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Abstract 20 

Plants experience a fluctuating environment in time and space that affects resource supply. 21 

As human impacts on the environment directly and indirectly alter resource availability, it is 22 

important to address plant responses to changing resources to be able to anticipate impacts of 23 

these changes on plant communities. We analyzed plant traits to assess responses to resource 24 

limitation in four Sahelian tree species of wide ecological and socio-economic importance. 25 

We used species already adapted to harsh conditions (high temperatures, low rainfall) to 26 

anticipate how climate change could affect their growth patterns and, indirectly, their spatial 27 

distribution and the services they provide. Seedlings grew under two levels of water and 28 

nutrient additions in a factorial design. Our results showed differences among species, 29 

watering regimes, and nutrient supply in three key functional traits related to the plant’s 30 

resource-use strategy, relative growth rate (RGR), root-to-shoot ratio (R/S), and specific leaf 31 

area (SLA). On average, RGR was responsive to the amount of water and nutrients, with 32 

species with high RGR showing the largest response to resource supply. RGR in the species 33 

with a conservative resource-use strategy (evergreen leaves, lowest RGR) remained 34 

unchanged with different levels of water and nutrients. Overall, large RGR was supported by 35 

large SLA. All species allocated more biomass to roots than to shoots, particularly under low 36 

resource supply, reflecting adaptive strategies to keep RGR leveled to resource supply. Not 37 

all species showed similar plasticity in their functional traits responses; however, Acacia 38 

tortilis and Faidherbia albida showed the greatest plasticity, which may explain their large 39 

geographical distribution range in Africa. Our data suggest that the different Sahelian species 40 

will respond differently to future environmental changes, likely affecting their geographical 41 

distribution, the structure of plant communities, and the services they provide.   42 
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1. Introduction 48 

Climate alterations over the last decades may be already responsible for changes in 49 

tree species ranges (Song et al., 2016) and warming and altered precipitation patterns may 50 

profoundly alter savannas worldwide (Volder et al., 2013). Future climate projections predict 51 

severe droughts in the African savanna (Boko et al., 2007; Brooks, 2004) and the Sahel is 52 

expected to experience a combination of increased temperatures and modified precipitation 53 

regimes, which will intensify seasonal droughts (MacCracken et al., 2003; Pope et al., 2000; 54 

Wetherald and Manabe, 1995) potentially altering the function, growth, and distribution of 55 

plant functional groups (Hungate et al., 2002; Knapp et al., 2008a, b). Since drought tolerance 56 

ability is one of the strongest predictors of tree species distribution in seasonally-dry tropical 57 

environments (Box, 1995; Condit et al., 2013), understanding differences in plant adaptive 58 

responses to resource availability is important to better understand possible outcomes of these 59 

changes (Cuni-Sanchez et al., 2011; Garnier et al., 2018; Lang et al., 2018). 60 

Seedlings are the most vulnerable stage of the plant life cycle, being particularly 61 

sensitive to water limitation during drought (Chaturvedi et al., 2013; Khurana and Singh, 62 

2001; Montgomery and Chazdon, 2002; Padilla and Pugnaire 2007; Yavitt and Wright, 63 

2008). Seedling survival is strongly dependent on the severity of drought, as water stress is 64 

the main factor affecting seedling mortality in dry environments (Comita and Engelbrecht, 65 

2009; Engelbrecht et al., 2005; Pugnaire et al., 2006; Slot and Poorter, 2007). Watering 66 

experiments in tree species of tropical moist forests also reveal that water availability controls 67 

species seasonal growth patterns and that drought stress limits seedling growth rates 68 

(Engelbrecht et al., 2006; Engelbrecht and Kursar, 2003; Paine et al., 2008; Yavitt and 69 

Wright, 2008). Hence, assessing seedlings responses to water availability, and how they 70 

modify their traits, will help understand the long-term response of forest species to 71 
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environmental change (Capers et al., 2005; Jump et al., 2007; Pedersen, 1998; Peñuelas et al., 72 

