Running head: Intra-population structure of an estuarine species

# Habitat connectivity and intra-population structure of an estuary-dependent fishery species 

Amber-Robyn Childs ${ }^{1,2^{*}}$, Paul D. Cowley ${ }^{2}$, Tor F. Næsje ${ }^{2,3}$, Rhett H. Bennett ${ }^{2}$
${ }^{1}$ Department of Ichthyology and Fisheries Science, Rhodes University, Grahamstown 6140, South Africa.
${ }^{2}$ South African Institute for Aquatic Biodiversity, Grahamstown 6140, South Africa.
${ }^{3}$ Norwegian Institute for Nature Research, NO-7485 Trondheim, Norway.
*Corresponding author: Tel.: +27 (0)46 6038416; cell: +27 (0)761947094; e-mail:
a.childs@ru.ac.za

ABSTRACT: Habitat connectivity is a fundamental component of estuary-associated fish behaviour. Understanding this is critical to understanding population dynamics and the nursery role of estuarine habitats. This study aimed to elucidate the intra-population structure of juvenile Argyrosomus japonicus, and the role of estuarine and coastal habitats for this widely distributed, iconic, estuary-dependent, coastal fishery species. The movements of 85 juvenile A. japonicus, tagged with acoustic transmitters in the estuarine ( $n=65$ ) and marine ( $n=20$ ) environment, were monitored from May 2008 to June 2010, by 44 stationary acoustic receivers deployed in the Eastern Cape, South Africa. While one third of tagged fish visited adjacent marine or estuarine
habitats, the majority exhibited high levels of residency to their respective estuarine or coastal tagging site. This high level of residency suggests that juvenile A. japonicus exist as a metapopulation with several non-dispersing subpopulations, each with distinct estuarine and marine contingents. The estuarine contingent had a higher recapture (mortality) rate (35\%) than the marine contingent (15\%), and within the estuarine contingent the recapture rate was higher for resident individuals (41\%) than migratory individuals (23\%). Species with different contingents each exhibiting retentive and migratory/exploratory behaviours (i.e. partial migration) may therefore be more resilient to fishing pressure. Conversely, however, certain behavioural strategies, particularly estuarine residency, may be more vulnerable to exploitation, suggesting that management interventions are necessary in this habitat. This paper demonstrates how ecological concepts should be incorporated to better describe diverse patterns in habitat use and migratory behaviour of estuary-dependent species.

KEY WORDS: acoustic telemetry • contingent theory • estuary-dependent •estuarine connectivity - partial migration

## INTRODUCTION

Animal movements are fundamental population processes, yet are relatively poorly understood. Interactions among life history, physiology, behaviour and habitat make individual movement an exceptionally complex phenomenon (Patterson et al. 2008). Estuary-associated species, in particular, have spatially and temporally complex life histories and commonly exhibit ontogenetic variation in habitat use and migratory patterns (Able 2005). This is due, in part, to estuaries being dynamic transition zones that link terrestrial, freshwater and marine habitats. Connectivity between coastal and estuarine habitats is thus a critical property of estuaryassociated fish ecology (Gillanders et al. 2003). Knowledge of this connectivity is fundamental to understanding the life cycles (Secor \& Rooker 2005), estuarine dependence (Able 2005) interand intra-population structure and dynamics (Kerr et al. 2009, Vasconcelos et al. 2010) and alternative life history strategies of estuary-associated species, and the roles of estuarine and marine environments as nursery habitats (Beck et al. 2001). Despite the ecological significance of such information and its importance to the design of effective conservation and management strategies, globally there is a dearth of information on movement and connectivity between estuarine and coastal fish habitats (Gillanders et al. 2012).

Recent literature suggests that fish movement ecology may be more complex than previously assumed (e.g. Kerr et al. 2009, 2010, Kerr \& Secor 2012). Kraus and Secor (2004) proposed that the simultaneous occurrence of conspecifics in multiple habitats during a given life stage, which is common in estuary-associated species, could represent population 'contingents'. Secor (1999)
defined a 'contingent' as a level of fish aggregation based on i) "divergent migratory behaviour" or ii) "divergent habitat use" within a population. In addition, populations or contingents may display partial migration (Kerr et al. 2009), with fish exhibiting retentive and/or exploratory/migratory behaviour. This is most often influenced by season and ontogeny (Secor \& Rooker 2000). Partial migration is the phenomenon of coexisting groups exhibiting migratory and resident behaviour within the same population (Chapman et al. 2012, Jonsson \& Jonsson 1993). It is a widely applicable and useful concept for understanding life cycle diversity of fishes, as it provides a mechanistic understanding of alternative migratory behaviour. Such intrapopulation variation in movement has been documented in a wide array of animal taxa, and may be more widespread than generally recognised (Dingle 1996, Chapman et al. 2012). However, there is a paucity of information on the mechanisms driving divergent migratory behaviour and habitat use of estuary-associated fish species.

Knowledge of habitat use and connectivity are also important for fisheries management and the conservation of essential habitats, such as estuaries. The collapsed stock status of several estuary-dependent species and a need for alternative management interventions, such as spatial management, makes a quantitative understanding of the extent of exchange between estuarine, riverine and coastal marine habitats imperative. Understanding contingent behaviour is also important for the conservation and management of stocks, as identification of a contingent within a population may be useful in assessing divergent behaviour in stock dynamics (Secor 1999).

Argyrosomus japonicus (Temminck \& Schlegel 1843) is a marine spawning, estuary-dependent Sciaenid, distributed from South Africa to Pakistan, the northwest coast of India, Australia, Hong Kong, Korea and Japan (Griffiths \& Heemstra 1995, Trewavas 1977). Adults are predominantly found in the nearshore zone, while juveniles utilise estuaries and surf-zones throughout their distributional range (Griffiths 1996). It is an important fishery species, mainly due to its large size. In South Africa, high levels of growth and recruitment overfishing, in conjunction with the late attainment of sexual maturity (50\% sexual maturity at $1070 \mathrm{~mm} \mathrm{TL} / 6$ years for females and 920 mm TL/5 years for males), have led to stock collapse (Griffiths 1996). Understanding juvenile residency in estuarine, riverine and coastal marine habitats and the temporal characteristics of habitat connectivity is essential for assessing the importance of habitats to this species. The occurrence of juvenile $A$. japonicus in estuaries and the coastal zone (Cowley et al. 2008, Griffiths 1996) may be evidence of distinct estuarine and marine contingents within the population, based on divergent habitat use. Additionally, it is possible that within these separate contingents, A. japonicus exhibits divergent migratory behaviour i.e. 'partial migration'.

Acoustic telemetry offers a useful tool for studying fish movement behaviour and assessing habitat connectivity, as it allows individual residency and movement patterns to be quantified (Able \& Grothues 2007b) through 'real-time' and continuous acquisition of data. This approach has enabled researchers to address complex aspects of behavioural ecology, by quantifying movements over varying spatial and temporal scales (Espinoza et al. 2011, Heupel et al. 2006, Næsje et al. 2012). However, despite its broad application for determining population connectivity and identifying essential fish habitats, few telemetry studies (e.g. Abecasis et al. 2009, Able \& Grothues 2007a, Childs et al. 2008, Cowley et al. 2008) have focused on multiple
habitat connectivity or estuarine dependence of estuary-associated fishes (e.g. Able \& Grothues 2007b, Sackett et al. 2007). While telemetry has recently been used as a tool in partial migration research (Chapman et al. 2012), these studies are limited to the freshwater environment and none have directly addressed divergent migratory behaviour in estuary-associated fishes.

This study assessed the intra-population structure of, and the role of estuarine and coastal habitats to an estuary-dependent species, by quantifying the spatial and temporal movements of individuals caught and tagged in an estuary and the associated marine environment. The specific objectives of this study were to elucidate whether juvenile $A$. japonicus 1 ) exist as separate estuarine and marine contingents, and/or 2) exhibit partial migration.

## MATERIALS AND METHODS

## Study Site

The study was conducted in the Sundays Estuary and the adjacent coastal embayment, Algoa Bay, within the warm-temperate biogeographic region of South Africa. The Sundays River is 310 km long, and enters Algoa Bay at $33^{\circ} 43^{\prime}$ S, $25^{\circ} 51^{\prime}$ E (Fig. 1). The estuary is a large, permanently open system, approximately 21 km long and roughly 50 m wide over most of its length (lower and middle reaches), with an average depth of 2.5 m (Wooldridge \& Bailey 1982). It drains a catchment of $20730 \mathrm{~km}^{2}$, with a mean annual runoff of $200 \times 10^{6} \mathrm{~m}^{3}$ and a mean annual rainfall of 323 mm (Reddering \& Esterhuysen 1981). It has a relatively high freshwater inflow through an inter-basin transfer system (Scharler \& Baird 2005). The estuary supports
recreational and subsistence fisheries, but is dominated by the recreational sector, with $A$. japonicus constituting one of the two most targeted species in the estuary (Cowley et al. 2013).

