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Abstract

Few species are adapted to high latitudes, and many over-winter in milder climates with

migrations involving extensive barrier crossings. By escaping extreme conditions for the

majority of the year, physiological and behavioural adaptations presumably need to be less

pronounced. The snow bunting Plectrophenax nivalis is the most northerly breeding passer-

ine. We tracked the Svalbard population using geolocators to reveal that these individuals

not only breed in environmental extremes, but also spend the winters in the severe cold and

highly stochastic weather conditions of the Siberian steppe. Migratory strategies appeared

to be flexible between individuals and years. However, common wintering grounds in the

Asian Western Steppe were identified, where birds could utilise vast crop- and grasslands

while enduring low ambient temperatures. The timing of significant long distance move-

ments was consistent among individuals, and the autumn routing of the >1000 km open

water flight to Novaya Zemlya incurred favourable wind assistance and lower risk of precipi-

tation, compared to the shorter route between Svalbard and Norway used in spring. Pre-

sumably, Svalbard snow buntings are physiologically well-adapted to extreme conditions

and their migration, rather being a retreat from physiologically demanding conditions, allows

utilisation of an abundance of resources in the Asian Steppe.

Introduction

Bird migration operates on a vast scale: birds are known to travel enormous distances and

negotiate inhospitable geographical features such as oceans, mountain ranges and deserts, pre-

sumably to exploit seasonal resources [1]. While the number of bird species decreases with lati-

tude, the proportion of migrants increases [2]. Polar species are largely obligate migrants; the

polar summer provides favourable conditions for breeding (long daylight, high plant and

invertebrate production and greater stability of weather patterns) whereas winter conditions

(snow cover, darkness, low production and frigid temperatures) are not conducive to
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endotherms [3]. As a result, high latitude species demonstrate inherent abilities to tolerate

environmental extremes, and have adapted physiologically and behaviourally to the variation

in climate and habitats and to long-distance travel [2, 4].

Long-distance migrants generally spend the non-breeding period in distinctively milder cli-

mates such as the Tropics. Intra- and inter-continental flights invariably involve negotiating

ecological barriers, with limited landing or foraging opportunities. Most ecological barriers are

not physically restrictive to flight, nevertheless, in combination with adverse and unpredictable

winds and weather events, they are expected to influence the development of migratory routes

and timings [5].

Snow buntings nest at higher latitudes than any other passerine, from 50.1˚ to 83.6˚ North

[6, 7]. Their breeding range is circumpolar with most of the non-breeding range outside the

polar region. A number of populations are separated by large-scale ecological barriers [8] and

migratory routes vary. The breeding range is highly dispersed and migratory connectivity is

largely unknown, although the major migration routes in Northern Europe and the New

World have been inferred by ring recoveries [7, 9, 10].

Here, we focus on a population of 1,000–10,000 pairs of snow buntings breeding on Sval-

bard [11], the Norwegian sovereign archipelago in the Arctic Ocean. These birds are present

from late April until early September but spend the majority of the year away from their breed-

ing grounds, as also recorded in North American birds [10]. The wintering grounds of the

Svalbard population are unknown (one autumn and a few spring recoveries in Arkhangelsk; a

few recovered in northern Norway in spring [12]). However ring recoveries for the western

palearctic suggest three potential routes: (i) to continental Europe joining northern Scandina-

vian birds, (ii) eastwards to the White Sea before turning southward or (iii) westwards travers-

ing Greenland to winter in the New World [13–17]. All potential routes from Svalbard incur

an extended water crossing.

Identifying the spatiotemporal schedules of small migrants has only recently become possi-

ble with the miniaturisation of light-level geolocators [18]. These archival loggers have low spa-

tial resolution compared to GPS or satellite tags and are compromised at high latitudes by

continuous daylight; however, they are applicable for determining movements, timings and

broad scale spatial ranges.