2007).  73 

Further, understanding the role of plasticity in response to resource availability will 74 

bring insights into plant growth and persistence of species in their current environments 75 

under novel conditions (Nicotra et al., 2010). While drought is acknowledged as a crucial 76 

climatic factor that would likely undermine tree survival in the future (Allen and Breshears, 77 

1998; Hanson and Weltzin, 2000), progressive drought-induced stress is a non-linear process 78 

largely dependent on the interaction between temperature and water availability, and to 79 

plants’ adaptability to higher temperatures in terms of morphology and physiology (Adams et 80 

al., 2009). The ability of plant species to cope with environmental change will depend on the 81 

capacity to adapt physiological and other functional responses to these changes; but, for an 82 

effective prediction of the capacity of populations to persist in a certain environment, 83 

empirical studies that aim to assess intra-specific response variability under controlled 84 

environmental conditions are necessary. Therefore, examination of trait variability in 85 

heterogeneous environments that reflect population-level responses to the environment can 86 

provide deeper insights into how species might respond to future environmental changes 87 

(Oke and Wang, 2015). In addition, identifying trade-offs that underlie the diversity of a 88 

species’ morphology and function is important because trade-offs constrain demographic 89 

change rates and their linkages to ecosystem processes (Díaz et al., 2016; Shipley et al., 90 

2016).  91 

Growth rate is a prominent indicator of plant strategies that deals with environmental 92 

stress and disturbance (Pérez-Harguindeguy et al., 2013), and substantial volume of theory 93 

and data support the correspondence between functional traits and growth rate (Hunt and 94 

Cornelissen, 1997; Reich et al., 1998; Shipley, 2006). However, variation in individual-level 95 
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access to resources can cause trait correlations within species to differ from inter-specific 96 

correlations (van Noordwijk and de Jong, 1986) due to phylogenetic constraints.  97 

Here we analyzed functional responses of seedlings to simultaneous effects of 98 

moisture stress and nutrient variability in four Sahelian tree species of wide ecological and 99 

socio-economic importance. Target species were selected as representative of functional 100 

groups of the highly diverse agroforestry ecosystems in the Sahel (Diémé et al., 2018). We 101 

linked RGR and biomass allocation patterns with functional traits deemed relevant to plant 102 

persistence (Kleyer et al., 2008). We addressed responses in relative growth rate (RGR), root-103 

to-shoot ratio (R/S) and specific leaf area (SLA) of seedlings growing under two levels of 104 

water and nutrient availability in a full factorial greenhouse experiment and explored 105 

potential trade-offs among traits. We hypothesize that 1) RGR will increase with resource 106 

supply but the magnitude of the response will depend on resource use strategies (Grime et al., 107 

1997). We expected that 2) fast-growing species, i.e. with exploitative strategy, will show 108 

high RGR under high water and nutrient supply, but RGR will decline strongly with low 109 

resource supply levels; in contrast, 3) plants with conservative resource-use strategy will have 110 

a less plastic response to changes in water and nutrient supply, i.e., stable RGR regardless 111 

resource levels, with more biomass allocated to roots at low levels of water and nutrient 112 

supply (Meier et al., 2018). And 4) SLA, a trait strongly associated to the plant resource-use 113 

strategy, will respond in parallel to RGR.   114 

 115 

2. Methods 116 

A greenhouse experiment was established in 2012–2013 at the University of Almería (36º 50' 117 

N, 2º 27' W), Spain using four Sahelian tree species, two dry-season deciduous species, 118 

Acacia tortilis (Savi) Brenan and Adansonia digitata L., one wet-season deciduous species 119 
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(Faidherbia albida (Del.) Chev.), and one evergreen species, Tamarindus indica L. Seeds of 120 

these species were obtained in Senegal (PRONASEF, Senegal National Project of Forestry 121 