## Research approach

The movements of $A$. japonicus between estuarine and coastal habitats were assessed using acoustic telemetry. A total of 85 juveniles (237-832 mm total length (TL)), approximately 0.2 to 4.4 years (after Griffiths \& Hecht 1995), were tagged with uniquely coded acoustic transmitters from May 2008 to June 2009 (Fig. 1, Appendix 1). Sixty-five fish (mean: 485 mm TL, range: 237-832 mm TL) were caught and tagged in the Sundays Estuary in three batches during the study period: Autumn 2008 (mean: 545 mm TL, range: 396-832 mm TL, THELMA LP-7-R04K transmitters), Summer 2009 (mean: 566 mm TL, range: 447-820 mm TL, THELMA MP-9R04K transmitters), Autumn 2009 (mean: 416 mm TL, range: 237-584 mm TL, VEMCO V13-1L-R64K transmitters). These fish were captured between 3 and 12 km from the estuary mouth (Fig. 1). In addition, twenty juveniles (mean: 589 mm TL, range: 446-812 mm TL, VEMCO V13-1L-R64K and THELMA MP-13-R04K transmitters) were captured in the Woody Cape coastal zone from December 2008 to June 2009 (Fig. 1). The spatial and temporal movements of tagged fish were monitored using a network of 44 stationary automated acoustic receivers (VEMCO, model VR2W) deployed in the Sundays Estuary, its coastal embayment (Algoa Bay) and adjacent estuaries along 300 km of the South African coastline (Fig. 1).

Fig. 1

Fish were caught with barbless hooks on rod and line. Acoustic transmitters were surgically implanted into the peritoneal cavity, following the procedure described by Cowley et al. (2008). All fish were tagged and released at their capture site. A nine-month tag retention study conducted on juvenile $A$. japonicus revealed a $100 \%$ tag retention rate and no negative effects of surgical implantation of acoustic transmitters on growth or behaviour (Childs et al. 2011). Detections from the first 24 hours after surgery were excluded from analyses. Sixteen receivers were deployed in the Sundays Estuary, from 2 to 21 km upstream of the estuary mouth (Fig. 1). Receivers, except the uppermost receiver, were placed approximately 1 km apart (mean: 1 km , range: 0.7 to 1.1 km ), to ensure continuous coverage of the estuary. The uppermost receiver (receiver 16) was placed 3.7 km upriver of receiver 15, at the river-estuary interface, to ascertain if and when tagged $A$. japonicus visited the riverine environment, i.e. displayed 'estuarineriverine connectivity'. Detections on the lowermost receivers (receivers 1 and 2 ) were used to quantify when fish moved between the marine and estuarine environments, i.e. displayed 'estuarine-coastal connectivity’ (Fig. 1). The detection range throughout the estuary ranged from 200 to 600 m at different phases of the tide and various weather conditions, with an average recording of 450 m . To determine multiple habitat connectivity, receivers $(\mathrm{n}=28)$ were placed at various sites within Algoa Bay, two commercial harbours and seven adjacent estuaries (Fig. 1). These included three estuaries to the west of the Sundays Estuary (Swartkops, Gamtoos and Kromme) and four to the east (Bushmans, Kariega, Kowie and Great Fish) (Fig. 1).

## Data analysis

## Monitoring of tagged fish

The movements of juvenile $A$. japonicus were analysed in two groups (Appendix 1), namely: (i) the 65 Estuarine-tagged fish tagged in three batches (transmitters with variable battery life), and (ii) the 20 Marine-tagged fish (1-year transmitters), tagged in the Woody Cape coastal zone. A generalized linear model with a binomial distribution and logit link function was used to model the effect of batch (Batch 1, Batch 2, Batch 3), fish size and catch site (distance from estuary mouth) on the recapture rate ( $1=$ recaptured, $0=$ not recaptured $)$ of estuarine-tagged fish.

## Residency to different habitats

For each estuarine-tagged fish, time spent in the estuary was calculated as the sum of the proportions of time the fish spent in the vicinity of each receiver (Cowley et al. 2008), where total time at each receiver was determined as the sum of (i) the time between consecutive detections at a single receiver, and (ii) half the time between consecutive detections at neighbouring receivers (i.e. time between detections at neighbouring receivers was divided equally between receivers). Given the $3.7-\mathrm{km}$ distance between receivers 15 and 16, and the unknown location of a tagged fish moving between these two receivers; time spent in the riverine environment was calculated as the sum of i) time between consecutive detections at receiver 16 and ii) half the time taken to move between receivers 15 and 16 . Time spent in the marine
environment was calculated from the time an individual was last recorded on the lowermost receiver (receiver 1 ) until it returned to the estuary and was again recorded on receiver 1 or until it was detected on any receivers in adjacent estuaries. For fish that did not return to the estuary (n =6), time spent in the marine environment was calculated from the time the fish left the estuary until the end day of its minimum estimated battery life (provided by the tag manufacturer). For marine-tagged fish, time spent in the Sundays Estuary, Sundays riverine environment and adjacent estuaries, was calculated as for the estuarine-tagged fish. Time spent in the marine environment was calculated from the time the fish was tagged until the end of its minimum estimated battery life, excluding time in estuarine or riverine environments, or if the fish was recaptured.

Within each group tagged, non-parametric Kruskal-Wallis ANOVA by ranks and a post-hoc multiple comparison test or a non-parametric Kolmogorov two-sample test were run to test for differences in times spent in the Sundays Estuary, Sundays riverine environment, adjacent estuaries and the marine environment. For estuarine-tagged fish, a generalised linear model with a normal distribution and log link function was used to test the effect of catch site (distance from mouth), fish size and batch (Batch 1, Batch 2 and Batch 3) on the combined time spent in the estuarine and riverine environment. Owing to the boundedness, non-constant variance and nonnormal error typical of proportional data, the response variable was logit transformed. A nonlinear least squares regression, using an inverse logistic with three parameters, was used to describe the relationship between fish length and the proportion of time spent in estuarine and marine environments during the study period, and to estimate the length after which A. japonicus spend less time in the estuarine environment.

## Marine, estuarine and riverine excursions

An estuarine-tagged fish was considered to have undertaken a 'marine excursion' if it passed the lowermost estuarine receiver (receiver 1) and was only recorded again in the estuary $\geq 12 \mathrm{~h}$ later. A marine-tagged fish was considered to visit the estuarine environment (i.e. undertaking an 'estuarine excursion’) if it was recorded on receiver 1.

A tagged fish was considered to have visited the riverine environment if it was detected on the uppermost receiver (receiver 16), situated 21 km upstream of the estuary, at the river-estuary interface (REI). Detections of tagged A. japonicus at this receiver were defined as a 'riverine excursion'. A new 'riverine excursion' was considered if a tagged fish was last recorded on this receiver and was only recorded again $\geq 12 \mathrm{~h}$ later. For estuarine-tagged fish, a generalised linear model with binomial distribution and logit link function was used to test the effect of catch site (distance from mouth), fish size and batch (Batch 1, Batch 2 and Batch 3) on whether the fish undertook marine and riverine excursions.

For estuarine-tagged fish that visited the marine environment and returned to the estuary and riverine environment, generalised linear models with a Poisson and normal distribution were used to test the effect of catch site (distance from estuary mouth), fish size and batch (Batch 1, Batch 2, Batch 3) on the number and the duration of excursions across the estuarine-marine and estuarine-riverine interfaces, respectively. For the latter model, fish that visited the marine environment once and did not return to the estuary were excluded from analyses. If the residuals
indicated overdispersion, a quasi-Poisson model was used instead of Poisson (Bolker et al. 2008).

The various analyses used in this study were conducted using R 3.03 (R Development Core Team 2013), STATISTICA 12 (StatSoft Inc. 2011) and Microsoft Excel (2010). Prior to analyses, exploratory data analyses, involving graphical examination of all data, were conducted to assess the suitability of model application. Residuals were also checked for normality and the appropriate analyses were used thereafter. The 'Wald' Chi-square statistic (W) and its p-level were used to test the significance of each regression coefficient.

