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Abstract 
 
Blumentrath, S., Salberg, A.-B., Cimburova, Z., Bakkestuen, V., Erikstad, L., Nowell, M., Kermit, 
M. 2018. Sentinel4Nature: Estimating environmental gradients and properties using remote 
sensing. NINA Report 1545. Norwegian Institute for Nature Research. 
 
 
In 2014, the European Space Agency (ESA) launched the first Sentinel satellite as one of a 
series of complementary sensors that together form the Sentinel mission family. It is part of to-
day’s most ambitious Earth Observation Program: Copernicus. At the same time, a new system 
for describing, mapping and analysing nature in Norway (NiN) has been developed (Halvorsen 
et al. 2015). One of the leading principles in NiN is to account for gradual transitions in nature 
and thus to focus on the underlying environmental gradients and properties (e.g. related to cli-
mate, soil, etc.) that govern the occurrence of species and associated nature types. 
 
The aim of the Sentinel4Nature project (financed by ESAs PRODEX funds) has been to develop 
and advance an approach to remote sensing that focuses on monitoring basic environmental 
gradients and properties and utilizes fusion of different data sources (different sensors as well 
as auxiliary data). In this context, the suitability of remote sensing to identify environmental gra-
dients in the NiN classification system has been assessed. 
 
Based on expert judgement and a literature review, it was estimated that satellite remote sensing 
can be a useful source of information for more than 50 % of the 61 environmental gradients in 
NiN. The majority of the most suitable gradients is related to land cover as well as presence of 
water or snow in the landscape. 
 
From the most suitable gradients, 1) reduced growing season due to prolonged snow-lie and 2) 
tree canopy cover, were selected for case studies that were conducted in one to four study sites 
across Southern- and Central-Norway. For 1), the date of snow melt was estimated from a time 
series of Landsat8 and Sentinel-1 observations and for 2), the percentage of canopy cover per 
pixel was modelled using Sentinel-1 and Sentinel-2 data. In both cases fairly accurate models 
could be developed that improve the current possibilities to map or model vegetation structures 
or species occurrences. Fusion of imagery from different sensors (in particular radar and optical) 
significantly improved the model performance. Auxiliary data was less important than expected. 
However, data on terrain has been important during image enhancement and correction. 
 
Although the presented methods already perform quite well, future adjustments and improve-
ments in the processing chains and also parameter tuning have to be expected when used at 
larger extents and especially towards arctic environments of the Scandinavian peninsula. 
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Sammendrag 
 
Blumentrath, S., Salberg, A.-B., Cimburova, Z., Bakkestuen, V., Erikstad, L., Nowell, M., Kermit, 
M. 2018.  Sentinel4Nature: Beregning av miljøgradienter og egenskaper ved hjelp av fjernmåling. 
NINA Rapport 1545. Norsk institutt for naturforskning. 
 
 
I 2014 ble den første Sentinel-satellitten skutt opp av Den europeiske romfartsorganisasjon 
(ESA)  som en del av en serie komplementere sensorer som til sammen danner Sentinel-
familien. Disse inngår i dagens mest avanserte jordobservasjonsprogram: Copernicus. På 
samme tid ble det nye systemet for beskrivelse, kartlegging og analyse av natur i Norge (NiN) 
utviklet (Halvorsen et al. 2015). Et av grunnprinsippene i NiN er å redegjøre for gradvise over-
ganger i naturen og å fokusere på underliggende miljøvariabler (f.eks. lokale komplekse miljø-
variabler (LKM) knyttet til bla. klima, jordforhold, osv.) som påvirker forekomsten av arter og 
naturtyper. 
 
Formålet med Sentinel4Nature-prosjektet (som ble finansiert as ESAs PRODEX-program) har 
vært å utvikle og forbedre en tilnærming til fjernmåling som fokuserer på overvåking av under-
liggende miljøvariabler og egenskaper, og som benytter seg av data fra ulike kilder (både ulike 
sensorer og supplerende data på f.eks. terreng). I denne sammenhengen ble det også vurdert 
om satellitt-fjernmåling kan bidrar til kartlegging av de ulike miljøvariablene i NiN. 
 
Basert på en ekspertvurdering og litteratur-studie ble det estimert at satellitt-basert fjernmåling 
kan være en nyttig informasjonskilde for mer enn 50 % av de 61 lokale komplekse miljøvariab-
lene in NiN. Flesteparten av miljøvariablene der fjernmåling kan bidra positivt er knyttet til areal-
dekke eller forekomsten av vann eller snø i landskapet. 
 
Blant de mest egnete miljøvariablene ble 1) snødekkebetinget vekstsesongreduksjon og 2) tre-
sjiktstetthet valgt ut som case-studier som ble gjennomført i en til fire studieområder i Sør- and 
Midt-Norge. For 1) ble snøsmeltingsdato estimert fra en tidsserie av Landsat8- og Sentinel-1- 
observasjoner og for 2) ble prosentandel trekronedekning per piksel modellert basert på Senti-
nel-1-og Sentinel-2-data. I begge casene oppnådde de utviklede modellene rimelig høy presisjon 
og kunne forbedre dagens muligheter til å forklare eller modellere vegetasjonsstrukturer og arts-
forekomster. Fletting av bildedata fra ulike sensorer (særlig kombinert bruk av radar- og optiske 
data) forbedret modellene vesentlig. Supplerende romlige variabler, f.eks. terrengindekser, var 
mindre viktig enn forventet. Terrengdata har imidlertid spilt en viktig rolle i bildeforbedring og -
korreksjon. 
 
Selv om de utviklede metodene allerede fungerer rimelig bra, kan det forventes at framtidige 
tilpasninger og forbedringer i prosesseringskjedene og parameterne blir nødvendig dersom mo-
dellene skal brukes landsdekkende og spesielt i nordlige og arktiske strøk på den Skandinaviske 
halvøy. 
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hardt, J. 2016. Sentinel4Nature: Estimating environmental gradients and properties using remote 
sensing. NINA Kortrapport 6. Norsk institutt for naturforskning.  
 
We are especially grateful to the members of our advisory board: 

- Arild Lindgaard from the Norwegian Biodiversity Information Centre 
- Ellen Arneberg from the Norwegian Environment Agency 
- Johan Danielsen from the Norwegian Environment Agency 

for their valuable comments and suggestions during progress meetings. 
 
We also want to thank Guro Dahle Strøm, Vigdis Lonar Barth and Anja Strømme from the Nor-
wegian Space Center as well as Veronique Dowson from the European Space Agency (ESA) 
for their support during the project and of course ESA for financing it. 
 
Finally, our thanks go to our colleagues from NINA Annika Hofgaard, Dagmar Hagen, Nina Eide, 
Marianne Evju, Siri Lie Olsen, Jørn Olav Løkken and Lars Rød Eriksen for providing data and 
biological expertise to the project.  
 
 
November 2018 
 
 
Stefan Blumentrath 
 
Principal investigator 
 



NINA Report 1545 
 

8 

1 Introduction 
 
The European Space Agency (ESA) Sentinels constitute the first series of operational satellites 
responding to the Earth Observation needs of the European Union (EU). In spring 2014, Senti-
nel-1 satellite, the first in the Sentinel mission family, was launched by the ESA as part of today’s 
most ambitious Earth Observation Program: Copernicus (European Space Agency 2010). The 
family of missions from Sentinel-1 to Sentinel-6 (not launched), will carry a wide range of tech-
nologies, such as radar and multi-spectral imaging instruments for land, ocean and atmospheric 
monitoring. For example, Sentinel-1 is imaging global landmasses, coastal zones, sea-ice, polar 
areas, and shipping routes at high resolution, and covering the global ocean. This method en-
sures a reliability of service required by operational services and a consistent long-term data 
archive built for applications based on long time series. Sentinel-2 with an innovative wide swath 
high-resolution multispectral imager with 13 spectral bands can be used to determine various 
plant indices such as leaf area chlorophyll and water content indexes. These Sentinel missions 
aim to provide the public with free Earth Observation data with unchallenged spectral, temporal 
and spatial resolution for a wide range of purposes. They will undoubtedly offer new and unique 
possibilities for environmental assessments, monitoring and management.  
 
At the same time, a new system for describing, mapping and analysing Nature in Norway (NiN) 
has been developed (Halvorsen et al. 2015). One of the leading principles in NiN is to account 
for gradual transitions in nature and thus to focus on the underlying environmental gradients and 
properties (e.g. related to climate, soil, etc.) that govern the occurrence of species and associ-
ated nature types. The specific recognition of gradual transitions in nature and a systematic use 
of spatial and temporal scales in NiN can be seen as a contrast to most of the other classification 
systems applied in European countries (see Ichter et al. 2014). Although NiN is a specific system 
for Norway and does not cover the whole range of environmental conditions in Europe, it can be 
seen as a comprehensive list of important environmental gradients and properties with a pan-
European relevance, especially in hard-rock-coast and alpine environments that cover large ex-
tents of Norway.  
 
The Sentinel4Nature project financed by ESA’s PRODEX program, therefore, seeks to investi-
gate the methodological potential of detecting and modelling the NiN environmental gradients 
using Sentinel imagery. Further, developing new approaches in nature monitoring will provide 
stakeholders, managers and researchers working with environment management with more val-
uable information. 
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2  Aim and expected benefits of the project 
 
The main objective of the Sentinel4Nature project is to develop and advance a novel approach 
to remote sensing, which focuses on monitoring basic environmental gradients and properties 
(covering physical, chemical and biological components as well as their interactions). It is based 
on the hypothesis that the recently launched Sentinel satellites, with their increased temporal, 
spatial and spectral resolution, as well as increased spatial coverage (compared to e.g. Landsat), 
will provide valuable information that may be used to map and monitor basic environmental gra-
dients. Here the aim is to, a) identify the potential of Sentinel imagery for modelling and identify-
ing environmental gradients, b) explore how satellite imagery can be applied in order to support 
various sectors in their need for area information. This includes integration with other relevant 
datasets such as e.g. Digital Elevation Models (DEM) using data fusion techniques to optimize 
the results (Salberg et al. 2013, Ichter et al. 2014). 
 
The Sentinel4Nature project explores the usefulness of remote sensing techniques for identifying 
environmental gradients in the NiN classification system. The work is based on the hypothesis 
that monitoring of environmental gradients and their changes can provide environmental re-
searchers, managers and policy makers with valuable information because: 
 

• Monitoring environmental gradients can serve as an early warning system for changes 
in ecosystem processes and functioning and thereby improve targeted responses, be-
cause one can expect that characteristics of the underlying environmental gradients 
change before organisms react to it and e.g. vegetation changes. 

 
• Environmental gradients can also be indicators of the quality of different nature types, as 

they allow more fine scaled mapping at continuous scales. Therefore, modelling and 
identifying them will provide additional information about e.g. ecological conditions within 
mapped nature types of special interest. 

 
• Information on environmental gradients can allow for a broader scope of possible appli-

cations, compared to more traditional vegetation mapping. For example, the pattern of 
snow cover in Arctic or alpine areas is not only important for vegetation structure, but 
also for the Arctic or alpine fauna. 

 
• Another hypothesis is that gradients can be monitored with a higher robustness com-

pared to e.g. complex vegetation or land cover type mapping, because the focus is on 
single environmental characteristics and not on multiple vegetation classes/types, and 
continuous data are generated instead of discrete classes. Also, training data for gradi-
ents can often be measured or mapped in a more objective and quantitative way, while 
delineation and classification of habitat types in the field can lead to substantial differ-
ences among different observers (Eriksen et al. 2018). 

 
For the reasons above, it can be expected that a gradient-based approach will be useful for 
indicator systems developed across European (in Norway for example the Nature Index - NI), 
which are meant as tools for guiding environmental policies. The gradient-based approach can 
fit nicely into the Driving Force, Pressure, State, Impact, and Response concept (DPSIR assess-
ment framework – European Environment Agency), which is an extended version of the OECD’s 
countries (Organisation for Economic Co-operation and Development) pressure-state-response 
model implanted in the 1980s. In this causal framework interactions between humans and the 
environment are assessed in terms of the DPSIR components (see also Pirrone et al. 2005, 
Stanners et al. 2007). The proposed gradient-based approach to remote sensing and monitoring 
aims at identifying underlying characteristics or trends in nature (pressures and impacts). It may 
therefore help policy and decision makers but also scientists to identify links between pressures 
and impacts and the current state of the environment and thus to identify reasons or drivers of 
change. 
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Furthermore, the gradients listed in the NiN system overlap with the concept Essential Climate 
Variables (ECV, Bojinski et al. 2014) and Essential Biodiversity Variables (EBV). The latter have 
been identified by the Group on Earth Observations Biodiversity Observation Network (GEO 
BON) to “become the window into the biodiversity observation systems upon which researchers, 
managers and decisions makers at different levels can better interact while they do their jobs” 
(Group on Earth Observations Biodiversity Observation Network 2016). Thus, the project has 
the potential to provide linkages to the global activities of GEO BON. In Norway, comparable 
activities where mapping ecological gradients is of relevance are the ecological base map initia-
tive (Norwegian Ministry of Climate and Environment 2016) as well as the work related to the 
development of a comprehensive technical system for the determination of good ecological con-
dition (Nybø & Evju 2017). 
 
Finally, the project will give environmental management institutions an assessment of the poten-
tial that the Sentinel satellites will provide within remote sensing-based nature management, 
both in terms of mapping and modelling, but also for detecting changes caused by e.g. climate 
or intervention. The project will also contribute to the use of satellite-based and cost-effective 
methods for collecting environmental information and support the analysis of nature types, and 
thereby contribute to the implementation of NiN in Norwegian management institutions. For na-
ture management institutions, like the Norwegian Environment Agency, improved analysis of 
mountain areas will be vital for the management and surveillance of national parks which are 
found to large extent in these areas.  
 
The work will be carried out through case studies on selected environmental gradients and prop-
erties with relevance for alpine and coastal ecosystems. Alpine and coastal ecosystems are 
ecosystems of special interest in many European countries, as coastal zones and mountains are 
habitats for species of European interest and are particularly vulnerable to environmental 
changes (direct or indirect human pressures such as climate or land use changes) (Pachauri et 
al. 2014, Vermaat et al. 2017). 
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3 The suitability of remote sensing (Sentinel) for 
estimating environmental gradients and properties in 
NiN 

 
A first step in the Sentinel4Nature project was to explore the suitability of satellite-based sensing 
(in particular Sentinel satellites) for identifying and modelling environmental gradients and prop-
erties in NiN. 
 