Seeds, Dakar) and subjected to a pre-germination treatment using concentrated sulfuric acid 122 

for 10 min (T. indica), 60 min (A. tortilis and F. albida) and 12 h (A. digitata). Seeds of each 123 

species were harvested in the same area so that their mother plants were subjected to the same 124 

environmental (soil and climatic) conditions. Two seeds per species were sown in a sand and 125 

vermiculite mixture (1:1 in volume) in 50 cm long, 10 cm wide PVC tubes and thinned to one 126 

after germination. Plants were watered every morning and received fertilizer (commercial 127 

NPK fertilizer [Mg-S]; 19-19-19 [2-8]) once a month between November 2012 and March 128 

2013, just before the experiment started.  In March 2013, treatments were set in a factorial 129 

design with nutrient (low and high nutrient supply) and water (low and high level of 130 

watering) as factors (2 × 2 factorial design; n = 6–9 plants per treatment and species). At the 131 

start of the experiment, plant size differed depending on the species. It was <5 cm in A. 132 

albida, A. digitata, and T. indica, and <15 cm in F. albida. Half the plants per species 133 

received a high nutrient solution (N+) of 0.5 g fertilizer per liter of water, and the other half 134 

received a low nutrient solution (N-; 0.05 g of fertilizer per liter of water). In addition, half of 135 

the plants were watered once a week with 100 ml (low water supply; W-) and the other half 136 

was watered twice a week with 100 ml each time (high water supply; W+, 200 ml of water 137 

per week). So, four treatments were established according to nutrient and water regime, 138 

W+N+, W+N-, W-N+, and W-N-. Treatments were applied for four months and pots were 139 

randomly redistributed in the greenhouse once a month. Temperature within the greenhouse 140 

ranged 16–22ºC during the course of the experiment, with natural daylight length (10.30 to 141 

14 hours of light).    142 
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At harvest, nine months after sowing, plants were sorted into above- and below-143 

ground parts, and the aboveground parts were subdivided into leaves and stem. Plant parts 144 

were dried at 70 ºC for 48 h and weighed. Plant traits were calculated following standard 145 

protocols (Pérez-Harguindeguy et al., 2013). In brief, six fully expanded and undamaged 146 

leaves per plant were scanned with a flatbed scanner to determine the Specific Leaf Area 147 

(SLA; the ratio of leaf area to dry mass). Total Plant Biomass (TPB) was obtained by adding 148 

the dry mass of the different plant parts. Root-to-Shoot ratio (R/S) was calculated by dividing 149 

root mass by shoot mass. Relative growth rate was estimated as RGR = (ln TPB2 - ln 150 

TPB1)/(t2 - t1), where t is the elapsed time in days between sowing (t1) and harvest (t2). To 151 

calculate TPB1, we selected 10 seeds per species, extracted and dried the embryos in an oven 152 

for at least 72 h at 70 ºC, and weighed their dry mass with a precision balance (to 10-6 g). We 153 

used the mean TPB1 value per species. We also recorded plant height (measured with a ruler 154 

to 0.1 cm). 155 

The effect of water and soil nutrient addition on plant functional traits (RGR, SLA, 156 

R/S, biomass, plant height, and allocation patterns) was analyzed with general linear models 157 

including a full-factorial design. Fixed-factors were species (as we were interested in inter-158 

specific responses of species belonging to different functional groups; Dieme et al., 2018), 159 

nutrient addition (low and high level), and watering (low and high level) and the interaction 160 

across factors. Assumptions of normal distribution of residuals and homogeneity of variances 161 

were tested and met. Differences in means across treatment levels were analyzed with 162 

Fisher’s least significance difference (LSD) post-hoc test. Statistical analyses were conducted 163 

in R (R Development Core Team, 2013) using the interface implemented in InfoStat-164 

Statistical Software (Di-Rienzo et al., 2013). Reported values throughout the text and figures 165 

are means ±1 standard error. 166 
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 167 