In contrast to the Canadian populations [10], birds from Svalbard must navigate across an

ecological barrier, the cost of which is presumably offset by the arrival at more benign winter

grounds. Hence we fitted breeding snow buntings with geolocators to map the spatiotemporal

annual cycle of the Svalbard High Arctic population and to allow us to investigate potential

advantages and disadvantages of their obligate migration. The tracks revealed that birds win-

tered on the Siberian Steppe. Satellite derived environmental data were used to quantify the

environmental conditions both at population scale utilisation sites in the non-breeding period

and those experienced at the individual level, in order to identify wintering conditions and to

describe habitat requirements for the greatest proportion of the annual cycle. We used weather

and environmental variables to further investigate route selection on flight performance dur-

ing the ocean crossing.

Materials and methods

Permits

Permissions to carry out the study were given by The Governor of Svalbard (2014/00375-5),

The Norwegian Animal Research Authority (FOTS ID 4701) and the landowner, Store Norske

Spitsbergen Grubekompani. The snow bunting project in Adventdalen is registered as RiS-ID

2272 in the Research in Svalbard Database.
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PLOS ONE | https://doi.org/10.1371/journal.pone.0202114 September 5, 2018 2 / 14

in study design, data collection and analysis,

decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0202114


Geolocators

A total of 41 snow buntings breeding in nest boxes near Longyearbyen, Svalbard (78.2˚N

15.8˚W) part of an on-going long-term project [19], were fitted with light-level geolocators

(Intigeo P65C2-7, Migrate Technology, UK; 0.74 g; leg-loop harness of 1 mm nylon cord) dur-

ing 2014 and 2015. Geolocators were retrieved in the following summers from 12 birds (10

males and 2 females; and included two individuals with repeated tracks). Return rates of birds

with colour rings between 1999 and 2003 were comparable (28.3–43.1% [20]).

Light data were corrected for clock drift. Positions were calculated from the threshold

method using the GeoLight package [21] in R [22] and sun elevation angles were calculated

from breeding site calibration during a period of known twilight events prior to autumn

departure. Reference geolocators were deployed at the breeding site to determine onset of twi-

light detections following polar summer. As this period is typically short and in general the

return to the colony is obscured by polar day, latitudinal calibration was verified using Hill-

Ekstrom calibration and the FlightR package [23]; and confirmed that tracks were overall simi-

lar and stationary periods were within the latitudinal range used to identify significant move-

ments. Due to the equinox effect on position estimation, latitudes 14 days before and after

equinoxes were excluded. Key phases of the migration, which involved extended directed

flight, were identified from these positions: ocean crossing departing from Svalbard; arrival at

wintering grounds; arrival at spring staging; ocean crossing departing to Svalbard. The inter-

vals were classed as ‘autumn’, ‘winter’ and ‘spring’. Major spatial use areas for each seasonal

subset were estimated by applying kernel density (KDE) analysis to positions (adehabitatHR R

package [24]). KDEs partially account for imprecision in light-derived positions [25]. Station-

ary periods were assigned to consecutive positions with less than 2˚ variation in the latitude

and longitude for durations of 5 days or more. For stationary periods, the median latitude and

longitude were used in further analysis. Significant movements were defined as changes of

greater than 5˚ per twilight interval between stationary periods. Raw light-level data files are

available from www.movebank.org; ID 540289187.

Environmental conditions and land use

Surface temperature, snow depth, u- and v-winds (geographic wind coordinate system), pre-

cipitable water, vertical wind shear and ice cover were obtained from NCEP FNL re-analysis

product [26]. Daily conditions associated with individual tracks were interpolated for NCEP

data for stationary periods using the rNCEP package [27, 28]. Actual air temperature in the

wintering range was derived from all 7 permanent weather stations at airfields within the 70%

KDE of all positions (UAUU, USCC, UWUU, USCM, UWWW, UWOO and UWOR [29]).

Longyearbyen airport (ENSB) data was used for temperature and precipitation at the breeding

site. Mean values were calculated from daily summary statistics for periods of interest. Snow

and ice cover were verified from cloud free EOSDIS worldview composite satellite images with

Terra/MODIS sea ice layer and snow cover [30]. Land cover taken from IGBP classifications

(water, evergreen needleleaf forest, deciduous broadleaf forest, mixed forest, open shrubland,

woody savannas, grasslands, croplands, urban and built-up, cropland/natural vegetation

mosaic were encountered in our area of interest), and percentage crop cover were derived

from MODIS MOD12C1 0.25 Degree Land Cover Collection [31]; data accessed using the

ORNL DAAC Spatial Data Access Tool [32].