## RESULTS

## Monitoring of tagged fish

Estuarine-tagged A. japonicus were monitored for periods ranging from 13 to 519 days (mean: $217 \pm 106$ days, $n=65$ ) (Fig. 2a). Twenty-three (35\%) of these fish were recaptured in the local fishery (length at tagging: mean: $499 \pm 179$, range: $237-832 \mathrm{~mm}$ TL; length at recapture: mean: $675 \pm 212$, range: $400-1300 \mathrm{~mm}$ TL) (Fig. 2a, Appendix 1), after an average of 429 days post tagging (range: 16-1 463 days). Nineteen (83\%) recaptures were made in the Sundays Estuary, three (14\%) in the adjacent surf-zone and one (4\%) outside of Algoa Bay in the Gamtoos Estuary, 110 km west of the Sundays Estuary (Appendix 1). There was no significant effect of batch $(\mathrm{P}>0.05, \mathrm{~W}(2)=3.64)$, catch site (distance from mouth) $(\mathrm{P}>0.05, \mathrm{~W}(1)=0.52)$ or fish size $(\mathrm{P}>0.05, \mathrm{~W}(1)=1.26)$ on recapture rate of estuarine-tagged fish.

Marine-tagged fish were monitored for periods ranging from 182 to 684 days (Fig. 2b, Appendix 1). While it was possible to estimate the total number of days monitored for marine-tagged fish, the lack of spatially continuous coverage (provided by the array in the marine environment) reduced the accuracy of the estimation. Marine-tagged fish were detected in the estuarine and marine receiver array for 7 to 408 days (Fig. 2b, Appendix 1). Four (20\%) of these fish were recaptured (length at tagging: mean: $543 \pm 59$, range: $498-630 \mathrm{~mm} \mathrm{TL}$; length at recapture: mean: $767 \pm 83$, range: $658-860 \mathrm{~mm} \mathrm{TL}$ ) (Appendix 1). Three ( $75 \%$ ) were recaptured in the surf-zone, approximately 500 m from the Sundays Estuary mouth, and one in the near-shore zone 38 km west of the Sundays Estuary (Appendix 1), near the end of their transmitter's expected battery life.

Fig. 2

## Residency to different habitats

The estuarine-tagged $A$. japonicus spent significantly more time in the Sundays Estuary (mean: $94 \pm 12 \%$, range: $46-100 \%$ ), than the riverine (mean: $3 \pm 8 \%$, range: $0-38 \%$ ), marine (mean: 3 $\pm 8 \%$ range: $0-54 \%$ ) or adjacent estuarine (mean: $0.04 \pm 0.30$, range: $0-2.4 \%$ ) environments $\left(_{(3,260)}=186.15 ; P<0.001\right)$ (Fig. 3a). There were no significant differences among the times spent in the riverine, marine and adjacent estuarine environments ( $P<0.05$ ). Only two
individuals visited other estuaries during the study period; namely the Kariega and Gamtoos estuaries (Appendix 1, Fig. 1).

Thirty-nine (60\%) of the 65 A. japonicus remained resident in the estuary and never ventured into the marine environment throughout their respective monitoring periods (Appendix 1). Time spent within the estuary was influenced by fish size ( $\mathrm{P}<0.05, \mathrm{~W}(1)=5.51$ ), but not by batch ( P $>0.05, W(2)=0.89)$ or catch site (distance from mouth) $(\mathrm{P}>0.05, \mathrm{~W}(1)=0.70)$. Time spent in the riverine region was not affected by batch $(\mathrm{P}>0.05, \mathrm{~W}(2)=0.03)$, catch site $(\mathrm{P}>0.05, \mathrm{~W}(1)$ $=2.97)$ or fish size $(P>0.05, W(1)=1.00)$.

Marine-tagged fish spent significantly more time in the marine environment (mean: $97.9 \pm 6.4 \%$, range: $75-100 \%$ ) than the Sundays estuarine (mean: $2.1 \pm 6.4 \%$, range: $0-25 \%, \mathrm{n}=6$ fish) or riverine $(0.01 \%, \mathrm{n}=1 \mathrm{fish})\left(\mathrm{H}_{(2,45)}=36.01 ; P<0.001\right)$ environments (Fig. 3b).

## Movements across the estuarine-marine interface

Twenty-six (40\%) of the 65 estuarine-tagged A. japonicus undertook marine excursions. Batch $(\mathrm{P}>0.05, \mathrm{~W}(2)=0.86)$, catch site $(\mathrm{P}>0.05, \mathrm{~W}(1)=2.06)$ and fish size $(\mathrm{P}>0.05, \mathrm{~W}(1)=0.38)$ had no effect on whether estuarine-tagged fish undertook marine excursions. Seven (27\%) of these 26 fish were recaptured (two from Batch 1, one from Batch 2 and four from Batch 3) (Appendix 1). Proportionally more fish ( $41 \%, \mathrm{n}=16$ fish) that remained resident in the estuary ( $\mathrm{n}=39$ ) were recaptured during the study period.

Most individuals undertook a single marine excursion, although some fish undertook up to six such excursions (mean: $1.8 \pm 1.5$ ) (Appendix 1). Batch $(\mathrm{P}>0.05, \mathrm{~W}(2)=0.90)$, catch site ( $\mathrm{P}>$ $0.05, \mathrm{~W}(1)=0.36)$ and fish size $(\mathrm{P}>0.05, \mathrm{~W}(1)=0.38)$ had no effect on the number of marine excursions. Their durations ranged from 1.2 to 68.8 days (mean: $9.2 \pm 13.1$ days) (Appendix 1 ), although most (74\%) excursions (calculated as the sum of the mean proportion) were less than one week (7 days). The longest marine excursions were undertaken by different individuals, and were 19.3, 23.3, 39.2 and 68.8 days. There was no effect of batch $(\mathrm{P}>0.05, \mathrm{~W}(2)=2.25)$, catch site $(\mathrm{P}>0.05, \mathrm{~W}(1)=0.17)$ or fish size $(\mathrm{P}>0.05, \mathrm{~W}(1)=0.41)$ on the mean duration of marine excursions. Eight (31\%, mean: 400 mm TL, range: 326-486 mm TL) of the 26 estuarine-tagged fish that undertook marine excursions were recorded on receivers within Algoa Bay. One of these fish was detected in the nearby Kariega Estuary, and the other seven in the Port of Ngqura; of which one was also detected in the PE Harbour and another in the Gamtoos Estuary. The maximum number of days each fish was detected in the Port of Ngqura was two.

Six (30\%) marine-tagged fish entered the Sundays Estuary during the study period, of which one did not return to the marine environment, but was recaptured in the estuary (Appendix 1). The number (mean: $2.2 \pm 2.4$, range: $1-7$ ) and duration (mean: $6.9 \pm 12.3$ days, range: 0.75 to 45 days) of estuarine excursions varied among individuals (Appendix 1). However, excluding Fish M17 (which never left the estuary) reduced the mean ( $3.5 \pm 3.1$ days) and maximum (10 days) duration of estuarine excursions considerably. None of the marine-tagged fish visited other estuaries in the acoustic array and only two individuals visited the Port of Ngqura (for one day) during the study period (Appendix 1).

## Movements across the estuarine-riverine interface

Twenty-five (38\%) of the 65 estuarine-tagged A. japonicus visited the uppermost receiver (Receiver 16) situated at the REI region, 21 km from the estuary mouth, of which ten (40\%) also undertook marine excursions. There was no effect of batch $(\mathrm{P}>0.05, \mathrm{~W}(2)=0.82)$, fish size ( $\mathrm{P}>$ $0.05, \mathrm{~W}(1)=0.21)$ or catch site $(\mathrm{P}>0.05, \mathrm{~W}(1)=3.91)$ on whether estuarine-tagged fish undertook riverine excursions.

Riverine excursions totalled 422 (individual mean: $16.9 \pm 26.6$, range: $1-111$ ), and were relatively short (mean: $0.4 \pm 0.5$ days, range: 27 minutes to 3.4 days), with most ( $74 \%$ ) lasting less than six hours. There was no effect of batch $(P>0.05, W(2)=2.81)$, catch site $(P>0.05$, $\mathrm{W}(1)=0.22)$ or fish size $(\mathrm{P}>0.05, \mathrm{~W}(1)=3.66)$ on the number of riverine excursions. Similarly, there was no effect of batch $(P>0.05, W(2)=1.46)$, catch site $(P>0.05, W(1)=0.96)$ or fish size $(P>0.05, W(1)=0.09)$ on the mean duration of riverine excursions. Only one of the marine-tagged fish (M17) visited the riverine receiver, and only on a single occasion.

