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Abstract

Bumblebees in Europe have been in steady decline since the 1900s. This decline is

expected to continue with climate change as the main driver. However, at the local

scale, land use and land cover (LULC) change strongly affects the occurrence of

bumblebees. At present, LULC change is rarely included in models of future distribu-

tions of species. This study’s objective is to compare the roles of dynamic LULC

change and climate change on the projected distribution patterns of 48 European

bumblebee species for three change scenarios until 2100 at the scales of Europe,

and Belgium, Netherlands and Luxembourg (BENELUX). We compared three types

of models: (1) only climate covariates, (2) climate and static LULC covariates and (3)

climate and dynamic LULC covariates. The climate and LULC change scenarios used

in the models include, extreme growth applied strategy (GRAS), business as might

be usual and sustainable European development goals. We analysed model
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performance, range gain/loss and the shift in range limits for all bumblebees. Over-

all, model performance improved with the introduction of LULC covariates. Dynamic

models projected less range loss and gain than climate-only projections, and greater

range loss and gain than static models. Overall, there is considerable variation in

species responses and effects were most pronounced at the BENELUX scale. The

majority of species were predicted to lose considerable range, particularly under the

extreme growth scenario (GRAS; overall mean: 64% � 34). Model simulations pro-

ject a number of local extinctions and considerable range loss at the BENELUX scale

(overall mean: 56% � 39). Therefore, we recommend species-specific modelling to

understand how LULC and climate interact in future modelling. The efficacy of

dynamic LULC change should improve with higher thematic and spatial resolution.

Nevertheless, current broad scale representations of change in major land use

classes impact modelled future distribution patterns.

K E YWORD S

biodiversity loss, dynamic, future, land use change scenarios, pollinators, projections, species

distribution models (SDMs), wild bees

1 | INTRODUCTION

Recent scientific consensus suggests that we are facing a sixth mass

extinction event, correlated strongly to anthropogenic factors

(Ceballos et al., 2015). To avoid the dramatic loss of biodiversity and

associated ecosystem services, immediate and thorough conservation

efforts are required (Barnosky et al., 2011). An important role of bio-

diversity conservation research is to understand and estimate poten-

tial changes in biodiversity alongside changing abiotic and biotic

conditions (Elith, Kearney, & Phillips, 2010; Porfirio et al., 2014).

In an effort to understand these effects experts have produced

scenarios of climate, and land use and land cover (LULC) change.

Land use and land cover change scenarios use potential climate

change, policy decisions and strategies to represent socioeconomic

developments which will inevitably shift land use and management

(Rounsevell, Ewert, Reginster, Leemans & Carter, 2005; Van Vuuren

et al., 2011; Verburg, Rounsevell & Veldkamp, 2006). Scientists have

developed scenarios with the goal to evaluate the impact of environ-

mental changes on biodiversity (Spangenberg et al., 2012). Their role

in biodiversity analyses is to allow the production of dynamic land

use variables which better reflect future habitat suitability for a spe-

cies and may be useful to explain additional drivers of distributional

changes alongside climate change. There is strong consensus that

both climate and LULC change are important in driving the observed

patterns of biodiversity declines (Luoto, Virkkala & Heikkinen, 2007;

Ostberg, Schaphoff, Lucht & Gerten, 2015). Historically, LULC

change has been the dominant cause of observed biodiversity

changes and researchers expect that it will remain an ongoing threat

to worldwide biodiversity (Millennium Ecosystem Assessment, 2005,

Ostberg et al., 2015). Climate and land use change underlie a

multitude of environmental pressures that may have a greater joint

impact on biodiversity than when operating in isolation (Clavero, Vil-

lero & Brotons, 2011; Mantyka-Pringle, Martin & Rhodes, 2012).

Therefore, models which exclude LULC change from modelling biodi-

versity in the future neglect a significant factor in potential drivers

of species distribution change, even if these projections are coarse

and at broad spatial scales.