Ocean crossing conditions

The autumn route used between Svalbard and continental Europe was longer than the alterna-

tive available and predominantly used in spring. We tested the environmental conditions

Spatiotemporal schedule of an arctic breeding passerine
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encountered over the two routes on the respective dates of autumn migration by individuals.

The routes crossing the Barents Sea were defined as (i) the actual: a great circle route between

the breeding site and closest landfall on Novaya Zemlya within the autumn 70% KDE (74.4˚N

55.3˚E, 1096 km) and (ii) an alternate known route: the reciprocal spring great circle route

from northern Scandinavia within spring 70% KDE (71.1˚N 28.1˚E; 864 km). The tailwind

component, precipitable water and vertical wind shear for the entire route for 24 hours post

departure were tested with two-tailed sign tests. The tailwind component was calculated from

NCEP mean wind vectors at 925 mbar with 12 m s-1 flight speed [27, 28] for each bird on their

chosen departure date, for each of the two routes.

Results

Wintering

All birds wintered in the Western Steppe region in Siberia (n = 12). The wintering period con-

stituting the largest portion of the annual cycle (44%; median duration 161 days, range 154–

173 days; Fig 1, S1 Table). The area used was vast, ranging from 43.7˚-70.8˚E and 47.5˚-56.3˚N

(S1 Fig). Movement behaviour during the winter varied between individuals. A quarter of

birds remained entirely stationary for the duration of the winter period; up to one individual

with 4 distinct and directed within-winter migratory movements (S2 Fig). Eight of the 12 birds

exhibited some degree of nomadic behaviour (from 3 to 100 days; S1 and S2 Figs, S1 Table).

The wintering grounds (S3 Fig) are dominated by vast croplands and grasslands where

ambient winter temperatures are low. The absolute minimum NCEP-derived temperatures for

each cell within the wintering site (area defined by the 70% KDE) ranged from -42.5˚ C to

-24.8˚C with mean temperatures ranging from -10.9˚C to -3.6˚C (Figure a & b in S3 Fig).

Daily minimum surface temperature ranged between -31˚C to 2˚C and maximum tempera-

ture ranged between -22˚C to 9˚C. Daily temperatures (Fig 2A) associated with individual

tracks ranged from -27.5˚C to 7.7˚C (mean) and -29.5˚C to 6.8˚C (minimum). Extremes were

encountered during the wintering period, and were characterised by a high degree of stochasti-

city. Mean and minimum temperatures showed the same pattern. The wintering site was pre-

dominantly in areas of extensive croplands categorised as 57.6% croplands, 30.1% grasslands

and 9.2% mixed forest (IGBP classification), and a median of 62.1% croplands percentage

cover (Figure c in S3 Fig). The mean NCEP forecasted maximum snow depth was 0.63 m

(range 0.13–0.95 m; Figure d in S3 Fig). However, the first lying snow for this area was on 23

January 2015; cloud cover precluded identification of first snows in the second season.

Fig 1. Map of snow bunting distribution ranges, time budgets and migration routes and stopovers of tracked

birds. (A) Map of breeding (grey) and wintering (blue) distribution of snow buntings from Birdlife International [6],

and mean annual time budget from tracked birds (autumn migration (magenta) and spring migration (green);

orientated with 1 June uppermost, n = 12). Maps of position estimates for tracked birds and kernel density estimation

(KDE) for each temporal period (contours at 30, 50 and 70% KDE, n = 12); and routes (indicated by proportionate

arrows) undertaken for autumn (B) and spring (C) migration.

https://doi.org/10.1371/journal.pone.0202114.g001
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Maximum snow cover and precipitation rates for individual tracks were 921 kg m-2 and 0.19 g

m-2 s-1, respectively (Fig 2B and 2C), with the greatest number and magnitude of precipitation

events occurring during the winter period resulting in accumulation of snow cover up to 492

kg m-2. However, the largest snow accumulation encountered was during the northward

spring migration, and snow cover of up to 648 kg m-2 on return to Svalbard, which melted rap-

idly in mid-June.

