Rare, whitish–pale ochre *Cortinarius* species of sect. *Calochroi* from calcareous *Tilia* forests in South East Norway

Tor Erik Brandrud¹, Tobias Guldberg Frøslev⁴, Bálint Dima¹²³

¹Norwegian Institute for Nature Research (NINA), Gaustadalléen 21, NO-0349 Oslo
²Department of Biosciences, Plant Biology, P.O. Box 65, FI-00014, University of Helsinki, Finland
³Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, Pázmány Péter s. 1/c, H-1117 Budapest, Hungary
⁴Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark

Corresponding author: tor.brandrud@nina.no

KEYWORDS
Cortinarius, ITS sequences, barcoding gap, morphology, *C. albertii, C. catharinae, C. parasuaveolens, C. subgracilis, C. insignibulbus*

NØKKELORD
Cortinarius, ITS-sekvensering, morfologi, *C. albertii, C. catharinae, C. parasuaveolens, C. subgracilis, C. insignibulbus*

SAMMENDRAG
Fem slørsopper fra kalklindeskog med hvitaktig – blekoker hatt (“*C. parvus*-komplekset; seksjon *Calochroi*) er behandlet her. Disse har alle sin verdensnordgrense i Oslofjord–Mjøsa-området, er ekstremt sjeldne og hos oss bundet til kalklindeskogen. De er hver kun kjent fra 1–3, trolig svært gamle, reliktpregete lokaliteter. Selv om disse artene er svært like, og kan være vanskelig å skille, er denne gruppen ikke monofyletisk, og artene opptrer i forskjellige fyllogenetiske greiner/klader innenfor *Calochroi*. Basert på makrokjemiske KOH reaksjoner kan to undergrupper skilles ut; de som reagerer kraftig rosa–blodrødt med KOH både på hatt(kant) og undersiden av knollen (*C. albertii, C. catharinae* og *C. parasuaveolens*) og de som reagerer sterkt bare på undersiden av knollen (*C. subgracilis* and *C. insignibulbus*). Den sistnevnte gruppen skilles også på noe større sporer, dog med overlapp til de andre artene. *Cortinarius catharinae* og *C. subgracilis* er bare funnet i vårt sørlige kalklindeskogsområde (Grenland), mens *C. parasuaveolens* og *C. insignibulbus* er funnet i de nordlige områdene (indre Oslofjord–Ringerike–Mjøsa), mens *C. albertii* er registrert både i Grenland og på Ringerike.

ABSTRACT
Five initially whitish-pale ochre *Cortinarius* section *Calochroi* species (“the *C. parvus* complex”) from SE Norwegian calcareous *Tilia* forests are treated. The species have their world’s northernmost localities in the Oslofjord–Mjøsa area, and are all extremely
rare; with 1–3 known localities from our Tilia forests, probably very old ones, of relic nature. Although more or less overlapping in morphological features, the group is not monophyletic, and the species belongs to different clades within Calochroi. According to their macrochemical KOH-reaction, two subgroups can be distinguished; those with a bright pink-blood red reaction with KOH both on pileus (margin) and bulb underside (C. albertii, C. catharinae, C. parasuaveolens) and those with pink-blood red reaction only at bulb underside (C. subgracilis and C. insignibulbus). The two species of latter subgroup are also distinguished on slightly larger spores. Cortinarius catharinae and C. subgracilis are recorded only in the southern calcareous Tilia forest region (outer Oslo-fjord), whereas C. parasuaveolens and C. insignibulbus are found only in the more northern regions (inner Oslofjord-Ringerike-lake Mjøsa), and C. albertii is found both in outer Oslofjord and at Ringerike.

INTRODUCTION

Cortinarius is a remarkably large genus of agarics, with more than 2000 species accepted worldwide, including more than 900 species verified with DNA sequences in Garnica et al. (2016). The number of habitat-specific calciphilous species is also remarkable, and e.g. calcareous Quercus-Carpinus-Fagus-Tilia-Corylus forests can be extreme hotspots for specialized species of Cortinarius assigned to subgenus Phlegmacium, in the traditional sense. Many of these species have been cited as strict indicator species for calcareous forest types in Northern (N) Europe (e.g. Brandrud 1999, Brandrud and Bendiksen 2001, Brandrud et al. 2011, Jeppesen and Frøslev 2011) and Central (C) Europe (e.g. Knoch 1990, Gminder 2010, Brandrud and Schmidt-Stohn 2011). According to recent phylogenetic studies, subgen. Phlegmacium is not monophyletic (Stensrud et al. 2014, Garnica et al. 2016), and in the following, this group is termed phlegmacioid species.

In Norway, calcareous frondose forests occur as small Tilia-Corylus(-Quercus) stands on limestone ridges and outcrops (Brandrud 1999, Brandrud et al. 2011, 2016). Calcareous Tilia cordata forests are internationally very rare, almost confined to Southeast (SE) Norway (Brandrud 1999, Brandrud et al. 2016). The SE Norwegian calcareous Tilia forests are situated outside the natural Fagus and Carpinus forest range, and where Quercus is scarce. It seems that calcareous Tilia forests at present are mainly confined to such regions in Europe. These Tilia forests of SE Norway are believed to be 6000–7000 years old relics, often with complex, multi-stemmed Tilia cordata individuals, which could be as old as their forest stands (Brandrud 1999, Brandrud et al. 2011, 2014, 2016).