Local complex environmental variables (hereafter referred to as environmental gradients and 
properties) are the smallest building blocks of the NiN system to describe and map Nature in 
Norway across scales (Halvorsen et al. 2015). Environmental gradients represent gradual 
changes in environmental conditions, while environmental properties represent rather distinct 
features of the environment. The important characteristic of both of these elements in NiN is that 
they affect the abundance of species and species composition with a relatively long-lasting ef-
fect. The NiN nature types are defined based on changes in species compositions along the 
different environmental gradients and properties of the system. Thus, environmental gradients 
and properties represent the main structuring element of the NiN system. Figure 1 shows an 
idealized exchange of indicator species abundances along a hypothetical environmental gradi-
ent. 
 

 
Figure 1 Idealized changes in species abundances along a hypothetical environmental gradi-
ent (modified from Halvorsen et al. 2016), that are used as a guiding principle in NiN. 
 
 
In this chapter, an assessment of the suitability of remote sensing for estimating environmental 
gradients and properties in NiN is presented (chapters 3.1 and 3.2). This assessment was the 
basis for the selection of suitable gradients for case studies in the Sentinel4Nature project (chap-
ter 3.3). 
 
 
3.1 Assessing the suitability of remote sensing for estimating 

environmental gradients and properties in NiN 
 
In the system Nature in Norway (NiN) version 2.0, there are 61 local complex environmental 
variables (hereafter referred to as environmental gradients) listed, which are known to influence 
species occurrence in nature (Halvorsen et al. 2015, see also Table 1 and the electronic appen-
dix for an overview). For these environmental gradients the potential of satellite remote sensing 

https://brage.bibsys.no/xmlui/bitstream/handle/11250/2575962/1545%20vedlegg.xlsx?sequence=2&isAllowed=y
https://brage.bibsys.no/xmlui/bitstream/handle/11250/2575962/1545%20vedlegg.xlsx?sequence=2&isAllowed=y
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has been assessed for estimating and modelling them in space and time. The assessment was 
conducted as an expert judgement, supported by a literature review. 
 
Criteria used during this assessment are: 

• the observable properties of the imagery (spectral response, image structures) 
• suitable and available sensors 
• the required spatial resolution 
• the need for time series 
• additional required data sources 
• existing and related examples 

 
These criteria also stress the main challenges, which may occur when utilizing remote sensing 
for estimating environmental gradients and properties. Spatial and spectral resolution is one of 
the main challenges across all gradients. Spatial resolution, i.e. pixel size, implies the minimum 
size of an observed feature. Products of current satellite missions are usually not in sub-meter 
resolution. In the case that higher precision is required, other methods, e.g. UAV-based remote 
sensing are needed. Spectral resolution refers to the number and range of spectral bands. In 
general, much more information can be derived from hyperspectral imagery than from multispec-
tral imagery (e.g. Sentinel-2 mission). Finally, a large challenge concerns the availability of time-
series necessary for the remote sensing of many environmental gradients. Even if the frequency 
of satellite imaging is high, the weather conditions (e.g. cloud cover) might make a scene unus-
able. However, even if technological obstacles prevent the direct usage of remote sensing, it can 
in many cases be utilized as a pre-product or background data for further analysis. 
 
 
3.2 Suitability of remote sensing for environmental gradients and 

properties in NiN 
 
Each environmental gradient was evaluated in terms of its potential for remote sensing. Five 
grades of suitability were assigned: 

- achievable if necessary technologies are currently available, 
- feasible if remote sensing is theoretically possible, but some uncertainties regarding ei-

ther spatial or temporal resolution or topics of interest exist, 
- challenging if remote sensing is theoretically possible, but significant uncertainties re-

garding either spatial or temporal resolution or topics of interest exist, 
- currently not feasible if remote sensing is not possible with current technology, 
- not relevant if the environmental gradient is not relevant to remote sensing technology. 

  
Table 1 contains the overall results of this evaluation. The detailed assessment and applied cri-
teria are provided in a spreadsheet, that follows this document as an electronic appendix. 
 

Table 1: Potential for remote sensing for environmental gradients in NiN 

Potential NiN gradients 
Achievable Avalanche exposure, Drought period, Flood regime, Landslide exposure, Reduced 

growing-season due to prolonged snow-lie, Sand stabilitation (shore and dune de-
velopment), Semi-natural agricultural management intensity type, Soil scarification, 
Tree canopy cover, Water Saturation 

Feasible Freshwater humus content, Geothermal influence, Marine salinity, Mire surface 
character, Permafrost, Sedimentation-induced disturbance, Slope dependent  
disturbance intensity, Soil flow 

Challenging Agricultural management intensity, Coastal influence, Content of organic material, 
Depth-related light attenuation , Erosion exposure, Ground influenced by frost heav-
ing, Ground/sea- and riverbed strongly influenced by human disturbance, Hay-

https://brage.bibsys.no/xmlui/bitstream/handle/11250/2575962/1545%20vedlegg.xlsx?sequence=2&isAllowed=y
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making influence, Historical environmental stress, Ice disturbance along shorelines 
and rivers, Seminatural ground/sea- and riverbed influenced by limited human dis-
turbance, Severity of drought, Size classes (waterbodies), Slow Primary Succes-
sion, Slow primary Succession on coral sea beds, Turbidity, Water supply, Wind 
deflation 

Currently 
not feasible 

Anoxia, Arid terrestrial salinity, Bedrock with special chemical content, Lime rich-
ness, Natural manuring, Peat formation, Salt-enriched coastal ground, Strength of 
rheogenous water supply, Strongly human influenced waterbodies, Water move-
ment energy, Water spraying intensity, Water sprinkling, Water-induced disturbance 

Not 
relevant 

Connectivity, Depth-zonation in deep fjords, Dominating Particle size-class, Drought 
exposure, Erosion Resistance (in graded sediments), Fine-material content (in 
graded sediments), Freshwater with special chemical content, Light zonation in cave 
openings, Ocean depth zonation, Particle size, Special sorted sediments, Type of 
rheogenous water supply 

 
 
Altogether, identifying and modelling through remote sensing was found achievable for 10 out of 
61 environmental gradients. The common observable property of these gradients is land cover, 
detected using Sentinel-2 visible and near-infrared spectral bands. Vegetation indices such as 
the Normalized Difference Vegetation Index (NDVI) or water indices such as the Normalized 
Difference Water Index (NDWI) may be utilized as pre-products. Landslide exposure is for ex-
ample related to an absence of vegetation cover, indicated by low NDVI values, in addition to 
sufficient steep terrain slopes. In addition, products of Sentinel-1 and Sentinel-3 missions may 
be utilized to observe properties such as texture (tree canopy cover) or surface temperature 
(reduced growing-season due to prolonged snow-lie). The suitability of remote sensing for these 
environmental gradients is also supported by previous studies (Mulder et al. 2011, Gao 1996, 
McFeeters 1996). Here, developing solutions that utilize the new Sentinel sensors and possibly 
new methodological approaches, can help to improve the information quality of remote sensing 
products for these gradients. 
 
Satellite remote sensing was evaluated as theoretically possible (feasible or challenging) for 26 
more environmental gradients. The main uncertainties about the suitability of remote sensing for 
these gradients concern the spatial, spectral (coastal influence) or temporal (soil flow) resolution. 
In some cases, the suitability of remote sensing depends on the scale of measurement – e.g. 
salinity is well measurable in coarser scale but challenging at a local scale. 
 
Finally, 12 environmental gradients were assessed as not relevant. In these gradients, physical 
barriers, such as rocks or water may prevent from identifying and modelling through remote 
sensing (e.g. light zonation in cave openings). These gradients also describe small-scale local 
conditions, rare cases, or concern fine categorization (e.g. Fine-material content (in graded sed-
iments)). However, even in these cases, remote sensing can facilitate the identification and mod-
elling of these environmental gradients by providing pre-products or background data (e.g. in 
order to model Drought exposure, NDVI can be utilized as a pre-product). 
 
The general conclusion is that despite many technological obstacles (e.g. spatial, spectral and 
temporal resolution), remote sensing can be utilized as a pre-product across many gradients. 
 
 
3.3 Gradients from NiN selected for case studies 
 
From the NiN gradients where it is expected that remote sensing is suitable to map them in space 
and time, the gradients “Reduced growing-season due to prolonged snow-lie” and “Tree canopy 
cover” were selected for further case studies. Both are relevant for mountain and/or coastal eco-
systems. At the same time, the methodology to address them is relatively different due to 
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different observable properties, different temporal dynamics and both are expected to benefit 
from combining different data sources, including data from different Sentinels (1 and 2).  
 
3.3.1 Reduced growing-season due to prolonged snow-lie (SV, NiN 2.0) 
In Arctic and alpine areas, an important factor for the occurrence of plant species is the duration 
of snow cover (Figure 2). The length of the snow cover season determines the length of the 
growing season and thereby the time the species have to complete their life cycle. Here, snow-
beds represent the most extreme cases, which are only snow-free for a few weeks during the 
summer months. In snow-beds, very few species are found. The environmental gradient “re-
duced growing season due to snow-lie” (SV) is one of the most important factors for variation in 
species composition in mountain and tundra ecosystems and strongly impacts the alpine plant 
communities. 
 
However, at some locations in the mountain areas, it is the stability of the snow cover and not 
the length of the snow cover season that determines the species composition. Areas without a 
stable snow cover are highly exposed to strong wind and frost during the winter. In order to 
survive in such places, the species need to be able to cope with tough conditions without any 
protective snow cover. The snow cover stability is directly related to the thickness of the snow 
cover, which again is based on the amount of precipitation and the strength of the wind. 

 

Figure 2 Occurrence of nature types in Norwegian mountains depending on altitudinal belt and 
date of snow melt (modified from Halvorsen et al. 2016). Green lines indicate the beginning 
and end of the growing season. Rabbe: Ridge, Snøleie: Snow-bed, Snø og isdekt fastmark, 
Snow and ice-covered land, Fjellgrashei og grastundra : Mountain grassland and tundra, Fjell-
hei, leside og tundra: Mountain, leeward and tundra, Ikke realisert: unrealized, 
Oppfrysingsmark: frost turbation, Nakent berg: bare rock, Blokkmark: boulders  
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The reduced growing season due to snow-lie (SV) as well as the snow cover stability are two 
very important environmental gradients in the upland and tundra regions. Since both are strongly 
related to the snow cover, satellite-based sensors may be used to monitor them. Satellite sen-
sors have been widely used to map the snow-covered areas and cryosphere (see e.g. Scherer 
et al. 2005, Maher et al. 2012, Crawford et al. 2013, Metsamaki et al. 2014). Mapping snow cover 
duration over time can provide information about possible effects of climate change in this re-
gard, and in consequence on vegetation patterns in mountain and tundra regions. 
 
3.3.2 Tree canopy cover (TT, NiN 1.0) 
The density of tree canopy cover is one of the most important environmental factors for both 
forest species which can be found underneath the tree crowns and for species that do not tolerate 
growing in shady environment (e.g. alpine plants). Thus, tree canopy cover is an important struc-
turing factor for vegetation. It affects the occurrence of species and species compositions in 
several ways. First, canopy cover reduces the availability of light and precipitation that reaches 
the species under the trees. Second, with an increased canopy cover, the input of dead organic 
matter (litter) increases. Tree canopy cover is furthermore related to several other gradients in 
NiN like Drought exposure (UE), Severity of drought (UF), or Wind deflation (VI) from NiN 2.0, 
as well as Deforestation (BA), Forest regrowth (GG), and Reduction of tree cover density (TR). 
 
Beyond its relevance as a habitat for certain species, tree canopy cover is of vital interest for 
management in many other regards, including economic activities (forestry), CO2-accounting, 
natural hazards, as well as landscape and nature conservation (e.g. in terms of maintaining open 
cultural landscapes). Furthermore, tree canopy cover is an important variable for characterizing 
the forest-tundra-ecotone and, as such, is of special interest for research on effects of climate 
change. Forest encroachment has the potential to significantly change ecosystem structure and 
functions in Norwegian mountain areas, but the speed and pattern of forest encroachment are 
disputed (see e.g. Bryn et al. 2018). 
 
For this reasons, tree canopy cover has been of high interest for previous remote sensing pro-
jects. However, both classical classification approaches (like NORUT’s vegetation map, 
Johansen 2009) and more gradient-like approaches (like in Hansen et al. 2013) struggle espe-
cially with “mixed signal” - pixels at the land-water interface. Figure 3 shows lakes in an alpine 
area in Norway where pixels along the shorelines were falsely associated with tree canopy cover. 
The combination of radar and optical sensors with Sentinel-1 and Sentinel-2 can help addressing 
these issues, together with pre-processing techniques like e.g. spectral unmixing. 
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Figure 3 Errors in forest detection in existing remote sensing products along the land / water 
interface.  
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4 Case study sites 
 
Case study sites for the Sentinel4Nature project have been chosen depending on the selected 
case study gradients, which are “Reduced growing-season due to prolonged snow-lie” (SV, NiN 
2.0) and “Tree canopy cover (TT, NiN 1.0)”. In order to study the detectability of the environmen-
tal gradients named above, the following case study sites in Norway were chosen (see Figure 
4): 

- Oslofjord 
- Lurøykalven 
- Hjerkinn 
- Sunndalen 

 
Together they cover a wide range of environmental conditions both with regards to climate and 
topography. In addition, these sites have been and are part of earlier or on-going research ac-
tivities. 
 
 

 
Figure 4 Location map of the four case study sites in the Sentinel4Nature project. 
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4.1 Oslofjord 
 
The Oslofjord study area is located in south-east Norway (59° 53'N 10° 42'E). This lowland area 
is characterized by a hilly terrain and located at the transition between oceanic and continental 
climate. The landscape consists of a mixed habitat mosaic with the fjord, islands, forests and 
human infrastructure (see Figure 5). 
The average annual temperature is 
reasonably stable and ranges from -
0.6 to 3.4°C. Precipitation is fairly 
constant throughout the year. The 
city of Oslo surrounds the four is-
lands included in the case study. The 
islands of Gressholmen and Ram-
bergøya are moderately inhabited, 
while Ormøya and Malmøya have 
more human infrastructure (Figure 
6). 
 
Topics to be studied in the Oslofjord 
case study site are the gradient 
“Tree canopy cover” and the useful-
ness of data fusion and scale effects 
in the small-scale vegetation se-
quences in this area (see Figure 7). The tree canopy cover gradient is of particular relevance 
for the inner Oslofjord region because forest expansion is a threat to open cultural landscapes 
here, especially the prioritized and endangered habitats of calcareous grassland. 
 