Fig 2. Environmental variables encountered by individuals. Environmental variables encountered by individuals

(n = 12) throughout the annual cycle where stationary positions can be estimated from geolocator data: (A) daily

minimum surface temperature (˚C), (B) daily mean precipitation rate (g m-2s-1) and (C) snow cover as snow water

equivalent (kg m-2). For illustration mean dates of breeding, autumn, winter and spring intervals are indicated by a

dotted line.

https://doi.org/10.1371/journal.pone.0202114.g002
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Migration routes and timing

The snow buntings left their breeding grounds in Svalbard (Fig 1) making landfall on either

Novaya Zemlya Archepelago/Nemesia (n = 11) or the Eastern Kola Peninsula (n = 1). All

autumn ocean crossings were directed towards the east or southeast, crossing between 25˚ and

51˚ longitude. Generally, the birds appeared to follow a clock-wise loop migration although

routes varied considerably during the non-breeding period with 4 of the 12 tracks routing to

the eastern side of the Ural Mountains while the majority moved westwards after making land-

fall. The few repeated tracks (n = 2) indicated that the same individuals took different routes in

subsequent seasons. A number of discrete short stop-overs could be identified during the

autumn migration while spring migration was relatively direct back to the breeding grounds

with a stop-over in Northern Scandinavia (n = 6), via the Kanin Peninsula (n = 2) or appar-

ently retracing the autumn migration route (n = 4).

Timing of significant movements showed a high degree of synchrony among individuals

both in departure dates from Svalbard and movements within the autumn and spring migra-

tions (S1 Table). The two female birds undertook the autumn Barents Sea crossing earlier than

the males in both years (14 & 15 September). Males departed 16–21 September except one on

30 September. The birds arrived at their overwintering area in the Asian Steppe 11 October– 6

November where they remained until early April. Of the 12 tracks, only four birds remained

stationary throughout the wintering period (S2 Fig, S1 Table). The remaining birds displayed

nomadic behaviour for part of the winter, or relocated, resulting in multiple stationary periods

within the Western Steppe (separated by up to c. 650 km). All birds flew north in spring within

18 days of each other, however 9 of the 12 birds began their spring migration from the winter-

ing grounds during the narrow interval of 1–4 April. Where the return ocean crossing to Sval-

bard could be identified (before the onset of polar days), the earliest was from Novaya Zemlya

on 6 April; four other departures were from the Kanin Peninsula (n = 1) on 13 April and

Northern Scandinavia (n = 3) on 15 and 16 April.

The autumn ocean flight from Svalbard to Novaya Zemlya afforded significantly greater

wind assistance and less precipitable water than the shorter reciprocal Svalbard to Northern

Scandinavian route. The median tail-wind component for the chosen route ranged from 0.8 to

13.2 m s-1 whereas the alternate route investigated here experienced more headwinds, -4.7 to

11.3 m s-1 (mean of the differences = 3.04 m s-1, S = 10, P = 0.038; Fig 3A). The resultant

Fig 3. Environmental conditions. Environmental conditions encountered on actual autumn migration compared to

the alternate shorter route used by some birds in spring: (A) Median tail wind component (m s-1) and (B) Precipitable

water (kg m-2) of route from Svalbard to Novaya Zemlya and alternate route to Northern Scandinavia on known

departure dates (n = 12).

https://doi.org/10.1371/journal.pone.0202114.g003
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calculated median flight times were 17.8 h and 18.3 h respectively. The median precipitable

water ranged from 7.8 to 16.35 kg m-2 for the actual route compared to 6.81 to 19.43 kg m-2 for

the alternate route (mean of differences -1.78 kg m-2, S = 2, P = 0.038; Fig 3B). No difference in

vertical wind shear was found between routes (chosen route encountered potential vorticity

range of between 0.0027 to 0.0110 km2kg-1s-1 whereas the alternate was 0.0015 to 0.0115

km2kg-1s-1). No sea ice was present on either route. Once landfall was made the route was not

direct towards the wintering grounds, suggesting birds may be following key topographical

features (rivers or mountain ranges).

Discussion

Severe environmental conditions throughout an extensive area of the Western Steppe region

were experienced by the migratory Svalbard snow buntings during the non-breeding period.