## Effect of fish size on habitat connectivity

Smaller estuarine-tagged A. japonicus ( $<746 \mathrm{~mm} \mathrm{TL}$ ) spent more time in the estuary than larger juveniles $\left(\mathrm{F}_{(1,63)}=92.04, \mathrm{R}^{2}=0.32 ; P<0.01\right)$ (Fig. 4a), and the number of marine excursions undertaken was positively related to fish length $\left(R^{2}=0.10, P<0.05\right)$ (Fig. 4b). Fish length had
no significant effect on time spent in the riverine environment $\left(\mathrm{R}^{2}=0.03, P>0.05\right)$, or the number of riverine excursions ( $\mathrm{R}^{2}=0.01, P>0.05$ ), for estuarine-tagged fish.

Fig. 4

Owing to the low number of individuals that undertook estuarine excursions and the low proportions of time spent in the estuary, non-linear least squares regression was not suitable to model the time spent in the estuary by marine-tagged $A$. japonicus. However, there were no correlations between fish length and either time spent in the estuary (Spearman rank order correlation: $\mathrm{r}=-0.13, P>0.05$ ), or the number of estuarine excursions undertaken ( $\mathrm{r}=-0.09, P>$ 0.05 ), for marine-tagged fish.

## DISCUSSION

## Identification of 'contingent' and 'partial migration' strategies

Based on the observed residency of estuarine- and marine-tagged $A$. japonicus to their habitats of capture and Secor’s (1999) definition of a contingent (a level of fish aggregation based on 'divergent habitat use'), it appears that the population consists of two separate juvenile contingents (i.e. estuarine and marine). Contingents, mostly based on migratory behaviour, have been documented in moronids (e.g. Kerr et al. 2009, Secor et al. 2001), anguillids (e.g. Tzeng et
al. 2003), clupeids (e.g. Mcquinn 1997), pleuronectids (Sagarese \& Frisk 2011) and other marine fish taxa (Petitgas et al. 2010). While the majority of tagged A. japonicus exhibited residency to their habitat of capture, approximately one third within each contingent (and within each estuarine batch) exhibited exploratory/migratory behaviour and visited the adjacent marine or estuarine habitats. A proportion (40\%) within the estuarine contingent also visited the REI region. Such connectivity among the estuarine, marine and freshwater habitats exhibited by individuals within each contingent, suggests that each is regulated by individuals that display exploratory/migratory behaviour (Secor 1999), and may be best described as 'partial migration' i.e. the occurrence of coexisting exploratory/migratory and resident groups within the same population (Kerr et al. 2009)

Partial migration is a widespread phenomenon in nature, yet although it is well-documented in the avian literature (e.g. Berthold 1999), the reporting of partial migration in fishes has been infrequent (Kerr et al. 2009, Chapman et al. 2012), and generally limited to populations where it is morphologically expressed and easily observed, e.g. salmonid populations exhibiting morphologically different resident and migratory individuals (inter alia Jonsson \& Jonsson 1993, Olsson et al. 2006). However, Kerr et al. (2009) and Chapman et al. (2012) argue that partial migration is more widespread among fishes than previously recognised. For example, adult red drum Sciaenops ocellatus, a Sciaenid with a life-history remarkably similar to A. japonicus (Griffiths 1996), exhibited what could have been classified as partial migration, with only a
proportion (26\%) of tagged fish emigrating to the adjacent continental shelf, while the rest remained resident in the estuary (Reyier et al. 2011).

## Evolutionary consequences of alternative life history strategies/behavioural traits

Alternative life history strategies or behavioural traits such as contingent behaviour and partial migration have significant ecological consequences (Kerr et al. 2009, Chapman et al. 2011, Rohde et al. 2014). The expression of diverse life history strategies is particularly advantageous for estuary-dependent fishes, as a means of offsetting environmental variability and ensuring population persistence and regulation (Kerr \& Secor 2012, Secor \& Kerr 2009). Possibly developed through phenotypic plasticity (Secor 1999), such contingents could offer "rescue effects" for subpopulation declines by buffering population-level responses against anthropogenic impacts and/or unfavourable conditions (e.g. Ray 2005, Kerr et al. 2010, Petitgas et al. 2010). Therefore, alternative life history strategies or behavioral traits could be a beneficial strategy to enhance population regulation and persistence, and could provide a powerful survival mechanism for estuarine fish, especially in combination with dynamic meta-population characteristics, including genetic diversity (Cowen et al. 2007).

Petitgas et al. (2010) examined the influence of diverse life cycles on the recovery of previously collapsed marine fish stocks that exhibit resident and migratory contingents and demonstrated the contribution of adopting contingents to the maintenance and recovery of collapsed populations. They showed that the offshore (resident) contingents were the first to collapse and their recovery was dependent on the reappearance phenotypically divergent migratory
individuals to re-establish the use of the offshore habitats. They suggested that resident contingents confer stability while migratory contingents confer productivity and resilience, and that the connectivity between the two contingents increases stock size. In the case of $A$. japonicus, the existence of separate contingents, coupled with partial migration within each, could allow for population regulation and contribute to the maintenance of the Algoa Bay $A$. japonicus population. For example, the recapture rate of estuarine-tagged fish (35\%) was almost double that of the marine-tagged fish (20\%). Additionally, among the estuarine-tagged fish, the recapture rate of fish that remained resident to the estuary (41\%) was almost double that of the fish that exhibited movements across the estuarine-marine interface (23\%). This highlights the vulnerability of the estuarine contingent, particularly the resident individuals, to exploitation and the potential benefits of alternative behavioural traits. Simultaneously, this highlights the need for urgent management attention to allow for the recruitment of juveniles to the marine adult population.

This study also acknowledges the contribution and importance of the marine contingent in supplementing the coastal adult population, particularly as the connectivity between A. japonicus tagged in the Sundays Estuary and adjacent Woody Cape coastal zone and the low levels of dispersal out of Algoa Bay ( $\mathrm{n}=2$ individuals) suggest that juvenile $A$. japonicus exist as a metapopulation with several subpopulations, each with distinct estuarine and marine contingents. This supports the hypothesis of Griffiths (1996) and suggestions by Griffiths and Attwood (2005) that juvenile dusky kob consist of several allopatric subpopulations that remain around their nursery estuaries until they reach maturity. Kerr and Secor (2012) hypothesised that natural selection should favour partial migration in estuarine and coastal fishes, but that the consequences of a
partial migration strategy should still be considered at a meta-population level, particularly in the context of anthropogenic impacts, where for example, the removal of migratory individuals could decrease connectivity between local populations and hence result in meta-population declines. For example, this study showed that estuarine resident $A$. japonicus were more vulnerable to exploitation. Over time, the removal of these individuals, particularly if residency is a heritable trait, will have consequences at a meta-population level. The extent of such associated consequences for $A$. japonicus, as for other fishes, remains unknown. Nonetheless, the existence of such contingents and partial migration strategies in this case can be seen as beneficial as they may improve the resilience of the species to the impacts of overfishing. The occurrence of such intra-population structure within the A. japonicus Algoa Bay population therefore likely improves the species' resilience to major perturbations, caused by anthropogenic (e.g. estuarine degradation) or environmental (e.g. climatic) impacts. This is necessary, given the high overall recapture rate (28\%) and degree of residency and the low levels of dispersal and connectivity among estuaries, which render this species vulnerable to exploitation.

## Habitat connectivity and partial migration

Habitat connectivity was not affected by batch or catch site, although there was individual variability in the extent, timing and duration of movements between estuarine, riverine and marine environments. The need to understand individual variability in fish movement has recently gained increased recognition from researchers, as population structure can be dependent on individual movement behaviour (Patterson et al. 2008). According to Chapman et al. (2012),
intraspecific variation in migratory behaviour is widespread and appears to be the rule rather than the exception, resulting in such within-population migratory dimorphism being termed partial migration.

In vertebrates, migratory behaviour can be genetically-controlled, and the movement behavior (i.e. resident or migratory) of fishes can be genetically inherited (Gemperline et al. 2002, Jonsson \& Jonsson 1993). However, the adoption of migratory behaviour may also be based on a tradeoff, where the benefits and costs of residency and migration are weighed up through their effect on fitness (Gross 1987, Dingle 1996, Mehner \& Kasprzak 2011). For an individual to maximise fitness, behaviour should depend on the present conditions and future trade-offs in terms of expected growth and probability of survival as a resident or migratory fish (Forseth et al. 1999). For example, the adoption of migratory behaviour by common bream Abramis brama and brown trout Salmo trutta was found to be related to an individual's risk of predation (Skov et al. 2011), and by food availability and changes in feeding conditions in that habitat (Olsson et al. 2006), respectively.