 

 
Figure 5 Landscape at the Oslofjord 
(Photo: Anne Sverdrup-Thygeson) 

 
Figure 6 Sentinel-2 RGB image from Oslofjord case study site with the islands Gressholmen, 
Rambergøya, Ormøya and Malmøya. 
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Figure 7 Example of a vegetation sequence in the Oslofjord case study, representing succession 
from unvegetated gravel, through sparsely vegetated calcareous grassland and further stages 
of succession to forest. 
 
 
4.2 Lurøykalven 
 
Located in western Norway, 
Lurøykalven is an island about 
50 km north-west of Bergen 
(60° 42'N 5° 4'E) (see Figure 8 
and Figure 9). The study site 
consists of coastal lowlands 
with a hilly terrain. The island 
has an oceanic climate and 
contains the prioritized nature 
type coastal heathland, that is 
threatened by forest re-
growth/expansion. Conserva-
tion measures are applied to 
maintain these open cultural 
landscapes. The average an-
nual temperature ranges from 
1.3 to 5.3°C with rainfall falling 
predominantly in autumn. 
Lurøykalven has very little hu-
man infrastructure. Main topic to be studied in Lurøykalven is the gradient “Tree canopy cover”. 
In this context the usefulness of data fusion and scale effects are important aspects in the small-
scale vegetation mosaic in Lurøykalven. 

 
Figure 8 Landscape at Lurøykalven 
(Photo: Vegar Bakkestuen) 
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Figure 9 Sentinel-2 RGB image from Lurøykalven case study site 
 
 
4.3 Hjerkinn 
 
The study area Hjerkinn is located in the Norwegian mountain region Dovrefjell (62° 13'N, 9° 
27'E), between 1000 and 1500 m above sea level (Figure 10). It represents a mountain area in 
the central to eastern parts of Norway, with relatively continental climate. The study site includes 
boreal to mainly low alpine vegetation zones. The landscape has mountainous terrain, charac-
terized by small-scale patterns with shrub, lichen, mire or tree dominated habitats as well as 
gravel, bare rock and human infrastructure. NINA has many on-going research activities in the 
area - including long-term monitoring and restoration projects – making it a natural candidate as 
a case study site for developing and evaluating remote sensing methodologies. 
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Figure 10 Sentinel-2 RGB image from Hjerkinn case study site 
 
 
Most of Hjerkinn’s area is located 
above and around the forest line. 
Figure 11 shows the typical land-
scape at the study site during melt-
ing season. The image was ac-
quired on May 19 2013, and 
shows that the ridge vegetation 
was becoming visible, but there 
were still large areas covered with 
snow. Topics to be studied at 
Hjerkinn are both the “Tree canopy 
cover” gradient and the gradient 
“Reduced growing-season due to 
prolonged snow-lie”. 
 
 
                                                         Figure 11 Landscape at Hjerkinn (Photo: Lars Erikstad) 
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4.4 Sunndalen 
 
The study area Sunndalen is, like Hjerkinn, a mountain area in the Dovrefjell region (62° 34'N 9° 
2'E) (see Figure 12). It covers boreal to alpine climate zones, but the terrain is steeper compared 
to Hjerkinn, with deep valleys. Being in central Norway, the climate is relatively continental. A 
reason for choosing Sunndalen as a case study was to establish a link to the project ECOFUNC, 
funded by the Norwegian research council (RCN grant MILJØ2015, project number: 244557), 
where the products from the Sentinel4Nature project will be evaluated with respect to their ben-
efits for understanding mountain ecosystems and their changes. 
 
The topic to be studied in Sunndalen is the “Tree canopy cover” gradient, with a special focus 
on the forest-tundra ecotone dynamics. 
 
 

 
Figure 12 Sentinel-2 RGB image from Sunndalen case study site 
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5  Data fusion for improved estimation of environmental 
gradients from remote sensing data 

 
A key component of the Sentinel4Nature project is to connect Sentinel data with other geospatial 
datasets such as aerial images, terrain models and indices derived from them as well as thematic 
maps by means of data fusion (Salberg et al. 2013, Ichter et al. 2014). This requires adjusting 
differently gridded data against each other. 
 
Although it “can significantly improve our ability to assess the distribution as well as the horizontal 
and vertical structure of ecosystems”, image fusion has until recently been applied only to a very 
limited degree in ecological applications (Schulte to Bühne & Pettorelli 2018). Therefore, the 
Sentinel4Nature project set out to evaluate four different approaches to data fusion: 
 

1. Aggregation: combining high-resolution data (such as orthophotos or terrain models de-
rived from LiDAR) with coarser satellite data. 

2. Sharpening: combining lower resolution with higher resolution data by means of 
resampling to reduced pixel size  

3. Merging: a combination of the two approaches above which meets at an intermediate 
resolution  

4. Object-oriented data fusion: Another approach to data fusion is to merge characteristics 
of data with different resolution in image objects which were derived by segmentation of 
high-resolution raster data. 

 
A special focus is put on the object-oriented data fusion technique. The hypothesis is that the 
use of spatial structures (“image objects”) acquired from a segmentation of relevant (higher res-
olution) data layers will lead to a more realistic geographical representation of environmental 
patterns. The use of such segments, as well as grids with different resolution, allows for several 
aggregation techniques, e.g. based on variance or average or similar statistics, which may be 
utilized for improved analysis (Blaschke 2010). 
 
In order to identify suitable data fusion strategies, technical and methodological aspects are rel-
evant, such as the trade-off between spatial and spectral resolutions (He et al. 2011), the amount 
of data to process and the availability and more or less unbiased coverage (regarding space, 
time and content) of especially the high resolution data. In addition, characteristics of the spatial 
pattern to be observed (e.g. size and shape of terrain structures which govern the small-scale 
snow pattern) are important in these regards. 
 
Unfortunately, Schulte to Bühne & Pettorelli (2018) find that 

- the lack of reported reasons for decisions regarding data fusion in existing studies to-
gether with 

- difficulties to report all data analysis steps to a reproducible level of detail make it hard 
to learn from existing experience. 

 
What ancillary data (e.g. terrain indices) is suitable to fuse with different satellite data depends 
very much on the individual objective, here the environmental gradient in question. The same 
applies to decisions on what sensors - with possibly different resolution - that are relevant to 
combine in order to improve modelling results, The tree canopy cover gradient (chapter 6.2), for 
example, is much less affected by terrain structure compared to the gradient on reduced grow-
ing-season due to prolonged snow-lie (chapter 6.1). 
 
Therefore, data fusion strategies are discussed in respective chapters for modelling the two se-
lected case study gradients. 
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6 Modelling environmental gradients and properties in 
space and time in a data fusion setting 

 
For the two environmental gradients selected as cases from the total of 61 environmental gradi-
ents in NiN, remote sensing and spatial data was pre-processed, models were developed, vali-
dated and refined. This data processing, model development and refinement was carried out in 
an iterative process, whose results are documented in this chapter. Data produced in this project 
can be accessed here: http://geodata.nina.no/search/?title__icontains=Sentinel4Nature 
 
6.1 Develop, evaluate and refine a model for Reduced growing-

season due to prolonged snow-lie (SV, NiN 2.0) 
 
Contrary to the Landsat based schemes proposed by Crawford et al. (2013) and Maher et al. 
(2012), the aim in the Sentinel4Nature project is to derive satellite-based maps that describe the 
spatial distribution of the date of snow melt, with corresponding uncertainties. The date of snow 
melt defines usually the start of the growing season in Norwegian mountains and thus corre-
sponds to named environmental gradient. 
 
6.1.1 Data preparation and data fusion 
Snow-covered areas are often easy to identify in optical satellite images. However, there are 
many factors that may influence the performance of an automatic system for monitoring the spa-
tial snow cover distribution. These include: 

• Spatial resolution: For low and medium resolution images, it is often a snow cover frac-
tion that is estimated, since the area of the pixel unit is not completely snow covered 
(Metsamaki et al. 2014). 

• Band configuration: Some sensors have thermal bands or bands that are sensitive to 
cirrus clouds (e.g. Landsat-8 and Sentinel-2). Use of data from these bands will often 
improve the performance with respect to distinguishing snow from clouds (Zhu & 
Woodcock 2012). 

• Temporal resolution: In order to estimate date of snow melt, satellite data with high tem-
poral resolution is needed. The estimation of snow cover stability may be particularly 
challenging since this requires monitoring of the snow cover during the full winter season 
when there is limited daylight. For areas in the far north, this is almost impossible using 
optical satellite data. 

• Land cover: Some vegetation types can mislead the recognition of snow-covered areas. 
For example, lichen rich ridge vegetation have a very high albedo and may therefore be 
confused with snow. 

 
Some ancillary information may be used to improve the performance: 

• Other sensors: Synthetic-aperture radar (SAR) is suitable for identifying wet snow 
(Nagler & Rott 2000), and Sentinel-1 may therefore be used in the melting season to 
locate snow patches. A major benefit with SAR is that it penetrates clouds. However, a 
major drawback is that dry snow cannot be detected with C-band SAR since the radar 
signals penetrates dry snow. Hence, we cannot reliably distinguish dry snow from bare 
ground. 

• Precise elevation model: Altitude indices like topographic position index (TPI), insolation, 
slope, or aspect may be used to improve the identification of snow-beds. 

• History: If previous snow cover distribution maps are available, these may be used as 
prior information on where snow-beds and areas with less snow cover stability are lo-
cated. 
 

However, in this project the model for the date of snow melt has been developed without the two 
latter auxiliary data types and is only based on a time series of satellite imagery. The resulting 
pure remote sensing product is then evaluated with regards to possible contributions of terrain 

http://geodata.nina.no/search/?title__icontains=Sentinel4Nature
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information (chapter 6.1.5). The method proposed makes use of Landsat-8 images as the pri-
mary source of data for estimating the probability for snow cover in each pixel at a given day of 
the year. The reason for selecting Landsat-8 over Sentinel-2 was mainly related to the availability 
of data at the start of the project, and that Landsat-8 has thermal channels that provide valuable 
information for separating clouds from snow. However, provided that a good cloud-masking al-
gorithm is available, Sentinel-2 should also be used.  
 
Even when all available imagery since the Landsat-8 satellite that was put into service in 2013 
is being used; the number of cloud-free observations is still limited. To gain more observations, 
data from the Sentinel-1 satellites is added to the available optical images from Landsat-8. Sen-
tinel-1 provides data from a synthetic aperture radar (SAR) sensor. As SAR is not affected by 
cloud cover, gaps in the Landsat-8 time series may be filled. SAR sensors are not sensitive to 
snow in general, as electromagnetic waves penetrate the surface when the snow is dry. On the 
other hand, SARs operating at C-band frequencies are sensitive to wet snow due to the presence 
of liquid water (Rott & Matzler, 1987) and have been used to estimate snow cover in mountain 
areas, such as the Himalayas (Thakur et al. 2013). 
 
The data from the Sentinel-1 satellite can therefore only provide positive observations of the 
presence of wet snow, whereas the non-presence of wet snow cannot always be treated as a 
snow free observation. However, detections of wet snow are of particular importance in this study 
as they provide valuable observations at a point in time close to the snow melting day. 
 
The data fusion consists of projecting all satellite data to the same spatial grid, detecting if a 
given pixel is snow covered, and adding snow maps from each time-instant (and sensor) to the 
time series. Hence, the processing chain may easily be extended with new sensor data, as long 
as they provide estimate of the snow extent. Details about the algorithm is described in the next 
chapter. 
 
 
6.1.2 Model development 
Landsat satellites have a revisiting frequency of 16 days, which leads to a limited temporal res-
olution when estimating the date of snow melt for a given year. Taking cloud conditions into 
account, there may potentially be prolonged periods where no clear observations are available 
during the critical snow melting season. For this reason, data from multiple years must be ag-
gregated. The challenge is then to combine the temporal profile of several melting seasons, as 
the annual variation in snow conditions may vary greatly. At a particular year, there might be less 
precipitation and the snow melt starts early, whereas for another year, conditions may be colder 
and more snow rich, thus the melting begins very late. To address the variation over different 
melting seasons, we propose to model the snow cover at a given location, or pixel in the satellite 
image, using a binomial distribution. The binomial distribution reflects the two conditions where 
snow is present or not. The probability of snow at a given time is estimated by means of a gen-
eralized linear model (GLM).  
 
The proposed methodology consists of the following steps: 
 

1. Preprocessing of Landsat-8 images: The available Landsat images were converted to 
Top of the Atmosphere (TOA) reflectance images using the corresponding metadata. 
From the metadata, also the annual day number (Julian day) was extracted and an image 
stack sorted after the relative day number rather than acquisition date, was created. 
Clouds were detected by classifying each Landsat pixel into the following classes: 
Clouds, snow, green vegetation, brown land cover, and water (Salberg 2011). Masks 
were created to filter out water and clouds from the image stack. Cloud shadows and 
terrain shadows often cause problems when analysing optical data. By using information 
about the sun elevation angle and terrain topography, cloud shadows and terrain shad-
ows could be estimated (Salberg 2011). However, in this analysis, removal of cloud shad-
ows was not considered necessary. 
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2. Preprocessing of Sentinel-1 SAR images: To correct the SAR imagery for terrain 

variation and systematic influences on the radiometry, the flattening gamma terrain cor-
rection method (Small 2011) was applied. 
 

3. Snow detection: For the Landsat-8 images, the normalized difference snow index 
(NDSI) was used to identify snow cover. The NDSI takes advantage of the information 
in the green and SWIR wavelength bands and was calculated for each image pixel not 
identified as cloud or open water by  

 

 
Here 𝐵𝐵𝑘𝑘 denotes Landsat band k of the TOA reflectance image. Pixels satisfying 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 >
0.6 were identified as snow covered, thus indicating only high confidence detections (Zhu 
& Woodcock 2012). 
 
Changes in the backscatter coefficient were used to detect wet snow in the SAR images. 
The SAR difference images created during the pre-processing steps were compared 
against a fixed threshold set at 4dB. Dark areas (lower than the threshold) were identified 
as covered with wet snow. 
 

4. Estimation of the snow cover probability: Both Landsat-8 and SAR images from Sen-
tinel-1 were merged into a common image stack ordered according to the Julian day, 
after subsetting the images to only include the overlapping area covered by both image 
types. 
 