Departure from Svalbard and the ocean ecological barrier crossing were temporally and spa-

tially consistent between individuals and years. However, following landfall on the continent, a

high degree of variation in routes and nomadic behaviour was recorded between individuals

and years. The wintering range was associated with low ambient temperatures, crop- and

grass-lands, indicating this population’s ability to endure extreme temperatures provided there

is an abundance of resources. Spring migration was characterised by narrow temporal range

but individualistic routings. The autumn barrier crossing of more than 1000 km—not by the

shortest distance available—incurred favourable wind and precipitation conditions, which

may explain this surprising route. Because we treat data conservatively, these conclusions are

unlikely to be affected by the low precision and accuracy of the geolocator data, though track-

ing of the return over water flight to Svalbard was precluded.

Wintering area conditions

Contrary to our understanding of arctic breeding species, considerably harsher environmental

conditions were endured by all birds during the non-breeding period than was experienced in

the high Arctic of their breeding grounds [2]. Migratory species are believed to escape season-

ally inhospitable regions and endure extreme conditions only during essential life history peri-

ods e.g. breeding [3, 33]. However, these snow buntings spent the majority of their annual

cycle on the Western Steppe where ambient air temperatures are low in absolute terms; more-

over extensive stochasticity of conditions was encountered. Snowfall was greater during the

non-breeding period and snow accumulation experienced by individuals varied considerably.

Weather data indicated that generally birds encountered substantial snow cover from Decem-

ber onwards, which must be incorporated into their foraging strategies. Satellite imagery of the

area, however, shows that the first lying snow cover on the 23 January in 2015 is consistent

with high wind conditions scouring lying snow, leaving flat ground exposed until late winter

[34]. Nevertheless, these arctic conditions necessitate specialisation for survival and are indica-

tive that snow buntings are a highly adapted polar species [35].

Although the Western Steppe is a known wintering area for snow buntings [36] their origin

was unknown. Our tracking data reveal that the Svalbard population utilise this region during

the mobile and longest period of their annual cycle. Although their migration route in part

overlaps with the Finnmark breeding range, the wintering regions of these two populations

appear to be discrete [12]. The combination of relatively harsher conditions and the leap-frog

migration strategy is indicative of a wintering niche. We propose that the most northerly

breeding population overwinters in colder regions while more temperate breeders predomi-

nantly utilise coastal regions of Europe [7].

Spatiotemporal schedule of an arctic breeding passerine
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These birds may take advantage of foraging opportunities with little competition from con-

specifics unable to withstand these challenging conditions. Wintering locations are consistent

with birds foraging on spent grain from the vast croplands of the Western Steppe. Within this

region, grasslands have been cultivated for over two centuries forming near-continuous large

scale intensive agriculture [37], dominated by wheat production (96.3% of arable). In addition,

tracked birds overwinter on natural grasslands which are likely to provide foraging opportuni-

ties similar to fallow croplands over winter. Few other ground-foraging passerine species are

reported in the region over winter (Lapland bunting Calcarius lapponicus and twite Linaria fla-
virostris), indicative of the cold tolerance of snow buntings and the ecological niche strategy of

reduced competition [38, 39].

Route and timing

The consistency of migration timing throughout the annual cycle can be explained by intrinsic

and extrinsic factors [3]. The observed decrease in temperature and precipitation events was

concurrent with departures, and may therefore initiate southwards migration. Although not

all birds depart on the same day, the consistencies in timing between years may be a conse-

quence of the weather (escaping harsh conditions and taking advantage of tail winds) rather

than an endogenous timing response.

Snow buntings take advantage of prevailing wind conditions to optimise autumn migration

with reduced flight time and risk, despite incurring a substantially longer ground track across

the Arctic Ocean. Our data revealed a surprising eastwards route selection from Svalbard.