The expression of partial migration may also be affected by anthropogenic impacts that increase productivity, by promoting residency in or migration to a specific habitat (Kerr et al. 2009). Gilchristella aestuaria, one of the dominant prey items of juvenile A. japonicus (Marais 1984), was found to be most abundant in the upper reaches of the Sundays Estuary (Harrison \& Whitfield 1990). Potential increases in abundance of G. aestuaria, as a result of increased riverine productivity, could induce migratory behaviour to the REI, thereby promoting partial
migration in the $A$. japonicus population. Given that excursions were of relatively short duration (~10 days) and seasonal, estuarine-coastal and riverine connectivity of A. japonicus is likely prey- or predatory-related.

Habitat connectivity of estuarine-tagged $A$. japonicus was largely affected by fish size, with fish < 746 mm TL spending significantly more time in the estuary, and larger fish undertaking more marine excursions. Secor (1999) suggested that ontogeny is one of the most important factors influencing the movements and migrations of fish (Secor 1999). Ontogenetic changes in habitat use are typically associated with refuge, predation, diet and physiological requirements (Bacheler et al. 2009a), allowing life stages to respond individually to the different selection pressures experienced in the environment (Ebenman 1992), and maximise resource use efficiency (Pittman \& McAlpine 2001). Ontogenetic shifts in habitat use are common, particularly in estuaryassociated species (e.g. Childs et al. 2008, Sagarese \& Frisk 2011). Therefore, the influence of ontogeny on estuarine-coastal connectivity of $A$. japonicus in the present study is not surprising. Bacheler et al. (2009a) suggested that the ontogenetic shift of S. ocellatus from the estuarine tributaries towards the coast may be explained by the physiological requirements and preference of larger individuals for higher salinity. It is therefore possible that the ontogenetic shift observed in A. japonicus in this study may be in preparation for their adult marine phase and may be related to an ontogenetic physiological shift, with larger fish having a reduced tolerance for low salinity environments. It is uncertain whether fish size influences multiple estuary use as only two fish, which were both of similar sizes, displayed such behaviour. The low levels of dispersal may be attributed to the costs associated with moving to new estuaries. Dingle (1996) stated that
differential migration, which is the variation in distance travelled, may be facultative owing to certain biological benefits or obligatory as a consequence of gene control. In some cases, the environment and genes interact, such that physical properties can determine the expression of genes and can cause certain individuals to migrate from estuaries when the physical environment is unsuitable (Gillanders et al. 2012). Therefore the benefits of displaying multiple habitat connectivity may also be related to the highly dynamic nature of estuaries or other sheltered environments, such as ports, having varied effects on each individual. Given the low number of estuarine and marine-tagged $A$. japonicus exhibiting multiple habitat connectivity, their connectivity patterns were most likely attributed to individual variability.

## CONCLUSION

This study highlights the value of incorporating movement theory and concepts, such as the contingent hypothesis and partial migration, into fish ecological studies. Such concepts have been previously overlooked in this and many other fish species. It also demonstrates that a comprehensive understanding of behavioural dynamics could be valuable in the effective management and conservation of overexploited estuary-associated species. By quantifying habitat connectivity and intra-population spatial structure, this study not only highlighted the importance of estuaries as nursery habitats but also provided insights into the potential role of acoustic telemetry in contemporary ecological theory and its application.

Acknowledgements. This project was funded by the South Africa/Norway Programme on Research Co-operation (National Research Foundation of South Africa, and the Research Council of Norway) and the South African Institute for Aquatic Biodiversity. The work formed part of the first author's PhD research programme for which financial assistance was provided by a Rhodes University Atlantic Philanthropies Postgraduate Scholarship, and a German Academic Exchange Service (DAAD) Postgraduate Scholarship.

## LITERATURE CITED

Abecasis D, Bentes L, Erzini K (2009) Home range, residency and movements of Diplodus sargus and Diplodus vulgaris in a coastal lagoon: Connectivity between nursery and adult habitats. Estuar Coast Shelf Sci 85: 525-529.

Able KW (2005) A re-examination of fish estuarine dependence: evidence for connectivity between estuarine and ocean habitats. Estuar Coast Shelf Sci 64: 5-17.

Able KW, Grothues TM (2007a) Diversity of estuarine movements of striped bass (Morone saxatilis): a synoptic examination of an estuarine system in southern New Jersey. Fish Bull 105: 426-435.

Able KW, Grothues TM (2007b) An approach to understanding habitat dynamics of flatfishes: advantages of biotelemetry. J Sea Res 58: 1-7.

Bacheler NM, Paramore LM, Burdick SM, Buckel JA, Hightower JE (2009a) Variation in movement patterns of red drum (Sciaenops ocellatus) infered from conventional tagging and ultrasonic telemetry. Fish Bull 107: 405-419.

Bacheler NM, Paramore LM, Buckel JA, Hightower JE (2009b) Abiotic and biotic factors influence the habitat use of an estuarine fish. Mar Ecol Prog Ser 377: 263-277.

Beck MW, Heck Jr. KL, Able KW, Childers D, Eggleston D, Gillanders BM, Halpern B, Hays C, Hoshino K, Minello T, Orth R, Sheridan P, Weinstein M (2001) The identification, conservation, and management of estuarine and marine nurseries for fish and invertebrates. Bioscience 51: 33-641.

Berthold P (1999) A comprehensive theory for the evolution, control and adaptability of avian migration. Ostrich: J Afr Ornith 70(1): 1-11

Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHM, White J-SS (2008) Generalized linear mixed models: a practical guide for ecology and evolution. TREE 24 (3): 127-135.

Chapman BB, Brönmark C, Nilsson J-Å, Hansson L-A (2011) The ecology and evolution of partial migration. Oikos 120: 1764-1775.

Chapman BB, Skov C, Hulthén K, Brodersen J, Nilsson PA, Hansson L-A, Brönmark C (2012) Partial migration in fishes: definitions, methodologies and taxonomic distribution. J Fish Biol 81: 479-499.

Childs A-R, Cowley PD, Næsje TF, Booth AJ, Potts WM, Thorstad EB, Økland F (2008) Estuarine use by spotted grunter (Pomadasys commersonnii) in a South African estuary, as determined by acoustic telemetry. Afr J Mar Sci 30: 123-132.

Childs A-R, Næsje TF, Cowley PD (2011) Long-term effects of different-sized surgically implanted acoustic transmitters on the sciaenid Arygyrosomus japonicus: breaking the $2 \%$ tag-to-body mass rule. Mar Freshw Res 62: 432-438.

Cowley PD, Kerwath SE, Childs A-R, Thorstad EB, Økland F, Næsje TF (2008) Estuarine habitat use by juvenile dusky kob Argyrosomus japonicus (Sciaenidae), with implications for management. Afr J Mar Sci 30: 247-253.

Cowley PD, Childs A-R, Bennett RH (2013) The trouble with estuarine fisheries in temperate South Africa, illustrated by a case study on the Sundays Estuary. Afr J Mar Sci 35(1): 117128.

Cowen RK, Gawarkiewic G, Pineda J, Thorrold SR, Werner FE (2007) Population connectivity in marine systems: an overview. Oceanography 20: 14-21.

Dingle H (1996) Migration: the biology of life on the move. New York: Oxford University Press.

Ebenman B (1992) Evolution in organisms that change their niches during the life cycle. Am Nat 139: 990-1021

Espinoza M, Farrugia TJ, Webber DM, Smith F, Lowe CG (2011) Testing a new acoustic telemetry technique to quantify long-term, fine-scale movements of aquatic animals. Fish Res 108: 364-371.

Forseth T, Næsje TF, Jonsson B, Harsaker K (1999) Juvenile migration in brown trout: a consequence of energetic state. J Anim Ecol 68: 783-793.

Gemperline PJ, Rulifson RA, Paramore L (2002) Multi-way analysis of trace elements in fish otoliths to track migratory patterns. Chemom.Intell Lab Syst 60: 135-146.

Gillanders BM, Able KW, Brown JA, Eggleston DB, Sheridan PF (2003) Evidence of connectivity between juvenile and adult habitats for mobile marine fauna: an important component of nurseries. Mar Ecol Prog Ser 247: 281-295.

Gillanders BM, Elsdon TS, Roughan M (2012) Connectivity of Estuaries. In: Wolanski E, McLusky DS (eds), Treat Estuar Coast. Amsterdam: Elsevier.

Griffiths MH (1996) Life history of the dusky kob Argyrosomus japonicus (Sciaenidae) off the east coast of South Africa. S Afr J Mar Sci 17: 135-154.

Griffiths MH (1997) Influence of prey availability on the distribution of dusky kob Argyrosomus japonicus (Sciaenidae) in the Great Fish River Estuary, with notes on the diet of early juveniles from three other estuarine systems. S Afr J Mar Sci 18: 137-145.