A monitoring programme for the habitat-specific calcareous Tilia forest fungi was recently initiated, with a base-line monitoring in 2013–2015, including 30 randomly selected localities/sites (Brandrud et al. 2014, 2016). As a result of this monitoring, 89 species of fungi that have their primary habitat in this forest type in Norway are now recognized. More than 60 of these habitat specialists are Cortinarius species, including five recently published new taxa (Brandrud et al. 2015, Brandrud et al. 2016, Frøslev et al. 2017). Of the Cortinarius species recorded in our calcareous Tilia forests, 37 are phlegmacioid taxa, and more than half of these phlegmacioid ones belong to the large monophyletic section Calochroi (incl. sect. Fulvi sensu Brandrud et al. 1990–2014) (19 taxa; see synoptic tables in Brandrud et al. 2011, 2016).

The majority of the European calochroid species are strictly associated with frondose trees, and could well be said to represent the prototype of calciphilous frondose forest macrofungi. The group is especially speciose in Mediterranean, calcareous Quercus ilex
forests–woodlands (e.g. Brandrud 2000, Frøslev et al. 2007, Mahiques 2000, Mahiques et al. 2011). In nemoral-temperate regions they are characteristic for calcareous Fagus or Quercus-Carpinus forests (e.g. Oertel 1984, Jeppesen and Frøslev 2011, Brandrud and Schmidt-Stohn 2011), and in the boreo-nemoral belt of SE-Norway–SE Sweden they occur in calcareous Tilia-Corylus and Quercus-Corylus woodlands (Brandrud 1999, Brandrud and Bendiksen 2001). A number of species shows a submediterranean-southern temperate distribution, but many are widely distributed from the Mediterranean Sea to the Oslofjord, having their world’s northernmost occurrences in SE Norway. This group also includes a few more strictly Tilia-associated taxa, such as C. osloensis Brandrud, T.S. Jeppesen & Frøslev, which is only recorded in the SE Norwegian calcareous Tilia forests (Frøslev et al. 2006a).

Many of the calochroid species in calcareous Tilia forests appear to be extremely rare. Even after long-term studies and intensive monitoring 2013–2015, five species have only been recorded in one out of the 150 presently known calcareous Tilia localities/ sites, and seven species only in two (Brandrud et al. 2011, 2016).

The present paper deals with one of the least known and morphologically most difficult groups of species in Calochroi in Norwegian calcareous Tilia forests. This group of whitish-pale ochre species has earlier been interpreted more broadly as one taxon – i.e. C. parvus Rob. Henry (e.g. Moser 1961, Brandrud and Bendiksen 2001) or C. calochrous (Pers.) Gray var. parvus (Rob. Henry) Brandrud (Brandrud et al. 1990–2014), but is now recognized as a group of morphologically very similar but phylogenetically distinct species. Morphologically, the species are pale with a whitish to very pale yellow ochre pileus or pileus margin when young and unexposed, lilac (to greyish) lamellae, and a bright pink KOH-reaction on the bulb underside (bulbipellis/basal mycelium). Phylogenetically, this morphological complex does not form a supported monophyletic lineage (Frøslev et al. 2007, Garnica et al. 2009, 2016).

The “C. parvus complex” illustrates well the fluctuating and conflicting taxonomic approaches and stages in the study of genus Cortinarius. Three major approaches can be distinguished during the last 30 years:

(i) The extreme lumping approach. In the nordic Cortinarius Flora Photographica (Brandrud et al. 1990–2014) the complex was initially treated as C. calochrous var. parvus, covering all deciduous forest variants with a pale pileus with a whitish margin and whitish universal veil remnants at bulb margin. This lumping was partly based on the continuous nature of morphological characters (such as pileus colours), but also partly a result of lack of information on character variations (due to very little material being available) and an under-emphasis on some taxonomically relevant features such as the KOH-reacton on the bulb underside and pileus (margin).

(ii) The extreme splitting approach. The French Atlas des Cortinaires (AdC; cf. e.g. Bidaud et al. 2001) has performed an extensive splitting of the presently accepted taxa. For instance, the most frequent taxon in the C. parvus group, C. catharinae, was in AdC XI (Bidaud et al. 2001) treated as five or six different species (Frøslev et al. 2007), species which according to our morphological and phylogenetic analyses are identical (see further treatment under Taxonomic part).

(iii) The phylogenetic stages. With phylogenetic methods our “C. parvus” can be separated in at least 5 well-supported phylogenetic species (Frøslev et al. 2007,
Garnica et al. 2009, 2016, Bellanger 2015), accompanied by a more or less distinct morphological differentiation. These taxa are further treated and discussed below.