3. Results 168 

There were differences in RGR, R/S and SLA among species in response to water and 169 

nutrient addition regimes (Table 1).  There were significant differences in RGR among all 170 

species; RGR was greatest in Acacia tortilis and lowest in Tamarindus indica (Fig. 1). All 171 

species increased RGR with water supply except T. indica (significant species × water 172 

interaction, Table 1), whose RGR remained unchanged irrespective of water and nutrient 173 

addition. Growth of the other 3 species reacted similarly to both water and nutrient 174 

availability, and RGR in the two extreme treatments (W+N+ vs. W-N-) were always different 175 

(higher with higher resource supply) regardless of species. RGR response at intermediate 176 

resource supply (W+N- or W-N+) was in between above extreme treatments (Fig. 1).  177 

>>insert Table 1 here 178 

>>insert Fig. 1 here 179 

SLA varied among species as well (Table 1), being greatest in Adansonia digitata 180 

(Fig. 2). SLA responded similarly to the addition of nutrient and water in all species; i.e., 181 

there were no significant interaction Species × N; Species × W or Species × N × W (Table 1).  182 

>>insert Fig. 2 here 183 

All species had, on average, R/S values above 1 (Fig. 3), meaning they allocated more 184 

biomass to roots than to aboveground parts (Fig. 4). There were significant differences in R/S 185 

among species, and R/S allocation responded also to the nutrient and water levels (Table 1). 186 

R/S generally increased as resources became limiting (Fig. 3), and the significant interaction 187 

N × W indicated that allocation to roots or shoots responded non-additively to nutrient and 188 

water levels (i.e., significantly lower and higher responses than average in W-N- and W+N+ 189 

treatments). At the same time, R/S responses to nutrient and water levels depended on the 190 
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species (significant interaction S × N and S × W; Table 1). The highest differences in R/S 191 

response to the treatments was observed in F. albida, whereas R/S in T. indicus remained 192 

unchanged regardless treatment (Fig. 3). Overall, A. tortilis and F. albida were the most 193 

responsive species to differences in water supply (i.e., differences in R/S were greatest 194 

between W- and W+ treatments). However, R/S values are size-dependent and therefore 195 

change with plant size. To check whether it was the case we compared the slopes of ln root vs 196 

ln shoot among treatments within a species (Fig. 1.A). We found that there was true plasticity 197 

(e.g., McCarthy and Enquist 2007) only in Adansonia digitata, but Faidherbia albida showed 198 

plasticity with respect to watering treatments.  199 

>>insert Fig. 3 here 200 

>>insert Fig. 4 here 201 

Nutrient levels affected different morphological traits (Table 2). Plants in the high 202 

nutrient treatment were taller and had higher shoot and leaf mass than plants in the low 203 

nutrient treatment except T. indica, but there was no effect of nutrient regime on root mass of 204 

the different species (Table 2). Hence, plant size in general was much larger in the high-205 

nutrient treatment (Table 2) except for T. indica. Water also had a significant effect on plant 206 

size. Low water availability decreased overall plant height and mass (Table 3). Total plant 207 

mass was much higher in the high-water regime (Table 3), except in A. digitata and T. indica. 208 

Overall, T.  indica was the only species that did not show a significant response in biomass or 209 

allocation patterns in response to nutrient or water addition (Fig. 4).  210 

>>insert Table 2 here 211 

>>insert Table 3 here 212 

 213 

 214 

http://dx.doi.org/10.1016/j.flora.2018.10.009


Diémé, Joseph S.; Armas, Cristina; Rusch, Graciela; Pugnaire, Francisco I..  
Functional responses of four Sahelian tree species to resource availability. Flora: Morphologie, 
Geobotanik, Oekophysiologie 2018 DOI 10.1016/j.flora.2018.10.009 CC-BY-NC-ND 

 

4. Discussion 215 

The four Sahelian tree species in our study differed significantly in RGR, and as 216 

expected, plant size and growth rate responded positively and consistently to both nutrient 217 

and water levels (Cornelissen et al., 1998), although the response to water levels was species-218 

specific (significant interaction S × W). RGR was significantly higher when both resources 219 

were high compared to low, in agreement with published reports (e.g., Poorter, 1989). In 220 

general, species maintained a RGR ranking across resource availability levels, i.e. A. tortilis, 221 