Species distribution models (SDMs) represent a powerful tool for

understanding patterns in biodiversity. They combine species occur-

rence data with environmental conditions to estimate the distribu-

tion of species in space and time (Elith & Leathwick, 2009). Often

used to project species distributions into unsampled areas, or areas

of possible invasion, they also project species distributions into the

future (Franklin, 2010). The majority of future distribution models

include only climate change variables and do not include LULC vari-

ables or use only LULC variables based on current conditions (static;

Bellard, Bertelsmeier, Leadley, Thuiller & Courchamp, 2012; Titeux

et al., 2016). At broad spatial scales, climate is expected to be the

main constraint to species distributions, but at finer resolutions, the

effect of LULC covariates increase; landscape-specific features that

provide nesting and feeding resources occur at this finer scale (Luoto

et al., 2007; Rahbek et al., 2007; Thuiller, Ara�ujo & Lavorel, 2004).

Therefore, improved estimations of biodiversity change require

detailed land use change scenarios (Titeux et al., 2016).

Even though studies recommend the inclusion of LULC variables

to avoid producing unrealistic projections, few studies have used

dynamic LULC covariates to model biodiversity patterns in the

future. Reasons for this is that projections of LULC change are rarely

available or only at coarse resolution and with few land use classes

(Titeux et al., 2016). However, climate predictions offer similar
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limitations with resolution and parameters often not directly relevant

to the habitat suitability of species. Interestingly, the studies that

explicitly include dynamic LULC variables in the SDM process show

considerable variation in the effect this has on species distribution

patterns, specifically range change (Barbet-Massin, Thuiller & Jiguet,

2012; Chytr�y et al., 2012; Ficetola et al., 2010; Martin, Van Dyck,

Dendoncker & Titeux, 2013; Riordan & Rundel, 2014; Sohl, 2014;

Wisz et al., 2008). The variation is most likely due to differences in

species, spatial scale and explanatory variables included in these

studies. Likewise, the performance of SDMs usually depends strongly

on the modelling framework used, the species modelled, the distribu-

tion, quality and quantity of collection data, and the resolution of

the species occurrence data and covariates (Aguirre-Gutierrez et al.,

2013; Bellard et al., 2012; Harris et al., 2013; Warren & Seifert,

2011). Testing the effect of dynamic LULC covariates with multiple

species, different resolutions and covariates is essential to under-

stand their role in SDMs (Martin et al., 2013).

In this study, we evaluate the effects of LULC change scenarios

available for Europe, on the distributional changes projected by

SDMs for 48 European bumblebee species projected onto Belgium,

the Netherlands, and Luxembourg (BENELUX), and at the European

scale. We use three land use change scenarios (business as might be

usual [BAMBU], growth applied strategy [GRAS], sustainable Euro-

pean development goals [SEDG]) representing alternative socioeco-

nomic futures, which have been specifically developed to evaluate

the impacts of environmental changes on biodiversity (Assessing

LArge-scale environmental Risks with tested Methods (ALARM) Sce-

narios; Spangenberg et al., 2012). We expect to observe differences

in the projected distributions produced by climate-only models vs.

models which include LULC. We expect that the differences

between static and dynamic LULC models will be less pronounced

and species-specific, and will likely depend on the spatial scale and

resolution at which the LULC covariates are projected (Luoto et al.,

2007; Martin et al., 2013). Overall, we aim to illustrate the bias asso-

ciated with using climate change-only scenarios when modelling

bumblebees that land use change will undoubtedly affect. We also

aim to show how presently available dynamic LULC projections

affect the modelled distributions for multiple species. Following this

important step, we discuss the extent to which our results provide

improvements to land use change scenarios in development and the

conservation implications of using such SDMs.