MATERIAL AND METHODS
Norwegian material of the studied, five Calochroi species was derived from a monitoring project of 30 sites/localities of calcareous Tilia forests in SE Norway 2013–2015, as well as some studies in these Tilia forests prior to that. For monitoring results, and data on each site/locality (incl. site GPS-coordinates), see Brandrud et al. (2016). The studied collections are deposited in the herbarium of the University of Oslo, Natural History Museum (O). The descriptions are also based on other European collections made by the authors (for collection lists, see Frøslev et al. 2007, Clericuzio et al. 2017). The colour standard used is that of Cailleux (1981).

Spores and other microscopic features were studied and measured with a 100 × oil immersion lens (achromatic Zeiss and Leiz equipments), with mounts in 2 % KOH. From each basidiocarp, a random selection of ten to twenty mature spores obtained from cortina remnants/stipe surface were measured excluding apiculus and ornamentation. Based on the mean values obtained from these measurement series, the range of spore variation is given in species description (extreme single-spore measurements are thus omitted from the range given). The study of macromorphological features are based on notes on fresh material. For macrochemical reactions 10-40% KOH was applied.

The nrDNA ITS region was sequenced in all studied collections. DNA extraction, PCR and sequencing procedures followed Brandrud et al. (2015). The ITS sequences of the 5 species treated here were supplemented with sequences of morphological similar species mentioned in the Taxonomy part. Alignment was done by MAFFT online version 7 (http://mafft.cbrc.jp/alignment/server/) using the E-INS-I method (Katoh and Standley 2013). After manual adjustment in SeaView (Gouy et al. 2010), Maximum Likelihood analysis was performed in PhyML online (Guindon et al. 2010) using the GTR+I+Γ model of evolution. The resulting phylogenetic tree was edited in MEGA 7 (Kumar et al., 2016) and shown in Fig.1.

RESULTS AND DISCUSSION
All five of the now accepted calochroid species in the “C. parvus complex” in Europe (Fig. 1) were recorded and verified with ITS sequences in our calcareous Tilia forests during our recent extensive surveying and monitoring studies. The species were among the rarest taxa in our monitoring data, recorded at only one locality/site (C. parasuaveolens, C. subgracilis), two localities (C. albertii, C. catharinae) or three localities (C. insignibulbus). Apart from one area where C. albertii and C. parasuaveolens occur close to each other, the species are not co-occurring on the same localities. Cortinarius catharinae and C. subgracilis differ from the others by occurrence only in the southern calcareous Tilia forest region (outer Oslofjord). Due to sparse material, some collections would have been impossible to identify with certainty without sequencing.

The sequencing of our material confirmed the results of Frøslev et al. (2007) and Garnica et al. (2009, 2016), that the five pale species of the “C. parvus complex” are phylogenetically well-separated and the individual clusters are well-supported and monophyletic units, with a clear and constant barcoding gap towards neighbouring clusters/taxa (Fig. 1), and with little intraspecific genetic variation. The “C. parvus complex” did not, however, form a monophyletic group, but occurred intermixed with some species with lilac tinged pileus, and some with more yellow tinged pileus.
(margin) when young. Only two of our species come close in our phylogenetic tree, namely *C. catharinae* and *C. parasuaveolens* (Fig. 1), but with an unresolved relationship presented as a soft polytomy. With other tree clustering methods applied, the two species fell more distantly from each other (data not shown, but see phylogenetic tree in Clericuzio et al. 2017). Their ITS dissimilarity is rather considerable. *Cortinarius parasuaveolens* differs from *C. catharinae* by >20 basepairs, and from the more bluish tinged *C. molochinus* by >25 basepairs. Whereas *C. albertii* occupies a fairly isolated position in our tree, *C. subgracilis* is a well-supported sister to the *C. haasii*-group (with yellow pileus and basal-mycelium), and *C. insignibulbus* a well-supported sister.
to the *C. violaceipes-C. cordatae* group (with lilac-violaceous spotted pileus).

Re-examination of our material combined with studies of the descriptions in literature revealed that all five species have differences in morphology, although seemingly with some character overlap. The morphological differentiation is treated in detail in taxonomic part.

Cortinarius albertii Dima, Frøslev & T.S. Jeppesen

Fig 2.

Pileus 4–8(–10) cm, viscid–glutinous, glabrous; initially usually pure whitish, at least towards margin, but often entire pileus white when covered by leaf litter, soon with ochraceous brown spots or stripes from centre (N–P 65) due to oxidation, often rendering the pileus bicoloured, marginal zone persistently whitish (where not bruised). Universal veil remnants sparse, sometimes as whitish, soon (dark) brownish patches at centre. *Lamellae* initially pale greyish or rarely faintly lilac tinged, lilac tinges especially (or only) towards edge, finally more greyish brown.

Stipe 4–9(–10) × (0.8–)1–1.5 cm; at base with a strongly marginated, broad and flattened bulb up to 4 cm; stipe colour greyish white, often becoming somewhat brownish (spotted) with age. Universal veil at bulb margin initially rather thick, sometimes almost volva-like, but soon more diffuse, whitish, later often turning brownish. *Context* white, with (ochre) greyish hygrophanous streaks in stipe apex. *Smell* faint to distinct dust/earth-like, especially the lamellae. *Macrochemical reaction:* KOH (10–40%) bright pink on pileus (margin) when young,
then blood red, on base of bulb (basal mycelium/bulbipellis) bright pink (–pinkish red).