F. albida, A. digitata and T. indica showed highest to lowest RGRs regardless of resource 222 

supply. Acacia tortilis maintained high RGR under all treatments except with the lowest 223 

levels of nutrient and water supply, while RGR in T. indica remained unchanged 224 

notwithstanding nutrient and water levels. These results support our prediction of a larger 225 

plasticity in response to varying levels of water and nutrient supply in species with high RGR 226 

(resource exploitative strategy) and low plastic capacity in species with low RGR 227 

(conservative resource strategy). Our results are also indicative that maintaining an optimal 228 

RGR (i.e., according with environmental conditions) seems to be an important plant strategy 229 

irrespective of resource supply level, since high RGR is critical for plants to grow and occupy 230 

space, both below- and above-ground, to get a larger share of resources (Grime, 1998; Ruiz-231 

Robleto and Villar, 2005). All species except T. indica are deciduous species and show RGR 232 

values between 0.005 and 0.023 g g-1 d-1, which is a rather high range compared to tree 233 

species from other dry environments (Atta et al., 2012; Hoffmann and Franco, 2003; Lamers 234 

et al., 2006). Overall, species with high RGR generally have high rates of photosynthesis and 235 

respiration per unit mass, requiring high nutrient levels to sustain such physiological activity 236 

and high leaf turnover. Slow-growing species show opposite patterns (Reich et al., 1997; 237 

Wright et al., 2004). In contrast to the deciduous species in our study, the evergreen T. indica 238 
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did not respond to resource addition. It is a slow-growing species (Diallo et al., 2008; El-239 

Siddig et al., 2006) native to dry, subtropical environments and may have, over evolutionary 240 

time, adjusted a low resource demand to a low supply to avoid exhausting limiting resources. 241 

This way the low RGR is closer to its optimum (Chapin, 1980; Grime and Hunt, 1975). The 242 

lack of a stronger response of species with a resource exploitative strategy to resource 243 

shortage indicates the presence of trade-offs between traits and with biophysical constraints 244 

that result in convergence of resource acquisition strategies (Reich, 2014).  245 

The RGR is a product of net assimilation rate (NAR) and leaf area ratio (LAR) 246 

(Evans, 1972). LAR in turn can be partitioned into specific leaf area (SLA) and leaf mass 247 

ratio (LMR), or the dry mass of leaves relative to total plant dry mass. Most studies show that 248 

LAR is the factor that best explains differences in RGR, and the most important component 249 

of LAR is SLA (Antúnez et al., 2001; Hoffmann and Franco, 2003; Ruiz-Robleto and Villar, 250 

2005) further reflecting a trade-off in plant resource-use strategy tightly coupled to resource 251 

availability (Grime et al., 1997). In our experiment, SLA differed among species and across 252 

water and nutrient supply levels (Coley et al., 1985; Evans, 1972; Lavorel and Garnier, 253 

2002). Therefore, changes in RGR paralleled variations in SLA, suggesting that SLA was a 254 

key factor sustaining RGR (Poorter and Garnier, 2007).  255 

  Biomass allocation patterns vary among species and are sensitive to environmental 256 

clues (Atkin et al., 2006). Many reports have shown that drought influences allocation 257 

patterns (Ledo et al., 2018; Liu and Stützel, 2004; Poorter et al. 2015; Spollen et al., 1993) 258 

particularly R/S values (Poorter et al., 2012; Turner, 1997). Plants with a higher allocation to 259 

roots can compete more effectively for soil resources while those with a higher proportion of 260 

shoots can collect more radiation (Bloom et al., 1985; Tilman, 1988). In our experiment, R/S 261 

values were generally well above 1 irrespective of the species, suggesting a genetically-fixed 262 
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higher biomass allocation to roots in saplings of species adapted to infertile environments 263 