For each pixel at a given location, a set of snow cover observations 𝑦𝑦1,𝑦𝑦2, … , 𝑦𝑦𝑁𝑁 were 
available. The value of 𝑦𝑦𝑘𝑘 was set to 1 if the respective pixel in the corresponding image 
was snow covered, thus indicating positive snow detections. For the Landsat-8 images, 
pixels without snow cover were set to 𝑦𝑦𝑘𝑘=0, as these pixels indicate a positive detection 
of an area without snow. This is not true for the SAR images, and pixels that did not 
indicate wet snow were filtered out, due to the fact that non-presence of wet snow cannot 
be interpreted as an observation of an area without snow. 
 
Alongside the image stack, a set of corresponding time instants 𝑡𝑡1, 𝑡𝑡2, … , 𝑡𝑡𝑁𝑁 were availa-
ble, ordered according to the day in the year they were acquired, ensuring that 𝑡𝑡𝑘𝑘+1 ≥ 𝑡𝑡𝑘𝑘. 
Please note that since the images may have been acquired from different years such 
that 𝑦𝑦𝑘𝑘+1 may be equal 1 even if 𝑦𝑦𝑘𝑘 is equal to 0. Assuming that the day of snow melt 
happens later in the year than January 1st, all pixels were defined as snow covered on 
this day, thus ensuring stability in the estimate. In normal years, this is a reasonable 
assumption for mountain regions in Northern Europe. 
 
For every pixel in the image stack, the probability for snow was estimated using a GLM 
with binomial distribution and logit link function. The probability for snow for time instant 
k can be written as 
 

 
where 𝜂𝜂𝑘𝑘 = 𝑎𝑎0 + 𝑎𝑎1𝑡𝑡𝑘𝑘. The parameters 𝑎𝑎0 and 𝑎𝑎1 were estimated from the snow cover 
observations 𝑦𝑦1,𝑦𝑦2, … , 𝑦𝑦𝑁𝑁 and corresponding time instants 𝑡𝑡1, 𝑡𝑡2, … , 𝑡𝑡𝑁𝑁 using an iterative 
re-weighted linear regression algorithm (McCullagh & Nelder, 1989). 
 
Note that the binomial distribution also applies if there are multiple observations on the 
same Julian day (from different years) in the stack. In this case, we simply change the 
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number of trials ni to the number of observations and 𝑦𝑦𝑖𝑖 to the sum of snow covered 
observations on that day. 
 
To handle the data separation problem we have used a Bayesian GLM approach, where 
the parameters 𝑎𝑎0 and 𝑎𝑎1 are modelled as Cauchy distributed variables with mean values 
equal to 0 and -5.0, respectively, and scale parameters equal to 10.0 and 4.0 (Gelman 
et al. 2008). 
 

5. Estimation of the date for snow melt: The date for snow melt cover is estimated as 
the time instant where the probability of snow is less than a given threshold. Here, this 
threshold was set to 𝑝𝑝𝑡𝑡ℎ = 25%. The date for snow melt may then be estimated as 

 
 

6. Estimation of uncertainty: Since the GLM is based on an iterative re-weighted linear 
regression, one may estimate the uncertainty to 𝑎𝑎�0 and 𝑎𝑎�1. A 90% confidence interval 
to tmelt may then be written as  

 
where 

 
The uncertainty of the date for snow melt is then defined to be: (tumelt – tlmelt)/2. 

 
6.1.3 Validation data 
In contrast to the tree canopy cover gradient (see chapter 6.2.2), in-situ data is not a hard re-
quirement for training/developing the model on reduced growing-season due to prolonged snow-
lie because of the clear, and known reflectance pattern of snow in satellite imagery. However, 
the high spatio-temporal resolution and variation that this model is based on, is particularly chal-
lenging regarding the collection of appropriate validation data because the latter has to be able 
to capture this spatio-temporal variation. For evaluation the following data sources were se-
lected: 

- Surface temperature data from temperature loggers 
- Species occurrence data from the Global Biodiversity Information Facility (GBIF) 
- Vegetation plot data collected with regards to snow cover duration (Evju et al. 2012)  

 
In the Sentinel4Nature project the possibility to use orthorectified images from time-lapsed wild-
life camera traps for validation was also explored and tested. Due to technical and administrative 
challenges, this approach could not be developed into a production-ready protocol within the 
project time frame. This development is therefore covered in a separate report (Blumentrath et 
al. 2018). 
 
6.1.3.1 Surface temperature data from temperature loggers 
It is possible to detect snow cover periods in data series from temperature and moisture loggers 
that are placed on the ground. When a temperature logger is covered by snow, the temperature 
and moisture measures stabilize, and their variation over a 24-hour period drops compared to 
the situation where there is no snow. Therefore, snow-covered periods can be identified in the 
temperature logger data by the low variation in temperature per day at or below 0 degrees Cel-
sius under snow cover (see Figure 13). 
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From other projects conducted in NINA (Eide 2017), temperature logger data were obtained for 
the Hjerkinn case study site. The loggers were placed along altitudinal gradients (amongst oth-
ers) directly on the ground and cover the years 2010 - 2016. They were programmed to monitor 
the temperature at a two hours interval. This makes them particularly suitable for the detection 
of date of snow melt. 
 
 

 
Figure 13 Plot of temperature logger data (Eide 2017) from September (left) to August (right). 
The temperature logger data can be used to measure snow melt. The red line represents mois-
ture, while the blue line is the temperature. The period with low variation of temperature and 
moisture in the centre of the plot (October to June) indicates that the logger is covered by 
snow. 
 
 
Temperature and moisture logger data represent a means to evaluate the accuracy of the model 
regarding the physical snow cover condition. They also provide indications of a variability of the 
snow cover between years. Given that the model is based on aggregated data across years, 
model accuracy is to be judged within this natural variation. 
 
For verification purposes of the estimated day of snow melt, available temperature loggers 
from Eide (2017) were used to confirm the presence or non-presence of snow. From the raw 
logger measurements, the number of temperature registrations and the average temperature 
per day were computed. In addition, the minimum and maximum temperature, as well as the 
standard deviation and variance of the temperature during each 24-hour period were calcu-
lated. 
 
Days with snow cover were identified by setting a threshold to the daily variation and the maxi-
mum logged temperature. Here, a day showing a maximum temperature less than 1 ̊C, and a 
temperature variance less than 1 ̊C was classified as snow covered. All other days were identi-
fied as no-snow measurements. 
 
6.1.3.2 Species occurrence data from the Global Biodiversity Information Facility (GBIF) 
Another means of evaluating the model on reduced growing-season due to prolonged snow-lie 
is using a bio-indicator approach. From studies by Odland & Munkejord (2008) the sensitivity to 
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snow cover conditions is known for a list of ca. 100 vascular plant species. For those species, 
ca. 160,000 geo-located occurrence records were fetched from the Global Biodiversity Infor-
mation Facility (GBIF) for the Hjerkinn case study site (Figure 14) using the v.in.pygbif module 
in GRASS GIS (Blumentrath & Kudrnovsky 2016). These records were then assigned with the 
snow indicator value developed by Odland & Munkejord (2008) at a scale from 0 to 9, where 0 
represents chionophobic plants, meaning plants with little tolerance to snow cover, and 9 repre-
sents chionophilic plants which are able to tolerate longer duration of snow cover and thus have 
a competitive advantage at places with long-lasting snow cover. Odland & Munkejord’s (2008) 
Snow Index was also a major source for the definition of the respective gradient in the Nature in 
Norway (NiN) system1. 
 
The linkages between the physical snow cover (as expressed by the model) and the distribution 
of vegetation patterns represent the core of the NiN system with regards to this gradient. In the 
model evaluation, these linkages are explored both visually by plotting the data and an ordinal 
regression analysis. The ordinal regression is also used to compare model versions developed 
in the project and to track model improvements. Finally, ordinal regression using the species 
occurrence data is used to assess how much the satellite remote sensing-based model improves 
our ability to represent the snow cover gradient compared to an alternative model using only 
terrain data. 
 
 

                                                   
1 https://artsdatabanken.no/Pages/179767 (in Norwegian) 
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Figure 14 Occurrences of species with known sensitivity to snow cover at the Hjerkinn case 
study site (colours indicate number of occurrences at a location – light blue: low number of oc-
currences to dark blue: high number of occurrences) 
 
 
6.1.3.3 Vegetation plot data collected with regards to snow cover duration 
Within the area of the case study site at Hjerkinn, Evju et al. (2012) collected data on frequency 
of plant species within vegetation plots along the snow cover gradient from unstable snow cover 
(ridge, “rabbe”) through sheltered areas with relatively constant snow cover (“leeside”) to areas 
with prolonged snow cover (snow bed, “snøleie”) (see Figure 15). These data were assigned 
with the estimated day of snowmelt from the model on reduced growing-season due to prolonged 
snow-lie. 
 
The species found in the plots were classified with regards to their sensitivity to snow cover both 
using Odland & Munkejord (2008) (similar to GBIF data in chapter 6.1.3.2) and expert judgement 
(Olsen 2017). The relatively low number of observations in this dataset limits the possibilities to 
analyse it statistically. Relations between modelled day of snow melt and vegetation pattern, are 
only plotted and interpreted visually. 
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Figure 15 Vegetation plot data collected with regards to snow cover duration (Evju et al.2012) 
 
 
6.1.4 Results 
The dates for snow melt and corresponding uncertainty were estimated from Landsat 8 images 
at path/row 199/017. All available images of this area since the launch of the satellite in 2013 
until 2017 were considered for this study. Images taken later in the year than day 238 (corre-
sponding to August 26th) were not used, as this day is close to when the melting season ends 
and new snow fall may be expected. The total image count over the four years of satellite data 
was 42 images to be used in the study. 
 
Sentinel-1 data from the 2015 season were applied, and 31 scenes overlapping with the chosen 
study area in the melting period between the days 60 and 206 (corresponding to March 1st and 
July 25th) were cropped to fit the Landsat 8 images and included in the study. Figure 16 shows 
the selected study area as well as detailed close up examples of Sentinel-1 and Landsat 8 im-
ages. 
 

 



NINA Report 1545 
 

32 

     

  
Figure 16 The study scene from Dovrefjell and examples of images from Landsat-8 and Senti-
nel-1. Top left: The study scene with example area marked with a red square. Top right: Land-
sat-8 RGB image of example area from Day 110 (April 20th 2015). Bottom left: Landsat-8 RGB 
image of example area from Day 200 (July 19thth 2013). Bottom right: Sentinel-1 SAR syn-
thetic image from Day 132 (May 12th 2015) 
 
 
Using the proposed GLM based methodology, we generated a continuous map with Landsat 
resolution (30 m) of the estimated dates for snow melt. The spatial variation of the estimated 
dates for snow melt was huge for the study area, with a mean value equal to 125.3 and standard 
deviation equal to 59.3 (Figure 17). The GLM methodology allows to produce a corresponding 
uncertainty map. The estimated uncertainties were for some areas large and varied substantially 
across the area (Figure 17). 
 
A similar spatial pattern for the dates of snow melt was observed when using both Landsat-8 
and Sentinel-1 (Figure 18). However, compared to using only Landsat-8 data, the average mean 
value has increased to day 152.2, with a standard deviation of 45.3.  
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Figure 17 The estimated dates for snow melt (left image) and corresponding uncertainties esti-
mates (right image) for the study area based on Landsat-8. Left image: For the dates of snow 
melt image the colour scale corresponds to day number, from day 1 (dark green) to day 220 
(white). Right image: The black areas in the image corresponds to no data e.g. masked water 
bodies. For the estimated uncertainties image the rainbow colour scale corresponds to the de-
gree of uncertainty (90% confidence interval, from 0 (yellow) via green and blue to 100 days 
(red)). 
 
 

  
Figure 18 The estimated dates of snow melt cover (left image) and corresponding uncertain-
ties estimates (right image) for the study area based on Landsat-8 and Sentinel-1. Left image: 
The dates of snow melt image the colour scale corresponds to day number, from day 1 (dark 
green) to day 238 (white). Right image: The black areas in the image corresponds to no data 
e.g. masked water bodies. For the estimated uncertainties image the rainbow colour scale cor-
responds to the degree of uncertainty (90% confidence interval, from 0 (black) via green and 
blue to 100 days (red)). 
 
 
6.1.5 Evaluation 
 
6.1.5.1 Surface temperature data from temperature loggers 
For evaluation of the final developed model based on Landsat8 and Sentinel-1 data. results were 
compared to temperature logger measurements (see chapter 6.1.3.1). For the pixels at the log-
ger locations, the model, the underlying satellite data and the temperature measurements were 
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combined in a plot over a time axisis (Figure 19). For all the panels in Figure 19, except one, 
the overall uncertainty was about ±25 days over the period from 2013 to 2017. For the location 
with higher uncertainty (snow cover probability for row 890, col 4016) the uncertainty was about 
±50 days. The higher uncertainty was, most likely, caused by a false SAR snow detection in the 
summer period. For this location we also observe that the temperature loggers indicate an un-
stable snow cover, with many snow free days during the winter.   

  

 

 

 
Figure 19 Probability for snow as a function of day-number (black curve), with corresponding 
confidence interval (red curves). The left curves correspond to Landsat-8 observation only, 
whereas the right curves correspond to Landsat-8 and Sentinel-1 observations. The snow ob-
servations (blue circles) and estimated probability (using the GLM based methodology) for 
snow (black line), with corresponding 90% uncertainty confidence interval (red lines) for four 
different locations (pixels). The black dashed lines show the estimated date of snow melt (us-
ing a 25% probability threshold). 
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The probability curves shown in Figure 19, and a number of curves corresponding to other lo-
cations (not shown here), show that the date for snow melt is later when it is estimated using 
both Landsat-8 and Sentinel-1, compared to when only Landsat8 data is used. 
 
6.1.5.2 Species occurrence data from the Global Biodiversity Information Facility (GBIF) 
The following plots (Figure 20 and Figure 21) visualise the frequency at which plants of the 
different snow tolerance classes were found at locations with different estimated days of snow 
melt in the model. In general, the plots show that the developed model corresponds with the 
occurrence of snow sensitive species as plant species with a higher snow index are more abun-
dant in locations with a later estimated day of snow melt. In the plots only the most recent records 
from GBIF (recorded 2010 and later) were used, because these provide the closest temporal 
match to the satellite imagery used. Inclusion of older records has been tested and their inclusion 
results in a significant decrease in correlation between snow index classes and the modelled day 
of snow melt. This can be either due to changes in environmental conditions (e.g. earlier snow 
melt) or due to less geometric precision in older plant species records from GBIF. 
 