Birds undertook an overwater flight (minimum of 1096 km) considerably longer than the

shortest distance from Svalbard to northern Scandinavia (640 km) and a known reciprocal

spring route (minimum of 864 km). Local environmental conditions of greater wind assistance

and less potential precipitation can explain this extended crossing. Tøttrup et al. [40] showed

that red-back shrikes Lanius collurio take advantage of favourable wind conditions on autumn

migration. However, this species also minimised the ground track as well as flight time over

the environmental barrier. For our snow buntings, the calculated mean flight time of both

known routes is similar, with an overall advantage for the observed autumn route despite the

further ground distance. The eastwards route may reflect improved foraging conditions [41],

provide a greater chance of making landfall after the water crossing in the event of crosswind

deviation or be associated with more consistent and predictable (i.e. low risk) conditions in

autumn [5]. While we did not conduct a comprehensive survey of all possible routes and tim-

ings available to the birds in order to make landfall in continental Europe, the advantages asso-

ciated with the actual route are unlikely to be affected by choice of the alternate route tested.

An alternative explanation for this initial eastward movement is the historic population recolo-

nization after the last glacial maximum from Asia and birds are following inherent reciprocal

dispersal routes.

The ocean crossing is still a considerable obligate ecological barrier for this breeding popu-

lation [42]. Geolocator tracked snow buntings in Canada were shown to migrate in the order

of 2100 km, approximately half that of the Svalbard population and without an ocean crossing

stage [43]. However the protracted autumn migration route is clearly still within the capabili-

ties of this species. Northern wheatears Oenanthe oenanthe migrating from Europe to Iceland

encounter a similar transoceanic crossing (minimum ground distance of c. 860 km); however

their flight endurance based on fat stores is calculated to be over 1450 km [44]. Moreover, this

appears trivial compared to the apparent regular passerine migration directly across the Gulf

of Mexico, where numerous species are thought to make around 1000–2550 km overwater

Spatiotemporal schedule of an arctic breeding passerine
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flights with only scattered islands as refuges [45–47], including the 12 g Blackpoll warbler Seto-
phaga striata with a described non-stop migration of 2270–2770 km [48].

In autumn, snow buntings leaving Svalbard take advantage of optimal flight conditions.

However conserved timing of ocean crossings, from their breeding grounds to the continent,

may also be explained by birds traveling as small flocks [49]. Males and female demonstrate

timing differences concurrent with known protandry in this species [16, 43, 50], consistent

with apparent sex-specific thermal tolerance (described by Macdonald et al. [43]).

Migration may have immense influence on fitness [51]. On spring migration, as birds rap-

idly move northwards, they encounter regions of extensive snow cover but reduced precipita-

tion. The return route through northern Scandinavia has the advantage of a shorter over-water

distance and, additionally, it may also allow sampling of environmental conditions for optimal

timing of arrival. Specific functions of spring stopover have been previously suggested [10]

and tracked Canadian birds spend considerably longer at stopover sites than during autumn

migration [10, 52]. However, birds with known return dates (concurrent with observations in

Svalbard [53]) are clearly arriving at the breeding grounds under suboptimal conditions, with

deep snow cover and negative temperatures well into May, as reported in Greenland and

Alaska [16, 54].

Timing of spring migration is anticipated to be indirectly linked to onset of breeding, and

may be driven by conditions encountered during the northwards route. Phenology of breeding

is governed primarily by photoperiod [55, 56] with further regulation by non-photic cues such

as temperature [57]. Although high latitude species are recorded to be more resistant to tem-

perature augmentation of photoperiod-induced gonadal growth, advancement of breeding

schedule correlated to early spring temperature warming has been recorded for this species in

Svalbard and Alaska [19, 57, 58]). The resultant mistiming from photoperiod and importantly

arthropod availability was detrimental for nestling development and overall productivity, sug-

gesting that phenology in this species is particularly sensitive to environmental conditions.

Due to the onset of polar day, the arrival date of all tracked breeding birds cannot be deter-

mined. At present, it is unknown if timing of spring migration may contribute to the pattern

of advanced commencement of breeding, and should be further investigated when technolo-

gies exist.

Physiological adaptations

The Svalbard population of snow buntings is undoubtedly suited to extreme conditions, due to

a suite of probable physiological and behavioural adaptations. Few small passerine species over-

winter in arctic or sub-arctic conditions, and even populations of the same species in North

America find improved conditions over the winter period than at their breeding sites [54].