Griffiths MH, Attwood CG (2005) Do dart tags suppress growth of dusky kob Argyrosomus japonicus? Afr J Mar Sci 27: 505-508.

Griffiths MH, Hecht T (1995) Age and growth of South African dusky kob Argyrosomus japonicus (Sciaenidae) based on otoliths. S Afr J Mar Sci 16: 119-128.

Griffiths MH, Heemstra PC (1995) A contribution to the taxonomy of the marine fish genus Argyrosomus (Perciformes: Sciaenidae), with descriptions of two new species from southern Africa. Ichthyol Bull JLB Smith Inst Ichthyol. No. 65: 1-40.

Gross MR (1987) Evolution of diadromy in fishes. Am Fish Soc Symp 1: 14-25.

Harrison TD, Whitfield AK (1990) Composition, distribution and abundance of ichthyoplankton in the Sundays River estuary. S Afr J Zool 25: 161-168.

Heupel MR, Semmens JM, Hobday AJ (2006) Automated acoustic tracking of aquatic animals: scales, design, and deployment of listening station arrays. Mar Freshw Res 57: 1-13.

Illenberger WI (1988) The Holocene evolution of the Sundays Estuary and adjacent coastal dunefields, Algoa Bay, South Africa. In: Davis GF, Moon BP (eds.), Geomorphological studies in southern Africa. Cape Town: AA Balkema. pp 389-405.

Jonsson B, Jonsson N (1993) Partial migration: niche shift versus sexual maturation in fishes. Rev Fish Biol Fish 3: 348-365.

Kerr LA, Secor DH (2012) Partial migration across populations of white perch (Morone americana): A flexible life history strategy in a variable estuarine environment. Estuar Coast 35: 227-236.

Kerr LA, Secor DH, Piccoli P (2009) Partial migration of fishes as exemplified by the estuarinedependent white perch. Fisheries 34:114-123.

Kerr LA, Cadrin SX, Secor DH (2010) The role of spatial dynamics in the stability, resilience, and productivity of an estuarine fish population. Ecol Appl 20: 497-507.

Kraus RT, Secor DH (2004) Dynamics of white perch Morone americana population contingents in the Patuxent River estuary, Maryland, USA. Mar Ecol Prog Ser 279: 247-259.

Marais JFK (1984) Feeding ecology of major carnivorous fish from four Eastern Cape estuaries. S Afr J Zool 19: 210-223.

McQuinn IH (1997) Metapopulations and the Atlantic herring. Rev Fish Biol Fish 7: 297-329.

Mehner T, Kasprzak P (2011) Partial diel vertical migrations in pelagic fish. J Anim Ecol 80: 761-770.

Næsje TF, Cowley PD, Diserud OH, Childs A-R, Kerwath S, Thorstad EB (2012) Riding the tide: estuarine movements of a sciaenid fish, Argyrosomus japonicus. Mar Ecol Prog Ser 460: 221-232.

Olsson IC, Greenberg EB, Wysujack K (2006) Environmentally induced migration: the importance of food. Ecol Lett 9: 645-651.

Patterson TA, Thomas L, Wilcox C, Ovaskainen O, Matthiopoulos J (2008) State-space models of individual animal movement. TREE 23: 87-94.

Petitgas P, Secor DH, McQuinn I, Huse G, Lo N (2010) Stock collapses and their recovery: mechanisms that establish and maintain lifecycle closure in space and time. ICES J Mar Sc 67: 1841-1848.

Pittman SJ, McAlpine CA (2001) Movements of marine fish and decapod crustaceans: Process, Theory and Application. Adv Mar Biol 44: 206-272.

Ray GC (2005) Connectivities of estuarine fishes to the coastal realm. Estuar Coast Shelf Sci 64:18-32.

Reddering JSV, Esterhuysen K (1981) Sedimentation in the Sundays Estuary. University of Port Elizabeth, ROSIE Report No. 3: 1-48.

Reyier EA, Lowers RH, Scheidt DM, Adams DH (2011) Movement patterns of adult red drum, Sciaenops ocellatus, in shallow Florida lagoons as inferred through autonomous acoustic telemetry. Environ Biol Fishes 90: 343-360.

Rohde J, Fresh KL, Quinn TP (2014) Factors affecting partial migration in Puget Sound Coho Salmon. Nor Am J Fish Manag 34: 559-570.

Sackett DK, Able KW, Grothues TM (2007) Dynamics of summer flounder, Paralichthys dentatus, seasonal migrations based on ultrasonic telemetry. Estuar Coast Shelf Sci 74: 119-130.

Sagarese SR, Frisk MG (2011) Movement patterns and residence of adult winter flounder within a Long Island Estuary. Mar Coast Fish 3: 295-306.

Scharler UM, Baird D (2005) The filtering capacity of selected Eastern Cape estuaries, South Africa. Water SA 31: 483-490.

Secor DH (1999) Specifying divergent migrations in the concept of stock: the contingent hypothesis. Fish Res 43: 13-34.

Secor DH, Kerr LA (2009) A lexicon of life cycle diversity in diadromous and other fishes. In: Haro A, Smith KL, Rulifson RA, Moffitt CM, Klauda RJ, Dadswell MJ, Cunjak RA, Cooper JE, Beal KL, Avery TS (eds), Challenges for diadromous fishes in a dynamic global environment, Am Fish Soc Symp Vol. 69. USA: American Fisheries Society. pp 537-556.

Secor DH, Rooker JR (2000) Is otolith strontium a useful scalar of life cycles in estuarine fishes? Fish Res 46: 359-371.

Secor DH, Rooker JR (2005) Connectivity in the life histories of fishes that use estuaries. Estuar Coast Shelf Sci 64: 1-3.

Secor DH, Rooker JR, Zlokovitz E, Zdanowicz VS (2001) Identification of riverine, estuarine, and coastal contingents of Hudson River striped bass based upon otolith elemental fingerprints. Mar Ecol Prog Ser 211: 245-253.

Silberschneider V, Gray CA (2008) Synopsis of biological, fisheries and aquaculture-related information on mulloway Argyrosomus japonicus (Pisces: Sciaenidae), with particular reference to Australia. J Appl Ichthyol 24: 7-17.

Skov C, Baktoft H, Brodersen J, Brönmark C, Chapman BB, Hansson L-A, Anders Nilsson P (2011) Sizing up your enemy: individual predation vulnerability predicts migratory probability. Proc Roy Soc Biol Sci 278: 1414-1418.

Trewavas E (1977) The sciaenid fishes of the Indo-West Pacific. Transactions of the Royal Society, London 33: 253-541.

Tzeng WN, Iizuka Y, Shiao JC, Yamada Y, Oka HP (2003) Identification and growth rates comparison of divergent migratory contingents of Japanese eel (Anguilla japonica). Aquaculture 216:77-86.

Vasconcelos RP, Reis-Santos P, Maia A, Fonseca V, França S, Wouters N, Costa MJ, Cabral HN. 2010. Nursery use patterns of commercially important marine fish species in estuarine systems along the Portuguese coast. Estuar Coast Shelf Sci 86: 613-624.

Wallace JH (1975) The estuarine fishes of the east coast of South Africa. I. Species composition and length distribution in the estuarine and marine environments. II. Seasonal abundance and migrations. Invest Rep Ocean Res Inst. 40: 1-72.

Wooldridge TH, Bailey C (1982) Euryhaline zooplankton of the Sundays Estuary and notes on trophic relationships. S Afr J Zool 17: 151-163.


Fig. 1. Map of A) South Africa showing the location of acoustic receivers in the telemetry array situated in Algoa Bay and eight estuaries along the South African coastline (green dots) and in the coastal zone (blue dots), B) Sunday Estuary and catch-sites of juveniles caught and tagged in three batches throughout the estuary and C) fish caught and tagged in the Woody Cape coastal zone.

Fig. 2. Abacus plots showing the monitoring periods and daily presence of a) the three batches of estuarine-tagged juvenile A. japonicus (E1 - E65); b) marine-tagged juvenile A. japonicus (M1 M20) ('R' = fish that were recaptured and kept, ' $R$ ' = fish that were recaptured and released, asterisk $\left(^{*}\right)$ denotes transmitters that switched off randomly during the study period. Note: estimated monitoring period for the marine-tagged fish was based on the transmitter battery life provided by the transmitter manufacturer).

Fig. 3. Mean proportions (\%) of time spent by a) estuarine-tagged A. japonicus ( $\mathrm{n}=65$ ) and b ) marine-tagged A. japonicus ( $\mathrm{n}=15$ ); in the Sundays River (REI), Sundays Estuary (SUN), other estuaries (OE) and the marine environment (MARINE).