Spores 9.5–11 × 5.5–6.5(–7) µm, MV = 10.1 × 6.2 µm, amygdaloid, sometimes slightly citriform, strongly and coarsely (crust-like/net-like) verrucose. **Pileipellis** thick, simplex, of narrow hyphae, some filled with yellow pigment lumps (necropigment). Pale hyphae become distinctly pink with KOH, yellow hyphae more diffuse vinaceous.

Pileus thick, dark to pale violet-oxyd. Rayed, slightly -muchly split. **Stipe** thick, purple, from about middle to base often more reddish; within mycelium simple, well-developed, 15–30 cm long, 1–1.5 cm thick, in part more orangeish. **Habitat**: In calcareous *Tilia* forests, with *Tilia cordata* and *Corylus avellana*, on small lime-stone shelves or among stones in steep scree areas with substantial accumulation of leaf litter/humus (SE Norway; e.g. Brandrud et al. 2018). In S Scandinavia–C Europe mainly in calcareous *Fagus* forest, in the Mediterranean areas mainly in calcareous *Quercus ilex* forests, usually in organic soils (leaf litter).

Localities in SE Norway (Tilia): Telemark, Porsgrunn, Blekebakken NR, T.E. Brandrud, TEB 224-10. Buskerud, Hole, Sønsterudelva east (Ringerike), T.E. Brandrud & B. Dima, TEB 293a,b-17.

Distribution: Widely distributed in Europe, but apparently everywhere rare and restricted to calcareous frondose forest hotspots. Exact distribution is, however, little known due to confusion with similar species (especially the more common *C. catharinae*). Probably with a mainly southern distribution, with a number of verified records from Mediterranean E Spain–S France regions (Frøslev et al. 2006b). Also verified from nemoral–colline areas of Hungary, Germany and north to Denmark–S Sweden, with the here listed boreonemoral outposts in the Oslofjord-Ringerike area of SE Norway (Brandrud et al. 2018).

Comments: When well-developed, *C. albertii* should normally be possible to distinguish from the other species in the “*C. parvus* complex” by the initially non-yellow, often pure white pileus (margin) and pale greyish lamellae, without or with only sparse lilac–bluish tinges. The KOH-reaction is very strong and immediate: bright pink-red on pileus (margin) and bulbipellis/basal mycelium. *Cortinarius catharinae* has a very similar KOH-reaction, but more blood red than pink on pileus, and on average not so intense. *Cortinarius catharinae* may also initially be very pale on pileus margin, but soon develops a faint yellow ochre tinge, and the lamellae are distinct to bright lilac(–pink). The spores are almost identical. *Cortinarius parasuaveolens* also possesses a strong red/pink KOH-reaction, but has slightly larger spores (10–11.5 × 5.5–6.5 µm versus 9.5–11 × 5.5–6.5 µm). Moreover, the basidiocarps of the latter are hardly pure whitish, and may also have some lilac tinges on bulb margin and/or pileus margin when (very) young. All these three species seem to have more or less the same habitat requirements, and may even be co-occurring in the same sites. *Cortinarius albertii* seems more restricted to soils with a (deep) leaf-litter layer than the others, and substrate remnants attached to base of bulb is always organic soil/litter. The two remaining taxa, *C. insignibulbus* and *C. subgracilis*, show no, or a weak KOH-reaction on pileus margin.

The species is so far recorded and ITS-verified only from two localities in our calcareous *Tilia* forests. One of these was found in 2017 in a large, newly discovered scree *Tilia* forest near the Tyrifjord at the Ringerike region (Sønsterudelva E; Brandrud et al. 2018). The material depicted in Brandrud and Bendiksen (2001, as *C. parvus*) were from an adjacent scree forest at Ringerike, and probably also represent *C. albertii*, although the lamellae appear too much lilac in the picture. This has yet to be verified by sequencing.
Cortinarius catharinae Consiglio

Fig. 3

Syn: Cortinarius albolutescens Reumaux; *C. pallens* Eyssart. & Reumaux; *C. pseudoparvus* Bidaud.

Illustrations: Consiglio et al. (2003), Gen. Cortin. Ital. 1 A19 (upper; holot.). Brandrud et al. (1992), Cortin. Fl. Photogr. 2: B53. Bidaud et al. (2001), Atl. Cortin. 11: 334 (as *C. pallens*), 335 (lower, as *C. pseudoparvus*), 337 (as *C. albolutescens*).

Pileus 3–8(–10) cm, viscid–glutinous, glabrous; colour variable, initially usually whitish, at least towards margin, then becoming more ochreous brown from centre (N60–65, P 60–65), and then tinged ochreous yellow towards margin (K85(–K87)); rarely more (ochreous) yellow already when young.

Lamellae intensely (to pale) lilac blue, edge sometimes persistently lilac, finally more greyish brown.