In addition, altitude turned out to have a significant influence on the relation between modelled 
day of snow melt and occurrence of species with different snow indices. Excluding occurrences 
records below 1000m altitude (which roughly marks the forest line at Hjerkinn) (Figure 20) led 
to a more stable and continuous increase of relative occurrence of the species with higher snow 
indices at later estimated days of snow melt, compared to using no filter on altitude (Figure 21). 
 
 

 
Figure 20 Violin plot representing the recordings of species with Odland & Munkejord’s (2008) 
Snow Index in GBIF and the modelled day of snowmelt; GBIF data limited to records from after 
2010. The thick black bar in the centre represents the interquartile range, the thin black line 
extended from it represents the 95% confidence intervals, and the red dot is the median.  
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A possible explanation for this observation can be that plant species with intermediate snow 
indices (in contrast to those at the two ends of the snow index scale) often can be found in 
lowlands and forests. There, the snow generally melts earlier than in the mountains. Further-
more, forest canopy is an obstacle to detecting snow melt on the ground from satellite imagery 
and limits the models ability to correctly detect the actual day of snow melt on the ground and 
not the snow melt at the canopy of higher vegetation. This indicates that the model is more robust 
in the mountain areas, where the snow cover gradient at the same time is of most relevance. 
 
 

 
Figure 21 Violin plot representing the recordings of species with Odland & Munkejord’s (2008) 
Snow Index in GBIF and the modelled day of snowmelt; GBIF data limited to records from after 
2010 and above 1000m altitude. The thick black bar in the centre represents the interquartile 
range, the thin black line extended from it represents the 95% confidence intervals, and the red 
dot is the median. 
 
 
The relationship between the snow tolerance of the plants and the estimated day of snow melt 
has been further analysed using an ordinal regression (CLM). The regression analysis of 
the data from GBIF shows a highly significant correlation between modelled day of snowmelt 
and occurrence of snow sensitive species (Table 1). Furthermore, the relationship identified by 
the ordinal regression between the snow index of the occurring plant species and the modelled 
day of snowmelt at the species location varies significantly across the different snow index clas-
ses (per class estimates of the CLM not shown here). Also here the relationship is much more 
robust and shows much less variation within higher snow index classes, especially compared to 
intermediate snow index classes. This supports findings from the visual inspection (Figure 20 
and Figure 21) that the model performs best in the areas where snow cover is truly prolonged, 
meaning where snow-bed habitats and plant communities related to them are located. These 
areas represent the particularly relevant end of the scale for this NiN gradient. 
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Table 2 Performance of ordinal regression models explaining snow index of the species occur-
rences in GBIF filtered by age (records newer than 2010) and altitude in addition (only records 
above 1000 m), using four versions of the developed remote sensing product (v2016_landsat: 
version from 2016 with only Landsat8 input, v2016_landsat_s1: version from 2016 with both 
Landsat8 and Sentinel-1 input, v2018_landsat: version from 2018 with only Landsat8 input, 
v2018_landsat_s1: version from 2018 with both Landsat8 and Sentinel-1 input) 
Ordinal regression (clm) 
Model Estimate Std. Error z value Pr(>|z|) 
Snow Index ~ 
snow_model_v2018_land-
sat_s1 

0.0125561 0.0003073 <2e-16 *** 

Snow Index [> 1000m alt.] ~ 
snow_model_v2018_land-
sat_s1 

0.0166524 0.0007723 <2e-16 *** 

 
 
Table 2 shows a comparison of the performance of ordinal regression models that are sup-
posed to explain the relation between the occurrences of plant species that represent different 
snow index classes and  
• the estimated day of snow melt from different versions of the developed remote sensing 

products 
• just auxiliary data, like the digital elevation model and relevant environmental variables 

derived from those, as well as a 
• combination of the two above 

 
Model results show that adding auxiliary terrain data only marginally improves the performance 
of the latest, pure remote sensing product (v2018_landsat_s1). Gains in explanatory power are 
mostly provided by land surface temperature during summer (EuroLST_BIO10, Metz, Rocchini 
& Neteler 2014) and altitude, which also can be seen as a proxy for temperature in this area. 
Furthermore, the remote sensing products outperform even very complex models without satel-
lite data. 
 
The official, country-wide available terrain model with 10m resolution the tested terrain parame-
ters are based on, is unfortunately usually of relatively limited quality in the Norwegian moun-
tains. Here, standard deviation in altitude is ~ between 4 to 6 meter (Kartverket 2013). This 
terrain model thus does not very well capture more small-scale terrain structures that can have 
a significant influence on where snow accumulates or is blown off. 
 
In any case, the model performance comparison suggests that the developed remote sensing 
product significantly improves our current ability to model spatial patterns of the occurrence of 
snow-dependent plant species in the Norwegian mountain and that in provides information that 
is not available in the other tested auxiliary data. 
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Table 3 Performance of ordinal regression models explaining snow index of the species occur-
rences in GBIF filtered by age (records newer than 2010) and altitude (only records above 
1000 m), using four versions of the developed remote sensing product (v2016_landsat: version 
from 2016 with only Landsat8 input, v2016_landsat_s1: version from 2016 with both Landsat8 
and Sentinel-1 input, v2018_landsat: version from 2018 with only Landsat8 input, v2018_land-
sat_s1: version from 2018 with both Landsat8 and Sentinel-1 input) as well as altitude from the 
10 m Digital Elevation Model (DEM) (Kartverket 2013) and topographic indices derived from it 
(wind exposure, topographic convergence, global solar radiation) as well as Land Surface Tem-
perature during summer (EuroLST_BIO10).  

 
 
 
6.1.5.3 Vegetation plot data collected with regards to snow cover duration 
Plotting the vegetation data from Evju et al. (2012) against the modelled day of snow melt shows 
that the vegetation data does not include extreme snow-lie sites with significantly prolonged 
snow cover (see Figure 22). The maximum day of the year for modelled snow melt at the loca-
tions of the vegetation data is day 200, which corresponds to 19 July (in non-leap-years). This 
represents the lower bound for the occurrence of vegetation types related to delayed snow melt, 
while extreme snow-lie vegetation can be found in Norwegian mountains in areas where the 
snow does not melt before September (see Figure 2). 
  

GBIF data from

Ordinal regression (clm) AIC rank AIC rank
Snow Index ~ v2016_landsat 161787 13 of 16 58252 11 of 16
Snow Index ~ v2016_landsat_s1 160822 9 of 16 58157 9 of 16
Snow Index ~ v2018_landsat 160742 8 of 16 58106 7 of 16
Snow Index ~ v2018_landsat_s1 160497 6 of 16 58038 6 of 16
Snow Index ~ v2018_landsat_s1 * altitude 159722 1 of 16 57870 1 of 16
Snow Index ~ v2018_landsat_s1 * wind_exposure 160400 4 of 16 58032 3 of 16
Snow Index ~ v2018_landsat_s1 * topo_convergence 160371 3 of 16 58032 4 of 16
Snow Index ~ v2018_landsat_s1 * GlobalRadiation 160490 5 of 16 58035 5 of 16
Snow Index ~ v2018_landsat_s1 * EuroLST_BIO10 159798 2 of 16 57894 2 of 16
Snow Index ~ altitude 161080 12 of 16 58488 13 of 16
Snow Index ~ wind_exposure 164053 14 of 16 58838 16 of 16
Snow Index ~ topographic_convergence 164094 15 of 16 58800 14 of 16
Snow Index ~ GlobalRadiation_doy_100_235 164157 16 of 16 58819 15 of 16
Snow Index ~ EuroLST_BIO10 161076 11 of 16 58430 12 of 16
Snow Index ~ altitude * topo_convergence + … 160715 7 of 16 58151 8 of 16
Snow Index ~ EuroLST_BIO10 * topo_convergence + … 160857 10 of 16 58201 10 of 16

>=2000
>=2000 and 

altitude > 1000m
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Figure 22 Snow sensitive species from vegetation plot data over modeled day for snowmelt  
(x-axis: relative frequency per site, y-axis: average estimated day of snow melt) 
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However, the plots above clearly show for both the expert judgements and the Snow Index by 
Odland & Munkejord (2008), that:  
 

• snow affiliated species are almost exclusively found at locations with the latest dates of 
modelled snowmelt, 

• the frequency of snow intolerant species decreases with later modelled day of snow 
melt 

• the order of the in-situ data locations when looking at the modelled day of snow melt 
matches the classification of the locations by the data collectors regarding the duration 
of snow cover. Locations with prolonged snow-lie (“Snøleie”) are found at later esti-
mated dates of snow melt, locations with intermediate duration of snow cover in the 
middle and locations with short and unstable snow cover at earlier dates. 

• locations that represent areas with unstable snow cover contain the highest variation 
regarding the day of snowmelt (they span most number of days). 

 
All in all, the vegetation plot data shows a clear relationship between modelled day of snow melt 
and occurrence of snow sensitive species. This indicates that the model is able to represent 
effect of snow cover duration on the vegetation in the mapped sites. 
 
6.1.6 Discussion and conclusions 
Given enough data, we are able to estimate the dates for snow melt for mountain areas with 
fairly high accuracy (Figure 18). The use of Sentinel-1 data provided us with more observations. 
However, a major drawback with SAR for snow cover monitoring is that it can only detect wet 
snow and cannot distinguish dry snow from bare ground. Thus, we are only able to use positive 
snow cover detections from Sentinel-1 to estimate the date for melted snow cover. This intro-
duces a bias into our estimates by shifting the dates for snow melt towards a later day. This is 
observed with a later average date for melted snow cover when using Sentinel-1 data (day 
152.2), compared to Landsat-8 only (day 125.3). This was also confirmed by the probability 
curves (Figure 19). 
 
The model evaluation (chapter 6.1.5) showed clear and significant correlation between modelled 
estimates for the gradient “Reduced growing-season due to prolonged snow-lie” and occurrence 
of relevant indicator species. This confirms that model estimates are not only reasonably techni-
cally accurate, but also ecologically meaningful and provide ecological information that would 
not have been available at that extent and spatio-temporal resolution otherwise. The developed 
remote sensing product improves our abilities to explain species occurrence in space and time. 
However, evaluation of modelling results also gave indication for the following possible future 
improvements: 

• The accuracy of the estimates is sensitive to the snow cover stability and the quality of 
the observations. For cases when the snow cover varies during the winter season or from 
one winter to the next, the uncertainty will be higher than for cases when the snow cover 
is stable during the winter. This has been confirmed by the evaluation using species 
occurrence data. Thus, it can be meaningful to accompany the model with an estimate 
on snow cover stability. The latter was described as an environmental gradient in NiN 
Version 1.0 (https://www.artsdatabanken.no/Pages/137938). For such a model much of 
the described pre-processing chain (chapter 6.1.1) could be repurposed. 

• Especially in the lower end of the gradient the model rather represents instable snow 
cover (locations where snow is blown off) than early snow “melt”. Thus, labelling it the 
estimate “modelled day of snow melt” can be misleading and should probably rather be 
referred to as a “snow cover duration index”. 

• Due to the nature of satellite imagery it can be expected that the algorithm would not 
work for areas with dense forest cover. In forest the observation of snow is often hindered 
by the canopy of especially coniferous trees, leading to an underestimating of the snow 
cover extent. In order to apply the algorithm in lowlands and especially areas with higher 

https://www.artsdatabanken.no/Pages/137938
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and woody vegetation, it would be required to reduce the effect the forest canopy cover. 
This may be achieved by including e.g. the two-way forest canopy transmissivity into the 
snow cover extent estimation (Metsämãki et al. 2015). However, as the NiN gradient 
“Reduced growing-season due to prolonged snow-lie” is most relevant in mountain ar-
eas, scope of and results from the model could simply be limited to those areas and a 
mask could be applied for lowlands. 

 
In addition, it can be recommended to improve several other aspects before the method can be 
considered operational for usage. These include: (1) The use of Sentinel-2 images in order to 
obtain more samples in the time series, and thereby reduce the uncertainty. However, one chal-
lenge with Sentinel-2 is the lack of thermal bands that are useful to discriminate snow from 
clouds. (2) The use of improved cloud and cloud shadow detection in order to reduce the number 
of misclassified pixels. We experimented by using the cloud detection method proposed by Zhu 
and Woodcock (2012), but this tended to classify small snow patches as clouds and was there-
fore not applicable for our purpose. (3) The use of improved pre-processing of the optical data, 
including topographic normalization and further image registration (Crawford et al. 2013) in order 
to reduce effects of terrain shadow.  
 
The proposed method may also be used to predict changes of the climatic snow cover duration. 
This can be achieved by comparing the dates of snow-melt from two consecutive time-series. 
The quality of the change detection will depend strongly on the number of observations and time 
duration they are acquired over. A time series duration of at least 5-10 years are expected to be 
necessary, and 50 observations per time series should be collected. 
 
 
6.2 Develop, evaluate and refine a model for Tree canopy cover (TT, 

NiN 1.0) 
 
The second gradient selected for a case study was Tree canopy cover. Also here, data was 
specifically collected, pre-processed and analysed, and developed models were evaluated. Pro-
cessing is documented at https://github.com/NINAnor/sentinel4nature. 
 
6.2.1 Data preparation and data fusion 
Multitemporal data from both pairs of Sentinel-1 (A and B) and Sentinel-2 (A and B) were chosen 
as the main data source for the Tree canopy cover model. Both sensors have a known potential 
for vegetation, and especially forest monitoring. Sentinel-1 is particularly interesting for monitor-
ing of boreal forests, where it can be hard to get images from optical satellites with little or no 
cloud cover. Forested areas (appearing green on the RGB composite) have relatively high 
backscatter intensities in both polarizations (especially in VH) and relatively low difference be-
tween the two polarizations when compared to the agricultural cropland (Dostálová et al. 2016). 
 
Satellite images for all years where data was available - 2015-2017 for Sentinel-1 and 2016-
2017 for Sentinel-2 – were downloaded and pre-processed (see Figure 23). 
 
 
 

https://github.com/NINAnor/sentinel4nature
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Figure 23 Workflow for development, evaluation and refinement of a model for Tree canopy 
cover (TT, NiN 1.0). 
 

 
Only uptakes under leaf-on conditions (July-September) were selected from both satellites in 
order to minimize differences across forest types. Additionally, for Sentinel-2, scenes with cloud 
coverage > 10% were filtered out. 
 