Fig. 4. Relationships between estuarine-tagged A. japonicus size (mm TL) and a) the proportion of time spent in the estuary (time in estuary = TIE) (solid markers represent observed time in estuary and solid line represents estimated time in estuary) and b) number of marine excursions undertaken.

Fig. 1


Childs A-R, Cowley PD, Næsje TF, Bennett RH



DAYS SINCE 1 JAN 08
689

Fig. 4


714 Appendix 1. Details of the 85 juvenile A. japonicus acoustically tagged in the Sundays Estuary

715 and Woody Cape coastal zone from May 2008 to June 2009.

|  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


| E19* | V13 | 08/05/30 | SE | $\begin{aligned} & 486 \\ & (1.9) \end{aligned}$ | 213 | 92 | - | S <br> (TB) | 1 NR (Port of Ngqura, PE Harbour) | 7 (0.23) | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| E20* | V13 | 08/05/31 | SE | $\begin{aligned} & 604 \\ & (2.7) \end{aligned}$ | 287 | 96 | - | TB | 3 (4.2) | - | - |
| E21* | V13 | 08/06/05 | SE | $\begin{aligned} & 396 \\ & (1.3) \end{aligned}$ | 136 | 100 | - | TB | - | - | - |
| E22* | V13 | 08/06/07 | SE | $\begin{aligned} & 667 \\ & (3.1) \end{aligned}$ | 189 | 62 | - | S <br> (TB) | 1 NR | 57 (0.22) | - |
| E23* | V13 | 08/06/08 | SE | $\begin{aligned} & 486 \\ & (1.9) \end{aligned}$ | 144 | 100 |  | TB | - | 1 (0.1) | - |
| Batch 2 |  |  |  |  |  |  |  |  |  |  |  |
| E24* | V13 | 09/02/19 | SE | $\begin{aligned} & 820 \\ & (4.3) \end{aligned}$ | 25 | 46 | - | TB | 2 (6.2) | - | - |
| E25* | V13 | 09/02/21 | SE | $\begin{aligned} & 664 \\ & (3.1) \end{aligned}$ | 295 | 96 | - | TB | 5 (2.3) | - | - |
| E26* | V13 | 09/02/21 | SE | $\begin{aligned} & 690 \\ & (3.3) \end{aligned}$ | 317 | 99 | - | TB | 1 (4.1) | - | - |
| E27* | V13 | 09/02/21 | SE | $\begin{aligned} & 545 \\ & (2.2) \end{aligned}$ | 62 | 97 | - | TB | 1 (1.9) | - | - |
| E28* | V13 | 09/02/21 | SE | $\begin{aligned} & 588 \\ & (2.5) \end{aligned}$ | 13 | 100 | - | TB | - | - | - |
| E29* | V13 | 09/02/21 | SE | $\begin{aligned} & 447 \\ & (1.6) \end{aligned}$ | 253 | 100 | - | TB-C | - | 1 (0.42) | $\begin{aligned} & \text { 19-Nov-09 } \\ & (0 \mathrm{~km}) \end{aligned}$ |
| E30* | V13 | 09/02/22 | SE | $\begin{aligned} & 485 \\ & (1.8) \end{aligned}$ | 45 | 100 | - | TB | - | 1 (0.03) | - |
| E31* | V13 | 09/02/22 | SE | $\begin{aligned} & 487 \\ & (1.9) \end{aligned}$ | 377 | 87 | - | TB-C | 6 NR (9.5) | - | $\begin{aligned} & \text { 5-Mar-10 (0 } \\ & \text { km) } \end{aligned}$ |
| E32* | V13 | 09/02/22 | SE | $\begin{aligned} & 453 \\ & (1.6) \end{aligned}$ | 252 | 99 | - | TB | 1 (1.4) | - | - |
| E33* | V13 | 09/02/22 | SE | $\begin{aligned} & 483 \\ & (1.8) \\ & \hline \end{aligned}$ | 35 | 94 | - | S (TB) | 1 NR | 3 (0.74) | - |

## Batch 3

| E34 | V13 TP | 09/04/25 | SE | $\begin{aligned} & \hline 552 \\ & (2.3) \end{aligned}$ | 238 | 100 | - | TL | - | - | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| E35 | V13 TP | 09/04/25 | SE | $\begin{aligned} & 459 \\ & (1.7) \end{aligned}$ | 240 | 90 | - | TL-C | - | 17 (0.38) | $\begin{aligned} & \text { 4-Oct-10 (0 } \\ & \text { km) } \end{aligned}$ |
| E36* | V13 | 09/04/25 | SE | $\begin{aligned} & 486 \\ & (1.9) \end{aligned}$ | 354 | 65 | - | TL-C | - | 111 (0.56) | $\begin{aligned} & \text { 14-Apr-10 } \\ & (0 \mathrm{~km}) \end{aligned}$ |
| E37* | V13 | 09/04/25 | SE | $\begin{aligned} & 527 \\ & (2.1) \end{aligned}$ | 17 | 100 | - | C | - | - | $\begin{aligned} & \text { 11-May-09 } \\ & (0 \mathrm{~km}) \end{aligned}$ |
| E38* | V13 | 09/04/25 | SE | $\begin{aligned} & 524 \\ & (2.1) \end{aligned}$ | 325 | 100 | - | TB | - | 2 (0.05) | - |
| E39 | MP-9 | 09/04/25 | SE | $\begin{aligned} & 324 \\ & (0.8) \end{aligned}$ | 133 | 100 | - | TL/C? | - | - | - |
| E40 | MP-9 | 09/04/25 | SE | $\begin{aligned} & 371 \\ & (1.1) \end{aligned}$ | 270 | 99 | - | TL | - | 1 (0.01) | - |
| E41 | MP-9 | 09/04/25 | SE | $\begin{aligned} & 365 \\ & (1.1) \end{aligned}$ | 173 | 100 | - | C | - | - | $\begin{aligned} & \text { 14-Oct-09 (0 } \\ & \mathrm{km}) \end{aligned}$ |
| E42* | V13 | 09/04/26 | SE | $\begin{aligned} & 548 \\ & (2.3) \end{aligned}$ | 379 | 99 | - | TB-C | 1 (4.1) | - | $\begin{aligned} & \text { 26-Apr-11 } \\ & (0 \mathrm{~km}) \end{aligned}$ |
| E43 | MP-9 | 09/04/26 | SE | $\begin{aligned} & 421 \\ & (1.4) \end{aligned}$ | 200 | 73 | - | TL/C? | 1 (19.3) | 34 (0.40) | - |
| E44 | MP-9 | 09/04/26 | SE | $\begin{aligned} & 326 \\ & (0.8) \end{aligned}$ | 271 | 98 | - | TL/C? | 1 NR (Port of Ngquara) | 1 (0.1) | - |
| E45 | MP-7 | 09/04/26 | SE | $\begin{aligned} & 298 \\ & (0.6) \end{aligned}$ | 182 | 97 | - | TL/C? | 1 (6.1) | - | - |