(Aerts and Chapin, 2000; Chapin, 1980; Lambers et al., 2008) or with severe water shortage 264 

(Fernández and Reynolds, 2000; Lambers et al., 2008; Padilla et al., 2009; Wright and 265 

Westoby, 1999). Since initial growth is an important life history trait, critical for plant 266 

survival and establishment in water limited environments, we expect traits in early 267 

ontogenetic stages to contribute significantly to the species’ adaptive capacity. It is worth to 268 

note that R/S changes with plant development, as seedlings allocate more biomass to roots  269 

(Gedroc et al., 1996), and therefore our results may be consequence of differences in plant 270 

size (Husáková et al., 2018). In our dataset, however, there was true plasticity (sensu Weiner, 271 

2004) in Adansonia digitata and Faidherbia albida showed plasticity with respect to watering 272 

treatments. Therefore, we can say that, for these species, the differential allocation to roots 273 

can be interpreted as a strategy response to water limitation (Ledo et al., 2018).  R/S was 274 

highest in F. albida, reaching a value of 4 under low water and nutrient levels and reflecting 275 

its ability to strongly alter allocation patterns. It fact, F. albida is a species very sensitive to 276 

drought (Roupsard, 1997) and its ability to quickly reach deeper, moist soil horizons may be 277 

critical in coping with drought at such an early stage, as has been shown for other woody 278 

species in dry conditions (Padilla and Pugnaire, 2007). Opposite to its dramatic response 279 

concerning R/S, RGR did not change much in F. albida, and SLA tended to decrease only 280 

under reduced water, but high N availability.  281 

In our experiment, R/S in baobab (A. digitata) responded to N addition but only when 282 

water was added. This may be because, while adult baobab trees accumulate water in their 283 

stem, baobab seedlings use the taproot as main storage organ (Wickens and Lowe, 2008) 284 

allocating more resources to belowground structures than adults (Cuni-Sanchez et al., 2011), 285 

particularly when water is limiting. A similar strategy has also been observed in other tropical 286 
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tree species (Poorter and Markesteijn, 2008). Given the importance of the taproot for seedling 287 

survival under dry spells (Padilla and Pugnaire, 2007; Poorter and Markesteijn, 2008), 288 

seedlings with relatively larger taproots have a higher chance of survival in drought-prone 289 

regions than seedlings with relatively smaller taproots, because they can store both more 290 

water and carbohydrates (Kabeya and Sakai, 2003) and keep the root in contact with moist 291 

soil horizons (Padilla and Pugnaire, 2007). 292 

A characteristic of plants in arid environments such as the Sahelian savanna is to 293 

show high temporal and spatial variation in growth patterns, which depends on environmental 294 

variability, particularly soil moisture (Abdelrahman and Krzywinski, 2008). Leaf habit, i.e. 295 

whether a species is evergreen or deciduous, has been linked to divergent plant strategies in 296 

seasonal climates (Markesteijn and Poorter, 2009; Tomlinson et al., 2012) as the Sahel. 297 

Deciduous species may allocate more resources to roots than evergreen species in any 298 

seasonal environment, defining distinct biomass partitioning patterns between leaf habits 299 

(Espelta et al., 2005). Within our species, F. albida and A. tortilis showed high plasticity in 300 

their functional traits responses allowing them to cope with water and nutrient variability, 301 

which may be a reason behind their large geographical spread in Africa, as they are able to 302 

cope with contrasted supply levels of water and nutrients.  303 

 304 

5. Conclusions 305 

Our data show that important plant functional traits changed strongly in response to changing 306 

resource availability, and that higher RGR was supported by larger SLA. Overall, seedlings 307 

of the Sahelian species in our study allocated more biomass to roots than to shoots, reaching 308 

4-fold at times, reflecting adaptive strategies to keep RGR leveled to resource supply. 309 