Stipe 4–6 × 0.8–1.5 cm; at base with a marginate, broad and flattened bulb up to 4 cm; stipe colour greyish white, sometimes with a faint lilac tinge at apex.

Context (greyish) white. **Smell** faint to distinct dust/earth-like, especially the lamellae.

Macrochemical reaction: KOH (10–40%) strongly blood red on pileus (margin), bright pink (-pinkish red) on base of bulb (bulbipellis/basal mycelium).

Spores 9.5–10.5(–11) × 5.5–6(–6.5) µm, MV = 10.1 × 5.9 µm, amygdaloid to somewhat ellipsoid, sometimes slightly citriform, strongly and coarsely (crust-like/net-like) verrucose.

Pileipellis thick, simplex, of narrow hyphae, many become gradually filled with bright yellow pigment lumps. Pale hyphae (without yellow pigment lumps) become distinctly pink with KOH.

Figure 3. *Cortinarius catharinae.* The most frequent of the pale *Calochroi* in C/S Europe, but only two verified finds in Norway so far (TEB 546-14/DB5518, Åsstranda NR, Telemark, outer Oslofjord). Photo: Bálint Dima.
Habitat: In calcareous *Tilia* forests, with *Tilia cordata* and *Corylus avellana*, on small limestone benches/shelves with some accumulation of leaf litter (SE Norway). In S Scandinavia–C Europe mainly in calcareous *Fagus* and *Quercus-Carpinus* forests, as well as thermophilous *Quercus cerris–Q. pubescens* forests, in the Mediterranean areas mainly in *Quercus ilex* forests, usually in organic soils (leaf litter).

Distribution: *Cortinarius catharinae* is widely distributed in Europe, from Mediterranean areas of Spain, S France and Italy, to the northern outposts in SE Norway. The species is one of the more frequent taxa in the *C. calochrous* complex in calcareous *Fagus* and *Quercus* forests of C Europe.

Comments: Among the five pale *Calochroi* species, *C. catharinae* is – together with *C. albertii* and *C. parasuaveolens* – distinguished by the strong, positive KOH-reaction on all surfaces; becoming instantly blood red/pink on pileus (margin) and bright pink on the bulb underside (basal mycelium/bulbipellis). *Cortinarius catharinae* is distinguished from *C. albertii* mainly by the faint ochreous yellow tinge that develops rapidly when the pileus expands, the bright and often persistent lilac colours on the lamellae, and the slightly different KOH-reaction on pileipellis (blood red vs. strong pink). *Cortinarius parasuaveolens* may be quite similar to *C. catharinae*, but can often be distinguished on some faint lilac tinges on stipe, bulb margin or pileus margin, and then with a more skin coloured tinge on the pileus centre. *C. insignibulbus* is also whitish when young, but is distinguished by the negative KOH-reaction on the pileus (but still pink on the bulb underside), whereas the last taxon – *C. subgracilis* – usually shows an ‘intermediate’ faint pinkish grey KOH-reaction on the pileus (margin).

Among *Calochroi* species not treated here, *C. catharinae* could in the calcareous *Tilia* forests chiefly be mixed with *C. sublilacinopes*. However, the latter possess a more distinctly ochraceous yellow pileus margin, and has a negative reaction with KOH. Furthermore, these are apparently occurring in different regions; *C. sublilacinopes* is only found in in inner Oslofjord-Ringerike. *Cortinarius catharinae* is so far verified only from two localities in outer Oslofjord (Åsstranda, Porsgrunn, Slettevann, Skien). However, also three old collections from Blekebakken nature reserve, Porsgrunn, probably belong here (TEB 99-92, 43-93, 55-94; cf. Brandrud and Bendiksen 2001, as *C. parvus*), but we have not been able to verify this by sequences.

In general, *C. catharinae* seems to be the most common taxon of the ‘*C. parvus* complex’ in Europe, and it is one of the most frequently recorded *Calochroi* species in calcareous *Quercus-Fagus* forests (pers. obs.; see also Bidaud et al. 2001 as *C. albolutescens*, *C. cremeus*, *C. pallens*, *C. pseudoparvus*, *C. xanthochrous*, Consiglio et al 2003–2007, Frøslev et al. 2007, Clericuzio et al. 2017). The “classical name” *C. parvus* Rob. Henry (Henry 1935) has often been used for this species. However, this name is apparently not applicable, as the KOH reaction is indicated as negative, a feature also confirmed by Henry in later publications (Henry 1990). A “heterotype” designated by Henry was found in the Henry herbarium in herb. PC, but was contaminated and did not yield any relevant sequence.
Cortinarius parasuaveolens (Bon & Trescol) Bidaud, Moënne-Locc. & Reumaux

Fig. 4

Illustrations: Clericuzio et al. (2017), _Sydowia_ 69: 221–222.

Pileus 4–7 cm, viscid–glutinous, glabrous, some with white, appressed veil remnants at centre; initially usually whitish to greyish white (–ochraceous white) towards margin, with an ochraceous (grey)brown tinge towards centre (N65), later somewhat more ochraceous brown spotted, sometimes initially with a faint lilac tinge towards margin (from veil?) and then with a more skin-coloured-incarnate tinge towards centre (K70–71).