| E46 | MP-7 | 09/04/26 | SE | $\begin{aligned} & 237 \\ & (0.2) \end{aligned}$ | 191 | 100 | - | TLC | - | - | $\begin{aligned} & \text { 24-Feb-10 (0 } \\ & \text { km) } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| E47* | V13 | 09/04/27 | SE | $\begin{aligned} & 554 \\ & (2.3) \end{aligned}$ | 121 | 100 | - | TB | - | - | - |
| E48 | MP-9 | 09/04/27 | SE | $\begin{aligned} & 334 \\ & (0.9) \end{aligned}$ | 265 | 98 | - | TLC | 1 NR (Port of Ngqura) | - | $\begin{aligned} & \text { 23-Jan-10 } \\ & \text { (20 km) } \end{aligned}$ |
| E49 | MP-9 | 09/04/28 | SE | $\begin{aligned} & 539 \\ & (2.2) \end{aligned}$ | 273 | 100 | - | TLC | - | - | $\begin{aligned} & \text { 25-Jan-10 (0 } \\ & \mathrm{km}) \end{aligned}$ |
| E50* | V13 | 09/05/01 | SE | $\begin{aligned} & 573 \\ & (2.4) \end{aligned}$ | 201 | 82 | - | TB-C | 1 (5.3) | 20 (0.12) | $\begin{aligned} & \text { 24-Jan-10 (0 } \\ & \mathrm{km}) \end{aligned}$ |
| E51 | MP-7 | 01-May-09 | SE | $\begin{aligned} & 251 \\ & (0.3) \end{aligned}$ | 187 | 100 | - | TL/C? | - | - | - |
| E52 | MP-9 | 02-May-09 | SE | $\begin{aligned} & 377 \\ & (1.1) \end{aligned}$ | 368 | 93 | $\begin{aligned} & 0.4 \\ & \text { (Gamtoos) } \end{aligned}$ | SC | 1 NR (Gamtoos Estuary, Port of Ngquara) | - | 6-Jan-11 <br> (110 km) |
| E53 | MP-9 | 02-May-09 | SE | $\begin{aligned} & 360 \\ & (1.0) \end{aligned}$ | 271 | 94 | - | TL/C? | 1 NR (Port of Ngquara) | 4 (0.10) | - |
| E54 | MP-9 | 02-May-09 | SE | $\begin{aligned} & 502 \\ & (2.0) \end{aligned}$ | 171 | 100 | - | TL/C? | - | - | - |
| E55 | MP-9 | 02-May-09 | SE | $\begin{aligned} & 408 \\ & (1.3) \end{aligned}$ | 518 | 99 | - | TL | 1 (5.9) | 3 (0.27) | - |
| E56 | MP-9 | 02-May-09 | SE | $\begin{aligned} & 465 \\ & (1.7) \end{aligned}$ | 349 | 76 | - | S | $\begin{aligned} & 3 \text { NR (40.9) } \\ & \text { (Port of Ngqura) } \end{aligned}$ | - | - |
| E57 | MP-9 | 02-May-09 | SE | $\begin{aligned} & 333 \\ & (0.8) \end{aligned}$ | 297 | 100 | - | C | - | - | $\begin{aligned} & \text { 22-Feb-10 (0 } \\ & \mathrm{km}) \end{aligned}$ |
| E58 | MP-9 | 02-May-09 | SE | $\begin{aligned} & 432 \\ & (1.5) \end{aligned}$ | 254 | 98 | - | S | 1 NR (Port of Ngquara) | - | - |
| E59 | MP-7 | 02-May-09 | SE | $\begin{aligned} & 272 \\ & (0.4) \end{aligned}$ | 172 | 100 | - | TL/C | - | - | - |
| E60* | V13 | 03-May-09 | SE | $\begin{aligned} & 584 \\ & (2.5) \end{aligned}$ | 223 | 100 | - | TB-C | - | 1 (0.02) | $\begin{aligned} & \text { 4-Jan-10 (0 } \\ & \text { km) } \end{aligned}$ |
| E61 | MP-9 | 03-May-09 | SE | $\begin{aligned} & 312 \\ & (0.7) \end{aligned}$ | 404 | 100 | - | TL/C? | - | 3 (0.15) | $\begin{aligned} & \text { 22-Oct-10 (0 } \\ & \text { km) } \end{aligned}$ |
| E62 | MP-9 | 04-May-09 | SE | $\begin{aligned} & 389 \\ & (1.2) \end{aligned}$ | 235 | 82 | - | TL/C? | - | 40 (0.13) | - |
| E63 | MP-9 | 04-May-09 | SE | $\begin{aligned} & 478 \\ & (1.8) \end{aligned}$ | 181 | 100 | - | TL/C? | - | 1 (0.07) | - |
| E64 | MP-7 | 04-May-09 | SE | $\begin{aligned} & 276 \\ & (0.5) \end{aligned}$ | 171 | 100 | - | TL/C | - | - | - |
| E65 | MP-9 | 23-May-09 | SE | $\begin{aligned} & 437 \\ & (1.5) \end{aligned}$ | 394 | 100 | - | TL | - | - | - |
| Marine-tagged juveniles |  |  |  |  |  |  |  |  |  |  |  |
| M1* | V13 | 18-Oct-08 | WC | $\begin{aligned} & 498 \\ & (1.9) \end{aligned}$ | TB | - | - | TB | - | - | $\begin{aligned} & \text { 18-Dec-09 } \\ & \text { ( } 56 \mathrm{~km} \text { ) } \\ & \text { (Released) } \end{aligned}$ |
| M2* | V13 | 18-Oct-08 | WC | $\begin{aligned} & 630 \\ & (2.8) \end{aligned}$ | TB | - | - | TB | - | - | $\begin{aligned} & \text { 5-Jan-11 (36 } \\ & \mathrm{km}) \end{aligned}$ |
| M3* | V13 | 18-Oct-08 | WC | $\begin{aligned} & 560 \\ & (2.3) \end{aligned}$ | TB | - | - | TB | - | - | - |
| M4 | V13 | 03-Dec-08 | WC | $\begin{aligned} & 518 \\ & (2.1) \end{aligned}$ | 517 (68) | 99.8 | - | S | 1 (1.1) | - | $\begin{aligned} & 13-O c t-12 \\ & (36 \mathrm{~km}) \end{aligned}$ |
| M5 | V13 | 06-Dec-08 | WC | $\begin{aligned} & 684 \\ & (3.2) \end{aligned}$ | 517 (0) | 100 | - | S | - | - | - |
| M6 | V13 | 06-Dec-08 | WC | $\begin{aligned} & 716 \\ & (3.5) \end{aligned}$ | 517 (0) | 100 | - | S | - | - | - |


| M7 | V13 | 06-Dec-08 | WC | $\begin{aligned} & 536 \\ & (2.2) \end{aligned}$ | 517 (408) | 94.3 | - | S | 7 (4.2) | - | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| M8 | V13 | 06-Dec-08 | WC | $\begin{aligned} & 696 \\ & (3.3) \end{aligned}$ | 517 (399) | 99.9 | - | S | $1 \text { (0.7) (Port of }$ Ngqura) | - | - |
| M9 | V13 | 07-Dec-08 | WC | $\begin{aligned} & 738 \\ & (3.6) \end{aligned}$ | 517 (0) | 100 | - | S | - | - | - |
| M10 | V13 | 07-Dec-08 | WC | $\begin{aligned} & 465 \\ & (1.7) \end{aligned}$ | 517 (0) | 100 | - | S | - | - | - |
| M11 | V13 | 14-Feb-09 | WC | $\begin{aligned} & 597 \\ & (2.6) \end{aligned}$ | 517 (326) | 100 | - | S | 0 (Port of Nqura) | - | - |
| M12 | V13 | 14-Feb-09 | WC | $\begin{aligned} & 571 \\ & (2.4) \end{aligned}$ | 517 (27) | 99.5 | - | S | 2 (2.6) | - | - |
| M13 | V13 | 15-Feb-09 | WC | $\begin{aligned} & 812 \\ & (4.2) \end{aligned}$ | 517 (0) | 100 | - | S | - | - | - |
| M14* | V13 | 15-Feb-09 | WC | $\begin{aligned} & 595 \\ & (2.6) \end{aligned}$ | TB (7) | - | - | TB | 1 (4.1) | - | - |
| M15* | V13 | 2009/02/15 | WC | $\begin{aligned} & 588 \\ & (2.5) \end{aligned}$ | TB | - | - | TB | - | - | - |
| M16 | MP-13 | 2009/06/13 | WC | $\begin{aligned} & 491 \\ & (1.9) \end{aligned}$ | 684 (0) | 100 | - | S | - | - | - |
| M17 | MP-13 | 2009/06/13 | WC | $\begin{aligned} & 524 \\ & (2.1) \end{aligned}$ | 182 | 75.4 | - | TL-C | 1 NR (45) | 1 (0.05) | $\begin{aligned} & \text { 19-Aug-11 } \\ & (36 \mathrm{~km}) \end{aligned}$ |
| M18 | MP-13 | 2009/06/13 | WC | $\begin{aligned} & 553 \\ & (2.3) \end{aligned}$ | 684 (0) | 100 | - | S | - | - | - |
| M19 | MP-13 | 2009/06/13 | WC | $\begin{aligned} & 446 \\ & (1.6) \end{aligned}$ | 684 (0) | 100 | - | S | - | - | - |
| M20 | MP-13 | 2009/06/13 | WC | $\begin{aligned} & 570 \\ & (2.4) \end{aligned}$ | 492 (0) | 100 | - | S | - | - | - |

716 * = Transmitters that switched off randomly during the study period between May 2008 and June 2009.
$717{ }^{* *}=$ Estimated age was derived from the generalised Von Bertalanffy (both sexes) for dusky kob (Griffiths and Hecht 1995). Note:

TB = Transmitter battery switched off at random intervals, TB-C = Transmitter battery switched off randomly then caught, C = Caught, TL = Transmitter lifespan completed, TL-C = Transmitter lifespan completed then caught, TL/C? = Transmitter lifespan completed or caught, S (TB) = Sea but unknown because transmitter battery could have switched off randomly, S = Sea, S-C = Sea then caught.