Overall, functional traits other than R/S responded more to nutrient than to water addition, 310 
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and two species, A. tortilis and F. albida, showed high phenotypic plasticity, which may 311 

underlie their large distribution area. Our data suggest that the different Sahelian species will 312 

respond differently to future environmental changes, which will likely affect their geographic 313 

distribution and therefore the structure of the plant communities they are part of.   314 
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Figure 1 601 

Relative growth rate (RGR) of Acacia tortilis, Adansonia digitata, Faidherbia albida and 602 

Tamarindus indica individuals growing at two levels of nutrient availability (high, N+ and low, 603 

N-) and two water regimes (W+ and W-). Data are mean ± 1SE (n = 6–9). Different letters show 604 

significant differences among species and treatments (post-hoc comparisons among species × 605 

water × nutrient levels).  606 
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Figure 2 608 

Specific leaf area (SLA) of Acacia tortilis, Adansonia digitata, Faidherbia albida and 609 

Tamarindus indica individuals growing at two levels of nutrient availability (high, N+ and low, 610 

N-) and two water regimes (W+ and W-). Data are mean ± 1SE (n = 6–9). Different letters show 611 

significant differences (post-hoc comparisons among species × water × nutrient levels).  612 
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Figure 3 615 

Root shoot ratio (R/S) of Acacia tortilis, Adansonia digitata, Faidherbia albida and Tamarindus 616 

indica individuals growing at two levels of nutrient availability (high, N+ and low, N-) and two 617 

water regimes (W+ and W-). Data are mean ± 1SE (n = 6–9). Different letters show significant 618 

differences (post-hoc comparisons among species × water × nutrient levels).  619 
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Figure 4 622 

Mean relative biomass allocation (%) to roots, shoots and leaves of Acacia tortilis, Adansonia 623 

digitata, Faidherbia albida and Tamarindus indica plants grown at two levels of nutrient 624 

availability (high: N+, and low: N-) and two water regimes (W+ and W-). Different letters show 625 

significant differences in biomass allocation across plant organs and treatments for each species 626 

separately (post-hoc comparisons among plant organs × water × nutrient levels). 627 
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Table 1. Results of linear models analysing differences in relative growth rate (RGR), root to shoot ratio (R/S) and specific leaf area 629 

(SLA) of four Sahelian tree species growing under different soil water and nutrient regimes (n = 6–9). Species, level of fertilizer or 630 

water treatments were included in the model as fixed factors with a full-factorial design. Significant p values are highlighted in bold. 631 

 632 

 d.f. RGR  R/S SLA 

F-value p-value F-value p-value F-value p-value 

(Intercept) 1 6832.59 <0.0001 1001.79 <0.0001 503.3 <0.0001 

Species (S) 3 463.65 <0.0001 53.24 <0.0001 4.01 0.0094 

Nutrient (N) 1 12.37 0.0006 7.39 0.0076 4.16 0.0437 

Water (W) 1 12.34 0.0007 36.42 <0.0001 6.38 0.0129 

S × N 3 0.47 0.7020 2.81 0.0428 1.78 0.1557 

S × W 3 2.87 0.0398 8.58 <0.0001 0.71 0.5472 

N × W 1 0.31 0.5804 8.58 <0.0001 0.71 0.5472 

S × N × W 3 0.38 0.7709 1.2 0.3136 0.64 0.5934 

 633 

 634 
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Table 2. Responses of our four target tree species to nutrient addition. Data are mean ± 1SE (n = 6–9); different letters in a row show 635 

significant differences between species (p ˂ 0.05). 636 

 Acacia tortilis Adansonia digitata Faidherbia albida Tamarindus indica 

 High Low High Low High Low High Low 

Shoot mass (g) 1.61±0.22a 0.73±0.06b 1.34±0.23a 0.55±0.05c 1.22±0.12a 0.66±0.04bc 0.19±0.02d 0.18±0.02d 

Root mass (g) 2.17±0.3b 1.60±0.19b 2.12±0.42b 1.46±0.21b 4.58±0.29a 4.18±0.27a 0.71±0.09c 0.76±0.09c 