Lamellae initially pale greyish lilac–(pink), lilac tinge mainly in the lamellae edge, discolouring to greyish brown with pale edge.

Stipe 4–6(–8) × 0.7–1.5 cm; bulb margined, broad and flattened or not, up to 3 cm broad, veil remnants on bulb margin abundant or not, initially whitish to pale lilac; stipe initially greyish or with a lilac blue tinge, also lilac spots on the bulb margin, soon greyish white.

Context (greyish) white, initially lilac in cortex of stipe and bulb. _Smell_ indistinct.

Macrochemical reaction: KOH (10–40 %) blood red to vinaceous grey on pileus margin, on the bulb underside bright pink, on bulb margin pinkish red.

Spores 10–11(–11.5) × 5.5–6.5 µm, _MV_ = 10.5 × 6.0 µm, amygdaloid(-ellipsoid), moderately strongly to strongly and coarsely ver-
rucoose. **Pileipellis** thick, simplex, of narrow hyphae, entangled-erect at surface, a number with yellowish pigment, hyphae (especially the non-yellow pigmented) become pink when KOH is added.

Habitat: In calcareous *Tilia* forest with *Tilia cordata*, in stony, steep scree slope with gravel and accumulation of leaf litter between the stones (SE Norway). Otherwise recorded mainly in southern, thermophilous oak forests with *Quercus pubescens, Q. cerris* or *Q. ilex*, as well as *Carpinus betulus* forests and northern outposts in *Quercus robur-Corylus avellana* woodland (Öland, SE Sweden).

Locality in SE Norway (Tilia): Buskerud, Hole, Bråtafjellet (near the Tyrifjord, Ringerike NW of Oslo), T.E. Brandrud, TEB 724-11.

Distribution: Apparently widespread in Europe, but very little known, due to confusion with *C. catharinae* and other species. Up to quite recently only published from France, but according to new, sequenced records presented in Clericuzio et al. (2017) it is now also known from E and W Italy, Hungary and SE Sweden. Most records are from southern mediterranean-submediterranean regions, with only few outposts in the boreonemoral Northern Europe region (see distributional map in Claricuzio et al. 2017).

Comments: In SE Norway, *Cortinarius parasuaveolens* is only known from one small, unripe basidiocarp from Bråtafjellet near the Tyritford, which was verified with ITS sequencing. The species has been very little known up to now, and new data on the taxonomy and nomenclature is presented in Clericuzio et al. (2017). The above description is based mainly on data from this publication. The species is very similar to *C. catharinae*, with a pale pileus and bright pink–lilac lamellae, and they may co-occur. However, a (very) faint greuish-lilac tinge in young pilei sometimes gives *C. parasuaveolens* a skin-coloured tinge that is not seen in *C. catharinae*, but gives a superficial resemblance to e.g. *C. moly-

chimus* Bidaud & Ramm, which is also phylogenetically rather close (Fig. 1). Furthermore, *C. parasuaveolens* is sometimes distinctly lilac on the stipe and/or bulb margin. More material is, however, needed to evaluate the variation and significance of theses lilac tinges for species delimitations. The spores of *C. parasuaveolens* are on average slightly larger than those of *C. catharinae* (mean value 10.5 × 6.0 µm versus 10.1 × 5.9 µm), but still not enough to separate these. The shape of the spores is quite similar. With present knowledge, the two species should be regarded as semicryptic, and sequencing is needed for critical identifications.

The species was first described as *C. sodagnitius var. parasuaveolens* by Bon and Trescol (1988) from France. They described a *C. suaveolens* look-a-like with pronounced lilac colours on the pileus margin, and yet the ITS sequence of the type matches the present taxon (Bellanger et al. 2017, Clericuzio et al. 2017). The lilac colours emphasized in the protologue either indicates that our species may have pronounced lilac colours at pileus margin, or that Bon and Trescol (1988) included another element in their description of the species.

Liimatainen et al. (2014) found that the type of *C. pseudogracilior* also conforms with our species, based in ITS sequencing. In the protologue (Bidaud et al. 2006), *C. pseudogracilior* was described as a slender, pale species, almost without any bluish–lilac tinges, and it was compared with the small *C. gracilior* and placed in sect. *Multiformes* s. lat. (and not in sect. *Calochroi*). This does not fit very well with our species. However, the microcharacters (investigated later by Bidaud; Bidaud et al. 2006) correspond much better (including a pink KOH reaction of pileipellis hyphae), and it is possible that there has been a mix of collections, and that the macro description is based on something else (Clericuzio et al. 2017).
Cortinarius subgracilis Moënne-Loccc.

Fig 5.

Cap 4–6 cm, viscid–glutinous, glabrous, sometimes with diffuse whitish (later brownish) patches of veil remnants at centre; initially ochraceous white with whitish–greyish white margin (K91–92), centre becoming more ochraceous brown (N65), with age often distinctly bicoloured (brown centre, pale margin; entire pileus might be whitish if covered by leaves).

Lamellae pale greyish lilac, lilac tinges mainly towards the edge, rather fugacious.