 
6.2.1.1 Data fusion 
Besides combining Sentinel-1 and Sentinel-2 data, fusing auxiliary data e.g. from terrain models 
and indices derived from them has been considered in order to extend the layer stack of possibly 
relevant predictors for tree canopy cover. Relevant candidates were mainly 

• slope, which is known to impact occurrence of forest and tree density  
• altitude of the terrain with regards to forest line or tree line, which would delineate the 

climatic boundaries for forest and thus tree canopy cover 
However, both variables were disregarded as artificial bands in further analysis. The effect of 
slope is mainly limited to very steep locations (> 64 degrees, Bryn et al. 2013), that cover only a 
very low percentage (~ 0.04%) of the total land area in Norway. Spatial data on forest line that 
covers entire Norway is only available at relative coarse scale (50m resolution) (Blumentrath & 
Hanssen 2010). It is derived from topographic maps and thus bound to update cycles in the 
topographic data. A similar dataset on tree line has not been available. Thus, it was expected 
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that the datasets mentioned above introduce more noise in the analysis of the high-resolution 
satellite imagery than they contribute to improve the predictive power of the tree canopy cover 
model. However, a future improved estimate on forest line could help to exclude false possible 
signals in the mountains. 
 
For fusion of Sentinel-1 and Sentinel-2 images, data from both satellites were first co-registered 
to the terrain model during pre-processing (see Figure 23), in particular terrain correction (Sen-
tinel-1) and atmospheric correction (Sentinel-2). During that pre-processing step, satellite images 
were resampled to the pixel alignment of the terrain model. That way all input data to the regres-
sion analysis had unified extent and resolution. 
 
6.2.1.2 Scene selection 
For each case study site, a rectangular study extent was defined prior to the analysis. The size 
and position of the rectangle was chosen so that it captured the training data sites, as well as a 
variety of topographical features (valleys, mountain tops of different heights) and a variation of 
forest types with varying tree canopy density. In the study sites Oslofjord and Lurøykalven, the 
extent is a 10 x 10 km rectangle and in case of Hjerkinn a 20 x 20 km rectangle. In Sunndalen, 
the extent was divided into two smaller rectangles (12 x 15 km and 7 x 15 km) because no 
Sentinel-2 scene covered the entire area. 
 
6.2.1.3 Sentinel-1 data preprocessing 
Sentinel-1 data was pre-processed based on the methodology of Dostálová et al. (2016) (see 
Figure 23). From Sentinel-1A/B IW Ground Range Detected (GRD) Level-1 products were se-
lected, because the “combination of two polarization bands (VV and VH in this case) offers the 
possibility to use the backscatter intensities from the C-Band SAR sensor for a classification of 
various land cover types” (Dostálová et al. 2016). In addition, using multi-temporal data from 
Sentinel-1 helps to overcome limitations in precision compared to analysing single SAR images 
caused by speckle noise or topographic effects (Dostálová et al. 2016). 
 
Removal of grid border noise (extremely low backscatter values (below -30 dB) occur at the 
image borders due to thermal noise), sub-setting to the area of interest, application of orbit file, 
radiometric calibration to sigma-0 values and Range-Doppler terrain correction were conducted 
using the graph processing command line tool (gpt) from ESAs SNAP tool box (version 5). For 
terrain correction, the 10m digital elevation model provided by the Norwegian Mapping authority 
was used. Because the Interferometric Wide swath (IW) data from Sentinel-1 have a spatial 
resolution of ~20m with the pixel spacing of 10m, band values were resampled to the resolution 
and pixel alignment of the terrain model used. As in Dostálová et al. (2016) no multi-looking or 
speckle filtering was applied because the aggregation of multi-temporal image stacks can com-
pensate for the issues tackled by these techniques. 
 
For each case study site, between 50 and 83 Sentinel-1 scenes were downloaded for the three-
summer months (July to September) for 2015 to 2017. The downloaded scenes were visually 
checked for invalid data and the precision of the georeferencing. 
 
Conversion from linear to decibel scale, computation of the difference between VV and VH po-
larisation per scene, as well as the aggregation of time series and texture analysis was con-
ducted in GRASS GIS 7.4 (GRASS GIS Development Team 2017). From the single scenes in 
the time series of Sentinel-1 images, mean, median, quartiles, standard deviation, variance and 
the so-called dry-parameter were computed by year as well as across all three years. The dry-
parameter is computed as the average pixel value of all pixels with values below the first quartile. 
The aggregated pre-products were then used in further analysis. 
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6.2.1.4 Sentinel-2 data pre-processing 
For each case study site, Level-1C Sentinel-2 scenes covering the entire study extent were 
downloaded using the Sentinelsat utility (Wille & Clauss 2016). The Level-1C product2 is com-
posed of 100 x 100 km2 tiles and contains the Top Of Atmosphere (TOA) reflectances along with 
the parameters to transform them into radiances. 
 
In order to minimize the effect of seasonal variations in vegetation cover and at the same time 
minimize differences across forest types, leaf-on scenes (beginning of June – end of September) 
from years 2015 (launch of the first Sentinel-2 satellite), 2016 and 2017 were included in the 
analysis. Additionally, a constraint of maximum 10 % cloud cover was used.  
 
To obtain the Bottom Of Atmosphere (BOA) reflectances from TOA reflectances, atmospheric 
corrections were applied to each individual band using i.atcorr module of GRASS GIS. The soft-
ware uses the 6s algorithm (Second Simulation of Satellite Signal in the Solar Spectrum), in 
which following parameters need to be specified: 

- geometrical conditions 
- month, day, time, longitude and latitude of measurement 
- atmospheric model 
- aerosol model 
- aerosol optical depth or visibility 
- mean target elevation above sea level 
- sensor height 
- sensor band 

 
Table 3 provides an overview of 6s parameters used as static parameters for atmospheric cor-
rection at the different case study sites. 
 

Table 4 Parameters used for atmospheric correction at the different case study sites 

 Hjerkinn Lurøykalven Oslofjord Sunndalen 
Geometrical 
conditions 

Sentinel-2A /  
Sentinel-2B 

Sentinel-2A / 
Sentinel-2B 

Sentinel-2A / 
Sentinel-2B 

Sentinel-2A / 
Sentinel-2B 

Atmospheric 
model Subarctic summer Subarctic  

summer 
Subarctic  
summer 

Subarctic  
summer 

Aerosol 
model Continental Maritime Urban Continental 

Aerosol  
optical depth 0.1 0.1 0.1 0.1 

Sensor 
height 1 000 km 1 000 km 1 000 km 1 000 km 

 
Month, day, time, longitude and latitude of measurements, as well as mean target elevation 
above sea level, were computed individually for each scene. Aerosol optical depth was estimated 
to be 0.1 in average, but further research needs to be carried out to precisely estimate this pa-
rameter. Finally, sensor band number was set individually for each band. 
 
Because two of the case study sites are located in a mountainous area, and a lot of shading 
occurs in the imagery, it was especially important to perform topographic corrections. In topo-
graphic corrections, the terrain, as well as position (zenith and azimuth) of the sun at the time of 
sensing is used to create an illumination model. Reflectance values in areas exposed to the sun 
are decreased, while reflectance values in areas in the shadow are increased. The atmospheric 

                                                   
2 https://earth.esa.int/web/sentinel/user-guides/sentinel-2-msi/product-types/level-1c 
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corrections were performed for each band separately using the i.topo.corr module in GRASS 
GIS and minnaert method.  
 
The Sentinel-2 Level-1C products were resampled with a constant Ground Sampling Distance 
(GSD) of 10, 20 and 60 m depending on the native resolution of the different spectral bands. To 
unify the resolution of spectral bands to 10 m, a Gaussian filter with a 3 x 3 neighbourhood was 
applied to the 20m and 60m bands. 
 
Additional artificial bands were computed for each scene - The Normalized Difference Vegetation 
Index (NDVI) and the Modified Normalized Difference Water Index (MNDWI). NDVI is used for 
detection and quantification of green vegetation. It normalizes the green leaf scattering in the 
near infra-red wavelength and chlorophyll absorption in the red wavelength, and for Sentinel-2 
products is computed as follows: 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =
𝐵𝐵08− 𝐵𝐵04
𝐵𝐵08 + 𝐵𝐵04

  
 
The values span from -1 to 1. Negative values correspond to water, values close to 0 represent 
bare rock, sand or snow and vegetation has positive values. The higher the value, the higher the 
density of green leaves.  
 
MNDWI is an index used for distinguishing water bodies, which strongly absorb in the range from 
visible to infrared wavelengths. For Sentinel-2 products MNDWI is computed as follows: 
 

𝑀𝑀𝑁𝑁𝑁𝑁𝑀𝑀𝑁𝑁 =  
𝐵𝐵03− 𝐵𝐵11
𝐵𝐵03 + 𝐵𝐵11

 
 
Small, negative values represent vegetation, while high (positive) values correspond to water. 
 
Before the next steps were carried out, the atmospherically and topographically corrected scenes 
were manually checked for large patches of snow (especially in early or late summer in case 
study sites in Hjerkinn and Sunndalen). Since the 10 % cloud cover limit applies to the entire  
100 x 100 km2 scene, and not the study extent, several scenes had to be excluded due to large 
portions of their area being covered by clouds. Additionally, any otherwise corrupted scenes (e.g. 
shifted or containing no data) were excluded as well.  
 
From all the remaining scenes, a median value of each band (including NDVI and MNDWI) was 
computed for each case study site in order to minimize the effect of seasonal variations in veg-
etation cover. Finally, shadow and water were masked out. Applying topographic corrections 
resulted in areas in complete shadow being masked out. Additionally, in order to avoid the neg-
ative effect of water bodies on spectral unmixing, water pixels were masked out using NDVI, 
MNDWI and slope thresholding. An overview of thresholds used in individual case study sides is 
provided in Table 4 (pixels need to satisfy all conditions in order to be used in further analysis). 
 

Table 5 Threshold values used for masking water 

 NDVI MNDWI Slope 
Hjerkinn > 0.00 < 0.02 - 
Lurøykalven > 0.00 - - 
Oslofjord > -0.04 < 0.40 - 
Sunndalen > 0.00 < 0.02 > 0.5 

 
6.2.1.5 Endmember selection and spectral unmixing 
Linear spectral unmixing assumes that the spectrum of an image consists of a mixture of several 
spectrally distinct surface components. If the spectral response of these distinct components 
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(also called the endmembers) is known, and a linear mixture is assumed, it is possible to derive 
the abundance of each endmember in the pixel (Bai et al. 2012).  
 
Many studies proved the usefulness of linear spectral unmixing in estimating the proportions of 
various land cover classes, including forest cover (Bai et al. 2012) and forest types (Gudex-Cross 
et al. 2017). Gudex-Cross et al. (2017) applied spectral unmixing to multi-temporal Landsat im-
agery to produce a thematic forest classification of a mixed composition of ten common tree 
species in northern New York and Vermont, USA. Additionally, the basal area maps were refined 
using a hierarchical ruleset classification. Similarly, Bai et al. (2012) examined the capability of 
linear spectral unmixing of Landsat-7 Thematic mapper imagery to improve forest cover estima-
tion. In the case study carried out in a subtropical forest in southeast China, they achieved only 
a slight (0.8 %) underestimation of the forest area compared to the forest inventory statistics. 
 
Inspired by the work of Schulte to Bühne & Pettorelli (2018), who argued that fusing multispectral 
and radar images can significantly improve the ability to assess the distribution of ecosystems, 
Sentinel 1 dry parameter images as well as the artificial NDVI band were included in the 
endmember selection and spectral unmixing alongside the atmospherically and topographically 
corrected Sentinel 2 bands.  
 
The endmembers have to be selected prior to the analysis – either by selecting the spectral 
response of individual endmembers from a spectral library or by detecting the most distinct pixels 
in an image. In this study, several endmember extraction methods from the Python module 
PySptools (Therien 2016) were compared - the Fast Iterative Pixel Purity Index, N-FINDR and 
the Pixel Purity Index, out of which the N-FINDR algorithm outperformed the other two in terms 
of result interpretation. The Fast Iterative Pixel Purity Index and the Pixel Purity Index algorithms 
often detected edges of masked features (snow cover, clouds, water bodies).  
 
The PySptools module offers three methods of linear spectral unmixing – Unconstrained Least 
Squares (UCLS), Non-negative Constrained Least Squares (NNLS) and Fully Constrained Least 
Squares (FCLS). All of them perform linear spectral unmixing by means of least square estima-
tion of abundances from spectral signatures of input endmembers. They differ in terms of the 
constraint put on the values of output class abundances – while in UCLS, any value of abun-
dance is allowed, in NNLS the resulting abundances must be non-negative, and in FCLS the 
abundances must be between 0 and 1, and together the abundances must fulfil the sum-to-one 
constraint. (Kumar et al. 2016, Therien 2016). When compared in terms of the interpretability of 
the results, the NNLS and FCLS algorithms proved to perform significantly better than the UCLS 
algorithm. Thus, UCLS was excluded at an early stage from model development. 
 
6.2.2 Training and validation data 
The model for forest canopy cover gradient requires both training and validation data because 
the final maps with forest canopy cover estimates are generated by means of regression analy-
sis. From both detailed, manually digitized forest canopy and air-born laser scanning data (Light 
Detection and Ranging, LiDAR) forest canopy cover was estimated per pixel in the satellite im-
agery. 75% of each of these datasets were used to train the models for each case study site, 
while the other randomly chosen 25% were used for cross-validation. 
 
In addition to such training and validation data, the model results were evaluated through visual 
inspection against orthophotos in comparison with existing, similar remote sensing products. 
Furthermore, a correlation analysis was conducted using tree canopy cover estimates collected 
at a transect along an altitudinal gradient that crosses forest and treeline and thus covers the 
transition from dense forest to alpine habitats. 
 
6.2.2.1 Manually digitized tree canopy cover 
For tackling the tree canopy cover gradient, recent, very high-resolution orthophotos were used 
to manually digitize tree canopy cover below the resolution of satellite pixels (see Figure 24). 
From these vector data, the percentage of canopy cover has been calculated per pixel of the 
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satellite imagery used (resolution and alignment of the pixels are equal to the satellite images). 
This results in a continuous value of percent of canopy cover per pixel, which is supposed to 
represent the tree canopy cover gradient from NiN. 
 