2 | MATERIALS AND METHODS

2.1 | Target species

Our study group is the genus Bombus, for which we have detailed,

long-term, biogeographical records for most of Europe, and which

has shown significant decline in the last one hundred years (Biesmei-

jer et al., 2006; Carvalheiro et al., 2013; Kerr et al., 2015; Rasmont

et al., 2005). Forty-eight European bumblebee species were included

in the analysis (see Table S1). The species modelled share similar life

histories, but exhibit vastly different ranges and distributions in

Europe (Rasmont et al., 2015). According to the IUCN Red List of

threatened species, Bombus in Europe includes species of all threat

levels (Nieto et al., 2014). Climate change impacts have been mod-

elled for the genus Bombus at the European scale, projecting severe

declines and northerly shifts for the majority of the species (Rasmont

et al., 2015). However, loss of habitat for feeding and nesting

resources has been cited as a major driver of past Bombus decline

(Biesmeijer et al., 2006; Carvalheiro et al., 2013; Goulson et al.,

2010; Williams & Osborne, 2009). Therefore, climate might not nec-

essarily be the only significant driver of change for this group over

the next one hundred years. Furthermore, the distribution patterns

of wild bee species are reported to be affected by change in major

land use classes, particularly the presence of arable land

(Aguirre-Guti�errez et al., 2015; Senapathi et al., 2015).

2.2 | Species presence data

This study includes bumblebee collection records from 22 European

countries and multiple sources including professional and amateur

scientists (see Fig. S1). The data were collated as part of the EU FP7

project STEP (Potts et al., 2011), and is aggregated and available to

view on the Atlas Hymenoptera webpage (Rasmont & Iserbyt, 2013).

We used records from 1970 until 2000, as these represent the ‘cur-

rent’ period of climate data, which we used to train the species dis-

tribution models. We had 462,636 records available to use.

2.3 | Spatial extent and resolution

The spatial extent was limited to the extent of the ALARM projec-

tions of European land use, which in turn limited the species collec-

tion records available to use (see Fig. S1). Europe in the context of

this study is defined as the European Union without Ireland, Roma-

nia, Bulgaria, Canary Islands and Cyprus, and including Norway and

Switzerland. We created 5 9 5 km, 10 9 10 km and 20 9 20 km

European grids for training the SDMs to project onto the BENELUX

(Belgium, Netherlands and Luxembourg) region. We also created a

50 9 50 km European grid for training the SDMs to project onto

the original spatial extent of Europe. All map projections use the

European terrestrial references system 1989 (ETRS89).

2.4 | Climate and Land Use Data

Variables of current climatic conditions were produced from monthly

interpolated rainfall and temperature data from 1971 to 2000, at a

100 resolution (Fronzek, Carter & Jylh€a, 2012; Mitchell, Carter, Jones,

Hulme & New, 2004). We considered 14 climate variables for the

modelling process (see Table S2). However, because climate variables

are often strongly correlated. Including all climate variables in the

models would have added redundant information. Therefore, to

avoid collinearities, we conducted a selection according to Pearson

correlation coefficients (<0.7; Dormann et al., 2013). When two vari-

ables were highly correlated, we selected the variable that we esti-

mated to have the greatest ecological relevance to Bombus species.
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We selected total annual growing degree-days (>5°c), which was cor-

related with other temperature variables, because it is linked to the

presence of wildflowers and flowering crops, both important food

sources for bumblebees. Furthermore, we chose water balance,

which was correlated with the majority of other precipitation vari-

ables because it is representative not only of total precipitation, but

has a direct link with temperature, making it an important influence

for terrestrial vegetation (Gerten, Schaphoff, Haberlandt, Lucht &

Sitch, 2004). Five climate variables were used as explanatory covari-

ates in the model: average precipitation of the wettest month; total

annual number of growing degree-days above 5°C; mean diurnal

range (mean of monthly difference between daily maximum and min-

imum temperatures); annual temperature range (maximum tempera-

ture of warmest month–minimum temperature of coldest month);

and annual water balance (mean monthly precipitation minus the

monthly potential evapotranspiration; Gerten et al., 2004).

Each of the five climate variables was aggregated to the

50 9 50 km and 20 9 20 km grids, and downscaled to the

10 9 10 km and 5 9 5 km grids using bilinear interpolation (Randin

et al., 2009). All spatial analyses were conducted using Rstatistics

3.3.2 (R Core Team, 2016), the Raster package (version 2.5-2; Hij-

mans, 2015) and ARCGIS 10.2 (ESRI, 2016).