Stipe 4–5 cm × 0.8–1.2 cm; at base with a marginate, broad and flattened bulb up to 2.5 cm; bulb margin often with distinct, volatile like, whitish veil remnants; stipe colour white to ochraceous white.

Context (greyish) white.

Smell weak to distinct earth/dust-like.

Macrochemical reaction: KOH (10–40 %) pale/indistinct pinkish–vinaceous grey to more red brown on pileus margin, bulb underside (basal mycelium) deep pink to pinkish red, distinct reddish tinge also on veil remnants at bulb margin.

Spores 10–11.5 × 6–7 µm, MV = 10.7 × 6.5 µm, amygdaloid to faintly citriform, strongly and coarsely (crust-like/net-like) verrucose.

Pileipellis thick, simplex of narrow hyphae, some filled with yellow brown content.

Habitat: In calcareous *Tilia* forest with *Tilia cordata* and *Quercus robur*, on small limestone shelves with some leaf litter (SE Norway). In C Europe the species occur in strongly calcareous *Abies alba* (mixed) forests, in Sweden (Gotland) in calcareous *Pinus* forests. In S Europe in calcareous *Quercus ilex* forests.
Locality in SE Norway (Tilia): Telemark, Porsgrunn, Kongkleivåsen N (Hitterødbebken S; N of Frierflogene nature reserve), T.E. Brandrud, TEB 297-10.

Distribution: *Cortinarius subgracilis* is known from one locality in Norway; along the limestone plateau edge of Frierflogene-Kongkleivåsen in Porsgrunn, Grenland. Elsewhere in Europe, the species has a core area in the most calcareous, montane *Abies alba* forests (or mixed forests with *Abies*) in the Prealps in Austria-Switzerland and the French Jura north to Black forest. Recently found also in *Abies nordmanniana* dominated forests in W Caucasus (Brandrud et al., in prep.). Then the species re-appear in the far south, in the Mediterranean parts of Spain and France in evergreen oak forests.

Comments: *Cortinarius subgracilis* is a pale species with a broad, flattened bulb, and comparatively large spores. The species’ often bicoloured appearance (pileus with ochre brown centre and whitish margin) is typical, although somewhat dependent on age and weather conditions. The species is according to own finds locally rather frequent in calcareous *Abies*-dominated forests in C Europe. However, it has been remarkably overlooked, probably due to confusion with a series of similar (although more yellow or lilac-tinged) *Calocchroi* species in this kind of habitat (Brandrud et al., in prep.). In frondose forests, *Cortinarius subgracilis* can be distinguished from the other pale taxa by the KOH-reaction on the pileus: *C. albertii*, *C. catharinae* and *C. para-suaveolens* have a stronger pinkish red reaction, and *C. insignibulbus* has a negative KOH reaction. Furthermore, the spores of *C. subgracilis* are somewhat larger than those of *C. albertii* and *C. catharinae* (10–11.5 × 6–7 µm, versus 9.5–11 × 5.5–6.5 µm).

The species is in SE Norway found in only one locality, along the Frierflogene limestone plateau edge. Here it was in 2010 collected from three different spots (TEB 252-10, 297-10, TEB 298-10), but only one of them verified by sequencing. This Norwegian locality is the only known occurrence of *C. subgracilis* north of the Alps in thermophilous deciduous forests (with *Quercus, Tilia*). This kind of habitat for the species is otherwise only known from the Mediterranean areas. The description above is based solely on our Norwegian material from *Tilia-Quercus* forests (cfr. Fig. 5), but this seems to be morphologically quite similar to the variant in *Abies(-Pinus-Picea)* forests. The southern *Quercus ilex* populations seem to differ by the presence of lilac tinges (sub nom. *C. malvaceopileatus* Bidaud & Raffini; J.-M. Bellanger pers. comm.), and thus it is possible that these may be morphologically distinguishable from other variants. Some of the Mediterranean collections apparently differ by one nucleotide from typical *C. subgracilis*, but other collections appear identical to the type (unpublished data), and this differentiation needs more study. It is possible that this differentiation reflect the eco-geographical variation. A small genetic differentiation is also seen in related taxa, such as *C. haasii* (M.M. Moser) M.M. Moser, with the main populations in *Abies* forests, and with southern frondose forest populations (*C. haasii* var. *quercus-ilicicola* A. Ortega, Suár.-Sant. & J.D. Reyes = *C. aurantiorufus* Bidaud), differing in spore-morphology and a couple of differences also in ITS sequences (Schmidt-Stohn et al. 2016). According to data available so far, the Norwegian *Tilia-Quercus* forest population seems to be more similar to the *Abies* forest populations in C Europe than to the southern *Quercus* populations, but this needs further study. Our Oslofjord population should anyhow be regarded as a remarkable isolated, ecologically deviating outpost – probably of relic nature.
Cortinarius insignibulbus Bidaud & Moënne-Locc.

Fig 6.

Illustrations: Bidaud et al (2001), Atl. Cortin. 11: 342, 341 (as *C. subamethystinus*), 330 (as *C. calochrous* f. *violascens*).