 

 

Figure 24 Manually digitized tree canopy cover of Gressholmen in Oslofjord study area. Left: 
Orthofoto, middle-left: manually digitized tree canopy polygons, middle-right: tree canopy poly-
gons split by vector grid corresponding to pixels in the satellite imagery, right: raster represen-
tation of the percentage of tree canopy cover per pixel 
 
 
6.2.2.2 Tree canopy cover estimates from LiDAR 
Because the manual digitization from orthophotos is very labour intensive, forest canopy was 
also estimated from air-born laser scanning data (Light Detection and Ranging, LiDAR), down-
loaded from hoydedata.no. This way a larger spatial extent could be covered with training and 
validation data, and thus a wider range of situations (tree canopy densities and spectral profiles 
within pixels) could be included in training and validation data. This is particularly important as 
the chosen modelling technique using Gradient Boosted Regression Trees is not able to extrap-
olate. 
 
In order to generate suitable training and validation data from LiDAR data, tree canopy cover 
was estimated from ground and non-ground returns (see Figure 25). Using the resolution and 
alignment from the satellite imagery, the percentage of 0.5 m pixels with non-ground LiDAR re-
turns with more than 2 m height above ground was calculated in relation to total density of 0.5 m 
pixels with LiDAR returns. This procedure accounts for differences in point density in the LiDAR 
data (e.g. because of overlap in flight strips) and gives a rough estimate of tree canopy cover. 
Since the LiDAR data does not distinguish between vegetation and non-vegetation returns in the 
non-ground LiDAR points, and because LiDAR data in the Lurøykalven case study site was partly 
outdated due to recent logging activities, areas with valid forest returns were manually (yet 
coarsely) delineated. Training and validation data was only generated within the areas where no 
logging activity could be identified and it could be assumed that the LiDAR data represent the 
current state. 
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Figure 25 Tree canopy cover estimates from LiDAR of Lurøykalven. Left: Orthofoto, middle: 
height above ground of LiDAR returns, right: LiDAR derived tree canopy cover used as training 
data. 
 
6.2.2.3 Visual inspection against orthophotos and existing similar products 
The maps resulting from modelling tree canopy cover were spot checked using recent orthopho-
tos from “Norge i Bilder”3 and compared to the following three remote sensing products with a 
more or less comparable scope: 

• the Global forest cover change maps developed by Hansen et al. (2013) 
• the Norwegian forest resource map SAT-SKOG developed by Gjertsen & Nilsen 

(2012) 
• the Vegetation map for Norway developed by Johansen (2009) 

 
6.2.2.4 Tree canopy and vegetation pattern across forest and tree line  
Finally, detailed data on tree canopy and vegetation pattern along an altitudinal gradient were 
correlated with the estimates on tree canopy cover. These data (see Figure 26) were collected 
by Løkken & Hofgaard (unpublished) for the ECOFUNC project (from RCN grant MILJØ2015, 
project number: 244557) following a transect that crosses forest and tree line. These data were 
also used to compare the explanatory power of the newly developed models with the three ex-
isting remote sensing products listed above. 
 
 

                                                   
3 https://kartkatalog.geonorge.no/metadata/norge-i-bilder/norge-i-bilder-wms-ortofoto/dcee8bf4-fdf3-
4433-a91b-209c7d9b0b0f 
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Figure 26 Data on tree canopy and vegetation pattern across forest and tree line in Sunndalen 
(Løkken & Hofgaard, unpublished) 
 
 
6.2.3 Model development 
For the regression analysis Gradient Boosted Regression Trees (GBRT) were chosen as mod-
elling technique due to their predictive power, robustness for outliers, and their ability to handle 
non-linear relations as well as feature interactions. The Python GBRT implementation from scikit-
learn (scikit-learn 0.19.1) was used for model development. 
 
For each case study site, a twofold modelling process was conducted, that consists of: 

1. Automatic hyper-parameter optimization using a range of appropriate tuning parameters 
2. Application of the hyper-parameters identified as optimal to a final model 

That way a model on tree canopy cover was produced using either just the satellite bands and 
artificial bands generated from them or results from the two spectral un-mixing algorithms applied 
to the same bands. Here, the training and validation data from manually digitized forest canopy 
was used and root mean square error (RSME) and R2 were tracked for every model. That way, 
performance of the different models could be compared using RSME and R2. 
 
However, because results from the models based on the manually digitized training data showed 
weaknesses due to the lack of variation covered in the training and validation data, another set 
of models was created the same way, but with training and validation data derived from LiDAR. 
In addition, the three most influential layers from the best-performing spectral un-mixing algo-
rithm (judged by R2) were added as input to the latter set of models. The reason for that was that 
the spectral un-mixing – although being less accurate compared to using satellite bands directly 
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- seemed to improve model performance regarding separation of moist vegetation and ground 
from forest / tree canopy. 
 
For all models the following plots were generated to help interpret the modelling results: 

- deviance plots that show test and training error with regards to number of boosting itera-
tions 

- plots of feature importance that show the influence of each input layer (e.g. satellite bands 
or spectral un-mixing results) on the final model 

- partial dependence plots that show how a feature affects the estimate of tree canopy 
cover; such plots were also generated for the pair-wise interactions between the 5 most 
influential features 

 
 
6.2.4 Results 
For each of the four case study sites, three GBRT models based on manually digitized training 
data were created – one using satellite bands and artificial bands generated from them as pre-
dictors, and two using results of fully constrained least squares and non-negative least squares 
spectral unmixing as predictors. Furthermore, for Hjerkinn, Lurøykalven and Sunndalen case 
study sites, a GBRT model based on LiDAR-derived training data as response and satellite 
bands as predictors was created. 
 
The result of each GBRT model is a prediction raster of tree canopy cover coverage, ranging 
from 0 % to 100 % in 10m resolution. Alongside the results, plots of predictor importance were 
created to estimate the most influential spectral bands. Furthermore, the Mean Square Error 
(MSE) and R squared (R2) were computed to enable comparison amongst models. An overview 
of the created models is provided in Table 5. For each model, the six most important predictors 
(spectral bands) are stated, as well as Mean Square Error (MSE) and R squared (R2). 
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Table 6 Summary of tree canopy prediction results per case study site 
Case study 

Site 
Response Manually digitized training data LiDAR-derived training 

data 
Predictors Satellite bands FCLS  

unmixing 
NNLS  

unmixing 
Satellite bands 

Hjerkinn Predictors B02, B04, B01,  
B05, NDVI, B09 

- - B02, B04, B01, B09, B05, 
B08 

MSE 0.02 0.06 0.06 81.01 
R2 0.77 0.31 0.40 0.78 

Lurøykalven Predictors NDVI, dry (VH), B01,  
B09, dry (VH-VV), dry (VV) 

- - dry (VH), B04, dry (VV), 
B03, B05, B01  

MSE 0.019 0.03 0.02 415.68 
R2 0.34 0.20 0.18 0.64 

Oslo Predictors B04, dry (VH), B01,  
B09, B02, NDVI 

- - - 

MSE 0.03 0.05 0.05 - 
R2 0.79 0.71 0.71 - 

Sunndalen Predictors B05, B02, dry (VH-VV), 
NDVI, B01, B09 

- - B02, B05, dry (VH), B04, 
NDVI, B03 

MSE 0.02 0.04 0.03 107.46 
R2 0.74 0.45 0.51 0.82 

 
 
The predictor importance plots of models using satellite bands were summarized into a frequency 
plot - the number of occurrences of each predictor (spectral band) amongst the six most im-
portant predictors was recorded (see Figure 27).  
 

 
Figure 27 Frequency at which spectral bands were represented among the 6 most important 
predictors across the different produced models 
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6.2.5 Evaluation 
The results were first evaluated visually by comparison to orthophotos, and then visually and 
statistically by comparison to existing forest products. 
 
6.2.5.1 Visual inspection against orthophotos 
Hjerkinn 
In the Hjerkinn case study site, five regression models were applied to detect forest cover: 

1. manually digitized training areas omitting water pixels as response, satellite bands and 
artificial bands generated from them as predictors 

2. manually digitized training areas including water pixels as response, satellite bands and 
artificial bands generated from them as predictors 

3. manually digitized training areas including water pixels as response, results of fully con-
strained least squares spectral unmixing as predictors 

4. manually digitized training areas including water pixels as response, results of non-neg-
ative least squares spectral unmixing as predictors 

5. LiDAR-derived training data as response, satellite bands and artificial bands generated 
from them as predictors 

 
The model based on manually digitized training areas omitting water pixels (1) was excluded 
immediately, as it overestimated the tree canopy cover along the entire shore (see Figure 30 
and explanation below). In terms of explanatory values (R2), the models using satellite bands 
and artificial bands as predictors (2 and 5) performed significantly better (R2 = 0.77 and 0.78 for 
the model based on manually digitized (2) and LiDAR-derived (5) training datasets, respectively) 
than models using the results of spectral unmixing as predictors (R2 = 0.32 and 0.40 for models 
using results of fully constrained least squares (3) and non-negative least squares (4) spectral 
unmixing, respectively).  
 
Visual inspection revealed that the regression model based on LiDAR-derived training dataset 
overestimated the tree cover in the mountain area (see the upper left corner of the two images 
at the top of Figure 28) but performed better in terms of characterizing the non-uniform tree 
canopy cover along the forest line (see Figure 29). 
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Figure 28 Hjerkinn case study site – comparison of results with different training data and dif-
ferent predictors.  
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Figure 29 Zoom 1 into Hjerkinn case study site - comparison of results with different training 
data and different predictors.  
 
 
A detail from the Hjerkinn case study site illustrates the contribution of LiDAR training data-based 
regression (Figure 29). Whilst the output of the manually digitized area-based regression fails 
to detect sparse tree canopy and at the same time overestimates the canopy density in the con-
tinuous forest cover, the LiDAR training data-based regression succeeds in distinguishing be-
tween small nuances within the tree canopy and captures fine details. The result of the manually 
digitized area-based regression of FCLS spectral unmixing is overall underestimating the tree 
canopy cover density and fails to detect the continuous forest cover. 
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Figure 30 Zoom 2 into Hjerkinn case study site - comparison of results with different training 
data and different predictors.  
 
 
A second detail from the Hjerkinn case study stresses the importance of including areas of water 
bodies in the training data. In Figure 30, the upper right image illustrates the result of a regres-
sion based on a manually digitized area where pixels of water bodies were not included. The 
pixels along the entire shore line have tree canopy cover between 11 and 50 %. The problem 
diminishes when pixels of water bodies are added into the training dataset (bottom left image) or 
when LiDAR-derived tree canopy is used as training data (bottom right image). This effect of 
“mixed signal”-pixels at the land water interface is further explained in Section 3.3.2.  
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Lurøykalven 
In the Lurøykalven case study area, four regression models were applied to detect forest cover: 

1. manually digitized training areas including water pixels as response, satellite bands and 
artificial bands generated from them as predictors 

2. manually digitized training areas including water pixels as response, results of fully con-
strained least squares spectral unmixing as predictors 

3. manually digitized training areas including water pixels as response, results of non-neg-
ative least squares spectral unmixing as predictors 

4. LiDAR-derived training data as response, satellite bands and artificial bands generated 
from them as predictors 
 

Unlike the results in Hjerkinn case study area the regression model using LiDAR-derived training 
data as response and satellite and artificial bands as predictors (4) performed considerably better 
than the remaining regression models (1, 2, 3) – both in terms of R2 (0.64 in case 4, 0.34, 0.20 
and 0.18 in cases 1, 2 and 3, respectively) and visually (see Figure 31). The feeble performance 
of the regression models based on manually digitized training areas is caused primarily by the 
insufficient amount of tree canopy cover in the training data. 
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Figure 31 Lurøykalven case study site - comparison of results with different training data and 
different predictors.  
 
 
Figure 32, a detail from the Lurøykalven case study area, illustrates the importance of using a 
sufficiently large training dataset in the regression. The regression based on manually digitized 
training data performed poorly in both cases. Marshes and forest clearings were often confused 
with tree canopy. On the other hand, the regression based on LiDAR-derived training data man-
aged to detect sharp forest edges as well as sparse vegetation. 
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Figure 32 Zoom into Lurøykalven case study site - comparison of results with different training 
data and different predictors.  
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Sunndalen 
In the Sunndalen case study area, four regression models were applied to detect forest cover: 

1. manually digitized training areas including water pixels as response, satellite bands and 
artificial bands generated from them as predictors 

2. manually digitized training areas including water pixels as response, results of fully con-
strained least squares spectral unmixing as predictors 

3. manually digitized training areas including water pixels as response, results of non-neg-
ative least squares spectral unmixing as predictors 

4. LiDAR-derived training data as response, satellite bands and artificial bands generated 
from them as predictors 
 

Similarly to the previous case study areas, the regression model based on LiDAR-derived train-
ing data as response and satellite and artificial bands as predictors (4) outperformed the other 
models both in terms of R2 (0.82 in case 4, 0.74, 0.45 and 0.51 in cases 1, 2 and 3, respectively) 
and visually. However, compared to the regression models based on manually digitized training 
areas carried out in the other case study sites, the regression model 1 in Sunndalen achieved 
results comparable to the best regression model (4). This fact emphasizes the influence of the 
quality of training data on the results. In the Sunndalen case study site, training data were ob-
tained from several training sites in various parts of the tree canopy gradient. Consequently, the 
tree canopy cover was represented in the training data in various densities and compositions. 
The visual comparison of results for the Sunndalen case study area is provided in Figure 33 and 
Figure 34. 
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Figure 33 Sunndalen case study site - comparison of various forest products with different 
training data and different predictors.  
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Figure 34 Zoom into Sunndalen case study site - comparison of various forest products  
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Oslofjord 
In the Oslofjord case study site, three regression models were applied to detect forest cover: 

1. manually digitized training areas including water pixels as response, satellite bands and 
artificial bands generated from them as predictors 

2. manually digitized training areas including water pixels as response, results of fully con-
strained least squares spectral unmixing as predictors 

3. manually digitized training areas including water pixels as response, results of non-neg-
ative least squares spectral unmixing as predictors 
 

All three models are built on manually digitized training areas including water pixels as response. 
The Oslofjord case study site is comparably different than the other three case study sites. How-
ever, the regression model using satellite and artificial bands as predictors (1) again proved to 
be the best one. The R2 values of the models are not dramatically different (0.75, 0.71 and 0.71 
for models 1, 2 and 3, respectively), but visually the first model outperforms the other two (see 
Figure 35 and Figure 36). 
 
 

 
Figure 35 Oslofjord case study site - comparison of results with different training data and dif-
ferent predictors.  
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Figure 36 Zoom 1 into Oslofjord case study site - comparison of results with different training 
data and different predictors.  
 