The future land use projections were built in congruence with a

set of global change scenarios and associated climate change as part

of the European ALARM project (Spangenberg et al., 2012). These cli-

mate scenarios were derived from a coupled Atmosphere-Ocean Gen-

eral Circulation Model (HadCM3; New, Hulme & Jones, 1999) and

include the scenarios as outlined in the IPCC Special Report on Emis-

sion Scenarios (IPCC, 2001). We produced the same five climate vari-

ables in the current period for each of three scenarios of climate

change (BAMBU, GRAS, SEDG) in 2050 and 2100 for the four grid res-

olutions.

The three scenarios are:

• ‘Business as Might Be Usual’ (BAMBU)—IPCC A2 scenario (see

Spangenberg et al., 2012, for more information); mean projected

temperature rise in Europe at 2100 is 4.7°C; an intermediate

change scenario based on extrapolated current socioeconomic

and policy decisions.

• ‘Growth Applied Strategy’ (GRAS)—IPCC A1FI; mean projected

temperature rise in Europe at 2100 is 5.6°C; a maximum change

scenario driven by policies of deregulation and economic growth.

• ‘Sustainable European Development Goal’ (SEDG)—IPCC B1

scenario; mean projected temperature rise in Europe at 2100 is

3.0°C; a moderate change scenario driven by economic, social

and environmental policies, related to stabilizing atmospheric

greenhouse gases emissions and stopping the loss of biodiversity.

Current land use was obtained from the Coordination of Infor-

mation on the Environment (CORINE) Land Cover at 250 9 250 m

resolution (Bossard, Feranec & Otahel, 2000). The CORINE classes

were reclassified as six classes to match the future projections. We

removed the class ‘others’ from our analysis because it represents

diverse land use types and was inexplicable in an ecologically rele-

vant context for bumblebee species. Future land use was obtained

from the ALARM EU project downscaled to 250 9 250 m for each

of the three scenarios for 2050 and 2100 (Dendoncker, Bogaert &

Rounsevell, 2006; Spangenberg et al., 2012). At each grid resolution,

we determined the percentage cover for each land use covariate.

The final five land use layers were: percentage cover arable land;

percentage cover forest; percentage cover grassland; percentage

cover permanent crops; and percentage cover urban.

The role of the covariates will be tested in three ways using

three variable sets in the models: (1) Dynamic climate-only models,

suggesting that only climate variables matter in the future distribu-

tion of bumblebee species. (2) Static land use and dynamic climate,

suggesting that land use variables are important in delimiting species

habitat suitability, but that their future change will be driven only by

climate change and changes in land use are redundant. (3) Dynamic

climate and dynamic land use, suggesting that future distribution

patterns will be dependent on the interaction between changing cli-

mate and changing land use.

2.5 | Species distribution modelling

We used a SDM approach to compare the role of dynamic land use

data in the future distribution patterns of bumblebees. We modelled

the distribution of 48 species using R (R Core Team, 2012) with the

biomod2 package (version 3.3-3; Thuiller, Georges, & Engler, 2015).

We chose an ensemble modelling approach, which creates a consen-

sus of the predictions of multiple algorithms and is an established

method to account for projection variability (Thuiller, 2014). Even

small differences between algorithms can lead to different projec-

tions of future distribution change. Ensemble modelling aims to limit

the many uncertainties of forecast modelling and has become

increasingly used in studies of biodiversity change (Thuiller, 2014).

We chose three algorithms to include in the ensemble model

based on their previous performances with analogous collection data

for a similar insect species group (Aguirre-Gutierrez et al., 2013). The

three algorithms chosen were a generalized linear model, GLM

(Nelder & Wedderburn, 1972), with linear and quadratic effects, and

stepwise selection based on the Akaike Information Criteria (AIC); a

generalized boosted model, GBM (Friedman, 2001), with 3,000 trees

and five cross-validation folds; and Maximum Entropy Modelling

(MAXENT; Phillips & Dud�ık, 2008), with linear and quadratic

features. We decided to choose simplicity and ecological clarity over

model complexity by dropping detailed features, such as product,

threshold, hinge and polynomial.