Pileus 4–10 cm, viscid–glutinous, glabrous to somewhat tomentose when dry, incurved margin young with drop-like spots; initially greyish white to beige white (*«pearl white»*; K92), pale colour usually rather persistent, but can discolour somewhat ochreous brown (K90–91, M69–65) from centre with age, sometimes with a faint lilac tinge towards margin, and then with more skin-coloured–pinkish brown tinges in the centre.

Lamellae rather persistent pale to bright lilac blue, lilac colour sometimes more pronounced towards edge.

Stipe 5–7 × 1–1.5 cm; at base with a marginated, broad and flattened bulb up to 3.5 cm; stipe colour pale to strong and persistent lilac, especially at apex, sometimes with a lilac tinge also at bulb margin and on basal mycelium when (very) young.

Context (greyish) white, lilac in stipe cortex, sometimes also in the margin of bulb (when very young).

Smell faint to distinctly earth/dust-like.

Macrochemical reaction: KOH (10–40 %) negative (greyish brown, rarely faintly pinkish brown at white margin) on pileus, on the underside of bulb (basal mycelium) bright pink, a faint pinkish tinge also on the bulb margin when young.

Spores 10–12 × 6–7 µm, MV = 11.2 × 6.5 µm, amygdaloid to faintly citriform, strongly and coarsely (crust/net-like) verrucose.

Pileipellis thick, simplex, of narrow hyphae, with age some filled with strongly yellow pigment lumps, no pink colour tinge when KOH is added.

Habitat: In calcareous *Tilia* forest with *Tilia cordata*, in scree areas with limestone gravel and some leaf litter (SE Norway). Elsewhere mainly in calcareous *Fagus* forests, in France also in *Carpinus* forests.

Distribution: *Cortinarius insignibulbus* is known from three localities in SE Norway (one along Lake Mjøsa and two in inner Oslofjord). Apart from these records, the species has in N Europe only been recorded from a couple of sites in Denmark (Froslev et al. 2007). The species appears to be very rare everywhere, with confirmed records outside Scandinavia only from nemoral (temperate) France, Germany, Italy (Bidaud et al. 2001, Froslev et al. 2007), and Hungary (unpublished).

Comments: *Cortinarius insignibulbus* is little known and rarely treated in literature (but see Bidaud et al. 2001, Froslev et al. 2007). In *Atlas des Cortinaires* (Bidaud et al. 2001) the species is described threefold, under the names *C. insignibulbus*, *C. subamethystinus* sensu Bidaud et al. and *C. calochrous* f. *violascens*. The conspecificity of all three taxa was confirmed by ITS sequencing (Froslev 2007 et al.). The species is clearly distinguished from the other pale *Calochroi* species by the KOH reaction, which is strikingly different on bulb underside (bright pink) versus pileus surface (negative) (Fig. 6b), a feature not mentioned in the descriptions in Bidaud et al.
Figure 6a,b. *Cortinarius insignibulbus*. From one of the three localities in Norway (TEB 256-14 & 362b-14/DB5370 & DB5428, Eriksrud NR, Biri, Oppland, lake Mjøsa W). See the difference in KOH reaction on bulb and pileus margin in fig. 6b. Photo: Bálint Dima.
Brandrud et al.

(2001). The rather persistently pale, pearl white pileus contrasting the beautiful lilac lamellae and stipe apex is also a characteristic feature. Sometimes the entire stipe is deep and persistently lilac-purplish (see Bidaud et al. 2001 as C. subamethystinus). Furthermore, the species also has slightly larger spores than those of C. albertii, C. catharinae and C. parasuaveolens, but hardly different from those of C. subgracilis. In contrast to the other taxa treated here, C. insignibulbus seems to be lacking from Mediterranean Quercus ilex forests.

Phylogenetic analyses (based on ITS sequence data) indicate that C. insignibulbus is most closely related to species with lilac pileus colours, such as C. violaceipes and C. molochinus. With age these species can lose their lilac tinges, and may then be difficult to distinguish from C. insignibulbus. This applies especially to pale variants of C. violaceipes, which also have the same KOH reaction. Cortinarius violaceipes is recently confirmed from SE Norwegian Tilia forests, but from another region than C. insignibulbus (outermost Oslofjord).

ACKNOWLEDGEMENTS
We thank Jean-Michel Bellanger, French Institute of Health and Medical Research, Montpellier for information on the type study of C. parasuaveolens, Egil Bendiksen, NINA Oslo for participating in the Tilia forest monitoring, and Thomas Stjernegaard Jeppesen, Copenhagen for contributing with Calochroi data. Furthermore, we thank Mika Bendiksby, Marit M. Bjorbækmo and Ingeborg Bjorvand Engh, Univ. Oslo for ITS sequencing.

The data presented here are obtained mainly through a monitoring program for calcareous Tilia forests, as part of a national program for mapping and monitoring red listed species (the ARKO project), funded through the Norwegian Environment Agency. Some data also stem from a Cortinarius project funded by the Norwegian Biodiversity Information Centre.

REFERENCES

Brandrud et al.