Leaf mass (g) 1.27±0.14a 0.56±0.05bc 0.97±0.25ab 0.44±0.06c 1.19±0.13a 0.47±0.04c 0.22±0.03d 0.26±0.03d 

Total plant mass (g) 5.05±0.56b 2.86±0.26cd 4.44±0.76bc 2.44±0.32d 6.99±0.47a 5.30±0.31b 1.12±0.13e 1.20±0.13e 

Plant height (cm) 44.67±3.16a 29.97±1.70c 24.45±2.85c 14.62±1.43d 46.96±2.33a 35.55±1.57b 10.22±0.78e 9.23±0.74e 

 637 

 638 

 639 

 640 

 641 
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Table 3. Responses of our four target tree species to water addition. Data are mean ± 1SE (n = 6–9); different letters in a row show 643 

significant differences between species (p ˂ 0.05). 644 

 Acacia tortilis Adansonia digitata Faidherbia albida Tamarindus indica 

 High Low High Low High Low High Low 

Shoot mass (g/plant) 1.44±0.21a 0.89±0.09b 1.15±0.22ab 0.74±0.09bc 1.19±0.12a 0.69±0.05c 0.21±0.02d 0.16±0.02d 

Root mass (g/plant) 2.18±0.30b 1.58±0.20b 1.79±0.30b 1.79±0.36b 4.73±0.30a 4.03±0.26a 0.82±0.10c 0.65±0.09c 

Leaf mass (g/plant) 1.07±0.12a 0.76±0.08bc 0.92±0.25ab 0.49±0.07d 0.98±0.12ab 0.68±0.06c 0.26±0.04d 0.22±0.03d 

Total plant mass (g/plant) 4.70±0.52bc 3.21±0.32d 3.86±0.67cd 3.02±0.47d 6.90±0.47a 5.40±0.31b 1.29±0.14e 1.04±0.12e 

Plant height (cm) 38.14±2.4b 36.49±2.67b 22.86±2.73c 16.21±1.66d 45.33±2.26a 37.17±1.68b 10.16±0.8e 9.29±0.71e 

 645 
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 647 
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Annex A 651 

To see true plasticity in response to different water and nutrient supply, there should be significant 652 
differences in R/S between treatments for the same species but also changes in the allometric 653 
relationships between biomass of roots and shoot, independent of size. To test this, we plotted Ln(root) 654 
vs. Ln(shoot) for every species and treatment to check for differences in allocation patterns taking into 655 
consideration plant size (Fig. A.1). In this case, we considered each species independently. 656 
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Figure A.1. Linear regressions between Ln(root mass) and Ln(shoot mass) for each species and treatment. Solid 658 
lines show significant linear trends (overall, r2> 0.7 and p ≤ 0.01, except in Acacia tortilis in N+ treatments and 659 
Faidherbia albida in N- treatments, where r2> 0.5 and p ≤ 0.05); dashed lines are non-significant linear relations 660 
(p>0.05). 661 
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Although plants differ in size among treatments, the relationship between total biomass and root 663 
biomass held constant across treatments (data not shown). In Adansonia digitata R/S was similar in all 664 
treatments except for the W+N+ treatment, which had a significantly lower R/S (Fig.3 in the main text). 665 
There were no significant relationships between lnR and lnS in the drought treatments (W-) but they 666 
were significant in the W+ treatments. Therefore, there is true plasticity (sensu Weiner 2004) for this 667 
species in response to high resource availability. Faidherbia albida plants responded similarly to 668 
different water availability; the allometric relationships shown in Fig. A.1 differed between W+ and W- 669 
treatments. In Tamarindus indica there were no differences in R/S(Fig. 3). Finally, in Acacia tortilis the 670 
low-resource treatment (W-N-) had a R/S greater than the W+ treatments and the relationship between 671 
lnS and LnR were also different between these treatments (no significant vs. significant linear relation 672 
for W- vs W+ treatments, respectively). 673 
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