 
In forested areas, the regression model using satellite and artificial bands as predictors (1) cap-
tures well both broad-leaf and coniferous trees. On the other hand, the regression model using 
results of FCLS spectral unmixing (2) fails at detecting compact broad-leaf tree canopy cover. 
Figure 36 also illustrates the confusion caused by maintained grass cover (football pitch in the 
left part of the image). It is detected as sparse vegetation by both models. 
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Figure 37 Zoom 2 into Oslofjord case study site - comparison of results with different training 
data and different predictors. 
 
 
In built-up areas, misclassifications occur due to shadows especially from lager buildings. Shad-
ows are often detected as sparse vegetation. This issue is more relevant in case of the regres-
sion model using results of FCLS spectral unmixing (2). Closed canopy cover (parks) is again 
better detected by the regression model using satellite and artificial bands as predictors (1). On 
the other hand, this regression model misclassifies the gravel paths in the park in the upper left 
corner as sparse vegetation (Figure 37).  
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6.2.5.2 Tree canopy and vegetation pattern across forest and tree line in comparison to 
existing remote sensing products  

Along with visual inspection, the contribution of remote sensing in modelling of tree canopy cover 
was assessed by comparison with similar products. These are the vegetation map of NORUT 
(Johansen 2009), High-Resolution Global Maps of 21st-Century Forest Cover Change by 
Hansen et al. (2013) and SAT-SKOG forest map from NIBIO (Gjertsen & Nilsen 2012).  
 
The comparison was carried out in the Sunndalen case study site. Forest data from the three 
abovementioned sources, as well as the results of two best-performing regression models, were 
compared with ground vegetation measurements (Løkken & Hofgaard unpublished) by means 
of correlation coefficients. To ensure robustness of the comparison, three types of correlations – 
Pearson’s, Spearman’s and Kendall’s coefficients were observed. 
 
Table 6 stresses the improved detectability of tree canopy using Sentinel-imagery. The devel-
oped Gradient boosted regression tree models based on Sentinel-1 and Sentinel-2 data (GBRT1 
and GBRT2) perform constantly better than any other available data. However, comparing cor-
relations of resulting data and trees (Layer A) and of resulting data and trees and high shrubs 
(Layers A+B) supports the conclusion that remote sensing fails to distinguish between different 
layers of vegetation with similar spectral response (i.e. trees and shrubs). 
 

Table 7 Comparison of existing remote sensing products on forest / tree canopy cover with 
the developed models 
Layer A4 HANSEN NORUT5 SAT-SKOG GBRT 1 GBRT 2 
Pearson’s 0.42 0.46 0.31 0.62 0.64 
Spearman’s 0.43 0.58 0.36 0.68 0.67 
Kendall’s 0.39 0.54 0.34 0.55 0.54 
Layers A+B4 HANSEN NORUT SAT-SKOG GBRT 1 GBRT 2 
Pearson’s 0.27 0.40 0.21 0.66 0.66 
Spearman’s 0.32 0.56 0.31 0.73 0.73 
Kendall’s 0.28 0.51 0.28 0.58 0.59 

 
Figure 33 and Figure 34 illustrate the added value of the results of regression models. These 
provide significantly higher spatial precision and accuracy (the resolution is 10 m), as well as 
higher information resolution (continuous scale from 0 to 100 %). Moreover, they are capable of 
capturing small details in forest cover, such as variable densities, forest clearings, marshes etc.  
 
6.2.6 Discussion and conclusions 
Section 6.2 aimed at development, evaluation and refinement of a model for Tree canopy cover. 
Series of Sentinel-1 and Sentinel-2 data were combined and used in a regression model to de-
rived the tree canopy cover, both directly, and also indirectly through spectral unmixing results. 
LiDAR data as well as manually-digitized training data were used to train and validate the model. 
 
We used a Gradient boosted regression trees (GBRT) method to develop the regression model. 
GBRT is robust towards outliers and has the ability to handle non-linear relations as well as 
feature interactions. The result of the regression is a prediction of tree canopy cover density. For 
each case study site, three regression models were applied to detect tree canopy cover: 1) based 
on manually digitized training areas and satellite bands, 2) based on manually digitized training 
areas and results of spectral unmixing, and 3) based on LiDAR-derived training areas and sat-
ellite bands. The results were assessed both visually and in terms of statistical values (MSE, R2). 
                                                   
4 In Layer A, trees higher than 2 m were recorded, in Layer B, shrubs higher than 70 cm were rec-
orded. 
5 NORUT data were assigned tree canopy density as follows: classes 1, 4, 5 – 100 %, class 6 – 75 
%, classes 2, 3, 8 – 50 %, class 7 – 25 %, other classes – 0 %. 
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Using the LiDAR-derived training data led to consistently better results than using manually dig-
itized training data. Furthermore, the models based on spectral unmixing results perform con-
sistently poorer than those based on original spectral bands. Thus, spectral unmixing could not 
improve forest canopy cover estimates significantly. A further investigation for the causes of 
spectral unmixing failure needs to be carried out. In an ideal case, the spectral unmixing would 
directly lead to estimates of tree canopy cover, and no regression (and consequently no training 
data) would be required. 
 
Alongside the various sources of inaccuracies caused by the input data, the largest influence on 
the quality of the result is caused by the training data. The number, distribution and land cover 
of the training sites turned out to have a fundamental effect on the results. It is preferable to 
include several training sites from various locations in the study area, and include both forested 
areas, as well as all kinds of non-forest land cover types (e.g. shrubs, open land and water). 
Excluding a land cover type, especially water, from the training data might lead to misclassifica-
tions. By including water pixels in the training data, the misclassification of mixed pixels (contain-
ing land and water) along the shoreline of water bodies as forest was dramatically reduced. The 
importance of good training data is particularly obvious in the Lurøykalven case study site, where 
only a small portion of the manually-digitized training area is covered by forest. Marshes and 
forest clearings were often confused with tree canopy. On the other hand, in the Sunndalen case 
study site the manually-digitized training data led to much better results, because the training 
sites were distributed in all parts of the tree canopy gradient. LiDAR measurements are generally 
a better source of training data, because they capture larger areas of various land cover types. 
However, problems occur as well – for example, buildings and boulders are sometimes confused 
with trees. Furthermore, despite the better performance of the regression based on LiDAR-de-
rived training data, a question remains how to distinguish between tree canopy and shrub vege-
tation, which often have the same spectral response both in Sentinel-1 and Sentinel-2 bands.  
 
Even with thorough model tuning applied, overfitting turned out to be a challenge during model 
fitting due to the large number of predictors. Therefore, further model simplification and reduction 
of the number of predictors would be recommended. However, the set of the six most important 
spectral bands used as predictors is not entirely consistent across the case study sites (see 
Table 6).This is on the one hand a possible result of overfitting and suggests on the other hand 
that model simplification should be applied with a broad set of training data across case study 
sites. Across sites, it is the bands of the visible spectrum (B01-B05) and some bands of the near 
infrared spectrum (B09) which are the most frequent ones. Moreover, the artificial bands (Senti-
nel-1 derived dry parameters, NDVI) turned out to be very frequent. This outcome stresses the 
importance of combining Sentinel-1 and Sentinel-2 data in the modelling. Furthermore, when 
only Sentinel-2 bands were used, grass was often mis-detected as forest, due to its similar re-
sponse in the Sentinel-2 bands.  
 
Still, the results produced by the best-performing regression model outperformed the current 
forest products used in Norway – both in terms of level of spatial detail (higher resolution) and 
information detail (tree canopy cover density). Also, small nuances especially at the forest line 
are captured in higher detail – compared to for example the SATSKOG product, which performed 
the poorest at forest line, most likely due to the fact that this data is limited to a manually mapped 
forest map (AR5) and that its focus is on productive forest and forestry. Furthermore, national 
products turned out to perform better than global products (Hansen et al. 2013). 
 
In its current form, the developed approach for estimating tree canopy cover aggregates a time 
series of satellite scenes from several years, in order to minimize the seasonal variations in 
vegetation cover and at the same time minimize differences across forest types. However, when 
comparing scenes visually, we could identify large areas where significant changes in the land-
scape appeared relatively fast, caused e.g. by human intervention (logging) or natural causes 
(avalanches). Such phenomena need to be considered when training data is collected. Here, 
only areas with relatively constant land cover in time should be used in the training and a close 
temporal match between training data and satellite imagery is required. 
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At the same time this illustrates the potential of the approach for change detection in tree canopy 
cover. LiDAR can be used for relatively accurate estimates of tree canopy extent, but frequent 
LiDAR data acquisition over wide areas (e.g. entire Norway) cannot be expected to happen in 
the near future. Here, the developed methodology can bridge the gap. Locally collected LiDAR 
data could be used to train models based on satellite data for the same year that cover wider 
areas. If this would allow change detection on a year-to-year basis or if a two to three year period 
is required, depends on the availability of recent LiDAR acquisitions in space and time as well 
as on the availability of cloud free satellite images for the areas in question. 
 
When it comes to the applicability of the model, urban areas turned out to be a special case 
where the developed approach is less suitable and in need of adjustments. Both algorithms (us-
ing satellite bands or spectral unmixing) based on the manually digitized training data tend to 
falsely classify urban areas as forest. For the specific context of mapping in urban areas, different 
parameters need to be selected. For SAR images Dekker (2003) showed that mean SAR inten-
sity gives the best performance for delineating tree canopy in urban areas, but that it leads to 
over classification in hilly areas. Because the terrain is quite complex in most of the area of 
Norway, the so called dry-parameter was used in this study as it is more appropriate for these 
situations. However, another possibility to improve model precision in urban areas would be to 
use auxillary data, like topographic data on build-up areas and buildings, that is usually more 
frequently updated or to simply mask out urban areas using such auxiliary data (see Bossard et 
al. 2000).  
 
Finally, there is some potential for improvements during the pre-processing of the satellite im-
agery. The partial results obtained in the pre-processing stressed the importance of terrain cor-
rections, in particular the precision of the underlying terrain model. Especially in the areas with 
high terrain variations (e.g. in the built-up zone of Oslo), a detailed digital surface model is crucial 
so as not to misclassify building shadows as water. Furthermore, during pre-processing, the 
different resolution of the Sentinel-2 bands were unified to 10 m using a simple Gaussian filter. 
However, this approach may lead to inaccuracies especially at places where sharp edges occur 
in the nature (e.g. lake shores). More sophisticated algorithms exist (Brodu 2017) and could be 
utilized as a future improvement. 
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7 Overall conclusions 
 
The Sentinel4Nature project identified reasonable potential for the applicability of satellite remote 
sensing to modelling and estimating NiN gradients. The literature review suggests that satellite 
remote sensing can be a useful source of information for more than 50 % of the 61 environmental 
gradients in NiN. The evaluation of the developed models for “Reduced growing season due to 
prolonged snow lie” (chapter 6.1) and “Tree canopy cover” (chapter 6.2) indicates the potential 
the new Sentinel satellites provide in terms of improved data compared to existing satellite im-
agery that has been available so far. 
 
During the development and validation of the models for both case study gradients, supplemental 
auxiliary data turned out to be less important than expected for the performance of the developed 
models. Even for the strongly terrain related gradient on “Reduced growing-season due to pro-
longed snow-lie”, the currently available terrain data for Norway, and terrain indices derived from 
them, improved the predictive power of the model only marginally. Also, comparing the devel-
oped remote sensing product with - even quite complex - models without satellite data, demon-
strates the unique information satellite imagery adds. Because the models based on satellite 
imagery consistently explained the occurrence of snow sensitive plant species more accurate 
than models where only terrain information was used. However, supplemental data, and here 
terrain data in particular, has been important during pre-processing of the satellite imagery, both 
in terms of terrain correction, atmospheric correction and topographic correction. Fusing radar 
(Sentinel-1) and optical (Sentinel-2) data on the other hand significantly improved models for 
both case study gradients, underpinning findings by Schulte to Bühne & Pettorelli (2018) that 
radar and optical data are “better together”. As the focus in terrestrial applied ecology is often on 
optical data, the potential of radar data in ecology is probably underestimated. Thus, the freely 
availability of Sentinel-1 radar data can help to unlock an important source of information for 
environmental monitoring in applied apology, especially for boreal and high latitude areas where 
light conditions can be limiting and cloud coverage is often a challenge. 
  
The development of the model on tree canopy cover highlights the requirement for high quality 
training data that cover relevant variation in the imagery in order to achieve fairly accurate remote 
sensing products. Generating this kind of data manually is not only labour intensive, but also 
relatively error-prone due to continuous changes in nature and frequent revisits of the Sentinel 
satellites. Hence, utilizing efficient and frequently updated data sources, e.g. from in-situ sen-
sors, crowd sourcing, “semi-remote sensing” (like LiDAR in the case of the tree canopy cover 
gradient, or drones) can be a means to address this issue for modelling approaches that require 
training data. Another possibility to handle this is to start focusing on gradients where the avail-
ability of training data is not a hard requirement. This has been the case for the gradient “Re-
duced growing season due to prolonged snow lie”, and it is likely similar for gradients related to 
e.g. moisture or temperature related gradients. Here, in-situ data mainly plays a role as validation 
data and for such spot checks a lower amount of in-situ data would be required. 
 
Comparison of the tree canopy cover model to existing similar forest related products indicates 
that the spectral, spatial and temporal resolution of the Sentinel satellites contributes to increas-
ing the accuracy of remote sensing for environmental monitoring. It also suggests that the de-
velopment of national and targeted products can be meaningful as the developed models corre-
spond significantly better to data collected in the field than data for global applications (Hansen 
et al. 2013) or data for other purposes like forestry (Gjertsen & Nilsen 2012). 
 
Although the presented methods already perform quite well, they are not yet production-ready 
on national scale. They are extendible to larger areas, but adjustments in the processing 
chains and also parameter tuning have to be expected when they are applied at larger extents 
and especially towards arctic environments of the Scandinavian peninsula. These areas have 
not been covered with study sites in this project and differ amongst others to available daylight 
over the year. 
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Appendix 
 
The electronic appendix, covering "The suitability of remote sensing (Sentinel) for estimating 
environmental gradients and properties in NiN" as referred to in chapter 3 can be accessed 
here:  
https://brage.bibsys.no/xmlui/bitstream/handle/11250/2575962/1545%20vedlegg.xlsx?se-
quence=6&isAllowed=y  
 
 
Code from the Sentinel4Nature project is documented here: 
https://github.com/NINAnor/sentinel4nature 
 
 
Data produced in the Sentinel4Nature project can be accessed here: 
http://geodata.nina.no/search/?title__icontains=Sentinel4Nature 
 

https://github.com/NINAnor/sentinel4nature
http://geodata.nina.no/search/?title__icontains=Sentinel4Nature
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