Birds normally maintain their body temperature within narrow limits and are specialised to

thermal habitats. Snow buntings can maintain their body temperature over a temperature

range between -40˚C and 40˚C [4] and can withstand temperatures down to -50˚C. Alaskan

snow buntings only require compensatory metabolic increases below ambient temperatures of

10˚C however Svalbard snow buntings rarely experience temperatures above this threshold.

Physiological adaptations that may allow these birds to persist under extreme, energetically

challenging, conditions which include seasonal acclimation to cold, through a complex suite of

metabolic and morphological adjustments [59] such as insulative capacity from plumage,

increased facultative hypothermic response [60–62] and increased cellular metabolic rate and

maximum thermogenic capacity [63, 64].

Sustained high levels of heat production (cellular metabolism and supplementary thermo-

genesis), principally by pectoral skeletal muscle shivering, is positively correlated to muscle
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mass [65, 66]. Pectoral muscle in migratory birds is both the largest and most energy demand-

ing organ [67]. The obligate endurance flight across the ecological barrier and wintering ther-

mogenesis may promote the maintenance of increased muscle mass and is evidence of

physiology shaping spatial migratory patterns.

The multiple strategies across individuals/seasons of a succession of stationary periods and

nomadic periods are indicative of generalist behaviour. Such itinerancy has been demonstrated

over relatively small distances in wintering snow buntings [10, 68], however, within-winter

movements in other small songbirds ranging from willow warblers Phylloscopus trochilus to

the common cuckoo Cuculus canorus are better described as multiple non-breeding sites

rather than the complex nomadic behaviour we reveal here [69–72]. This highlights the need

for better understanding of within-winter movements across taxa, both at the microhabitat

tracking scale (resources or climate) to longer flights in response to extreme conditions [1, 73].

Conclusion

We demonstrate that a high-arctic breeding passerine, the snow bunting, is specialised to

extreme environmental conditions throughout its annual cycle. Extreme low temperatures and

extensive snow cover are endured over winter and on arrival at the breeding grounds. The

considerable obligate barrier crossing to escape worsening conditions in Svalbard is amelio-

rated by a route selection involving a longer ground track but with clear time and risk savings.

Considerable physiological and behavioural adaptations are required under consistent arctic

conditions and during extensive, obligatory, migratory flights.

Supporting information

S1 Fig. Migration of snow buntings. Migration of snow buntings from breeding grounds to

breeding grounds (individuals represented by colour and logger ID). Identified stationary

periods represented by solid line (——) and periods of apparent movement by a dashed line

(----), these include directed migration and nomadic behaviour. Breeding site longitude and

latitude indicated by grey dotted line. Estimated positions represented by grey dots, and lati-

tudes affected by the equinox are excluded.

(PDF)

S2 Fig. Time series of snow buntings. Time series of identified migratory movements, sta-

tionary periods and nomadic behaviour. Key migration events are depicted by ▼ southwards

and ▲ northwards, and coloured by departure from Svalbard, autumn (red), arrival at winter-

ing grounds (blue), departure from wintering grounds, spring (green) and where known,

departure from mainland to Svalbard (yellow). Additional movements within these periods

are denoted by ◆. Stationary periods are indicated by black lines (━) and apparent nomadic

behaviour by grey lines.

(PDF)

S3 Fig. Wintering environmental variables and land use. Environmental variables and land

use for the duration of the wintering periods, with 70% Kernel Density Estimation of wintering

grounds depicted by black polygon: (a) mean daily mean surface temperature (˚C), (b) abso-

lute minimum surface temperature (˚C), (c) Percentage crop cover and (d) maximum snow

depth (m), note that snow cover over oceans indicates maximum extent of sea ice.

(PDF)

S1 Table. Tracked birds deployment information and key timings. Tracked snow bunting

deployment information and key timings of significant migration which were used to define

Autumn, Winter and Spring periods. Total number of stationary periods (SP) and duration
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(in days) of wintering stationary periods, defined Autumn and Winter periods, and where

known Spring and Breeding grounds for the 12 month period the birds were tracked. Sum-

mary statistics, where appropriate are included for day of migration and duration of periods,

however the period of spring and breeding are under- and over-estimated due to lack of return

dates for 7 birds due to the effect of Polar day.

(PDF)
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