool within wildlife management or conservation
interventions (i.e., capture, handling, and transport, housing
conditions). In order to further assess the validity of LCC to
identify stress eliciting factors future studies should incorporate
different intensities of identified or suspected stressors in a
systematic approach (e.g., short- vs. long-human presence prior
to handling) and include LCC in addition to other measures
of stress and welfare (e.g., hormone levels, SIgA, behavioral
scores). Such studies would be very important in order to
optimize exposure to the tested stressors, thereby increasing
animal welfare and furthering our understanding of the extent
to which different stressors alter LCC responses.

Latest LCC Data From Two Ongoing
Wildlife Projects
With the aim of evaluating capture and handling procedures
and to further expand the LCC approach to different vertebrate
species, we measured LCC in 12 kulan (Equus hemionus)
captured in Kazakhstan during a translocation project. In brief,
kulan had been driven into a capture corral, rested overnight,
then anesthetized via remote darting and subsequently sampled,
radio-collared, and boxed for translocation the following day
(107). Two kulan out of 12 had to be released from the
transport boxes prematurely due to severe stress and danger
from self-inflicted injury. By comparing the LCC peak values of

FIGURE 2 | LCC peak levels in kulan are significantly linked with and therefore

representative for the whole LCC curve (i.e., area under the curve; see also

Figure S1). The gray shaded area represents the standard error of the slope.

these 2 prematurely released individuals vs. the 10 transported
kulan, we were able to identify a significant difference between
the two groups (Figure 1). This finding suggests that LCC
measures on-site in the field may be a powerful animal welfare
tool allowing the identification of overly excited individuals
(potentially severely stressed), which have an increased risk of
injury and mortality. Especially in situations where a subset of
animals is selected for further handling or transport, LCC data
might guide (i) the selection of the least stressed individuals,
(ii) the exclusion of the most stressed individuals, and (iii) in
expediting appropriate interventions for those individuals which
most likely have an insufficient ability to cope with capture and
handling. This study also confirmed findings from a previous
study in roe deer (Capreolus capreolus) in which LCC peak values
were shown to be a robust proxy for the entire LCC curve
[Figure 2; (84)].

To expand our knowledge concerning LCC dynamics and
stress during long-term anesthesia (over a 120min period)
we analyzed data from 9 anesthetized captive European roe
deer males. It was our aim to test recovery from initial
capture and handling-induced stress (i.e., an increase in LCC)
during the subsequent anesthesia, as observed in anesthetized
brown bears (83). We found that season and sampling time
significantly affected LCC levels in roe deer independently.
LCC values during summer were markedly higher compared
to two winter seasons (Figure 3). Supporting the work by
Martin (32) these results suggest possible seasonality effects
on the immune system. This highlights that seasonal impacts
on the general capacity to cope with stressors as well as
the cost to the immune system must be considered in study
design. Ideally future studies will avoid or at least minimize
capture and handling of roe deer during the winter in order to
reduce stress levels and thereby improve welfare outcomes. We
further identified a significant increase of LCC with increasing
sampling time (i.e. the progression of anesthesia) suggesting
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FIGURE 3 | Mean LCC levels (± s.e.m.) of 9 European roe deer males during

a 120min period of anesthesia and split by seasons (W 2015: winter 2015; S

2015: summer 2015, and W 2016: winter 2016). Blood samples were taken as

soon as the animals were in lateral or sternal recumbency due to anesthesia

(T0) as well as 40min (T40), 80min (T80), and 120min (T120) thereafter.

Throughout all seasons the same 9 individuals were sampled. Different letters

indicate significant post-hoc pairwise contrasts (p < 0.05 after Tukey’s multiple

comparison adjustment).

a gradual recovery of innate immune function and capture
stress during anesthesia (Figure 4). However, subsequently LCC
values decreased non-significantly in all animals from T80 to
T120. This result provides some evidence that LCC may be
a useful tool for anesthesia monitoring detecting a possible
threshold (a decrease after an initial increase in LCC levels)
for ending the anesthesia to prevent the onset of cumulative
negative impacts.

For full details on the two projects described here,
including the LCC protocol, statistical analyses and results see
Supplementary Materials S1, S2.

CONCLUSION

There are several approaches such as shifts in hormone
concentrations, blood parameters and behavior to assess stress
and its implications for wildlife welfare (20). However, these
common measures generally do not always provide robust and
reproducible results, largely due to the challenges associated with
the complexity of the neuro-endocrine systems (92). Moberg (18)
stated that the biological cost of mounting a stress response is the
key to determine the welfare implications of potential stressors
and therefore would be more relevant when compared to other
measures of stress such as physiological or behavioral changes
(17, 18). The LCC technique provides a window to assess the
biological costs associated with the impaired capacity of PMNLs
to mount an oxidative burst after a stressful event. A reduction of
LCC directly reflects increased stress levels and reduced (innate)
immune function. This denotes a “pre-pathological” state which
engenders costs, may be predictive for a breakdown in biological
functions and is subsequently a promising indicator of animal

FIGURE 4 | Mean LCC levels (± s.e.m.) of 9 European roe deer males during

a 120min period of anesthesia separated by sampling/bleeding time. The first

sample was taken as soon as the animals were in lateral or sternal

recumbency due to anesthesia (T0) as well as 40min (T40), 80min (T80), and

120min (T120) thereafter. Throughout all seasons the same 9 individuals were

sampled. Different letters indicate significant post-hoc pairwise contrasts (p <

0.05 after Tukey’s multiple comparison adjustment).

well-being (76, 83, 84, 108). Due to the fact that LCC captures
some of the complexity of action and reaction of PMNLs to
a multitude of stress signals within and among animal species
and their environment this method provides holistic insights
into the trade-off and associated costs between stress response
and immune function. However, a combined approach using
two or ideally more stress parameters provides a far more
comprehensive approach when evaluating stress and animal
welfare impacts.

Our review suggests that measuring LCC has the potential,
amongst others, to develop in the short-term into a helpful tool
to disentangle the stressful components of capture, trapping
and handling procedures in wildlife. Given the implications
that animal welfare perception has on the acceptance of wildlife
conservation and management interventions, information
provided by new techniques, such as LCC, will allow
researchers to better evaluate and communicate the impact
of their work while adjusting and refining procedures and
protocols accordingly.
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