Models for each species were trained at multiple resolutions at

the European scale; 5 9 5 km, 10 9 10 km, 20 9 20 km and

50 9 50 km. We had 462,636 records available to use; these were

aggregated as unique species occurrences for each grid cell resolu-

tion. The number of occurrences per resolution is as follows: 67030

at 5 9 5 km, 49146 at 10 9 10 km, 30104 at 20 9 20 km and

21,162 at 50 9 50 km. We modelled 48 species (see Table S1) with

at least 50 unique records, and for which there are no ongoing
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taxonomic debates surrounding their species definition (see Rasmont

et al., 2015). A number of occurrences in the database were not

point level GPS coordinates, but were recorded as UTM grids of

varying sizes. To be confident in the spatial accuracy of collection

records we removed occurrences that were recorded as UTM grids

larger than 1 9 1 km. As the sampling methods were diverse and

nonsystematic, there are likely spatial biases amongst the records.

To deal with this potential spatial autocorrelation between closely

sampled locations we selected a subset of points per species. A ran-

dom starting observation was selected and all points in adjacent grid

cells removed; this was then repeated for all remaining points. This

produced a more even spread of observations and minimized the

effects of heavy sampling at particular locations.

As true absences were not available (it is not possible to accu-

rately say that a bee species is not present during sampling) we gen-

erated randomly distributed pseudo-absences for GBM and GLM

and selected a background sample for MAXENT (Elith et al., 2011;

Phillips et al., 2009). We used target-group sampling to select our

background points (Mateo, Croat, Felic�ısimo & Mu~noz, 2010; Phillips

et al., 2009). We specified that the background samples and pseudo-

absences could only be selected from areas where other bumblebees

have been recorded since 1970. This approach is more objective

than taking the background and pseudo-absence samples from sites

that have not been sampled, accounting for potential sampling bias

(Elith et al., 2011; Phillips et al., 2009) and providing more accurate

results (Mateo et al., 2010). To account for within algorithm varia-

tion we trained the models 10 times for each of the 48 species, the

three algorithms, the three model hypotheses, and the four grid res-

olutions. This resulted in 360 models per species. We used a boot-

strap approach where random subsets of 80% of the data were used

for model training and the remaining 20% to produce Area Under

the Curve (AUC) values to test model performance (Bahn & Mcgill,

2013; Jim�enez-Valverde & Lobo, 2007). For each covariate included

in the model, we calculated variable contribution as the change in

correlation between the covariates and the response with and with-

out the selected variable (Thuiller et al., 2015). We then produced

an ensemble model for each of the three model hypotheses, creating

a median representation of the predictions of the 10 runs and three

algorithms together. We chose the median value as it is less sensi-

tive to extreme values than the mean.

We projected the models trained at 5 9 5 km, 10 9 10 km and

20 9 20 km, onto BENELUX. BENELUX comprises no novel condi-

tions under the scenarios (i.e., there are no conditions in BENELUX

in 2100 that do not already occur within Europe). Therefore, no

forecasting into unknown ecological space occurred (Fig. S2). We

also projected the data trained at 50 9 50 km onto the entire Euro-

pean study area. For each species we produced habitat suitability

maps of the median ensemble predicted distribution. One map was

produced for each of the three model types at 2050, and 2100

under the three change scenarios at the 4 grid resolutions. Habitat

suitability maps were converted to binary presence absence maps

using the values under which specificity and sensitivity is optimized

(Thuiller et al., 2015).

2.6 | Statistical analysis

Analyses were conducted on the ensemble model map projections of

binary presence/absence. To compare the projected distributions of

the three model hypotheses we measured the change in three distri-

bution metrics. We calculated range change by looking at changes per

species in areas of occupancy between the current and future periods.

Specifically, we analysed the percentage of grid cells lost (present in

the current period and absent in the future) by each species under the

different scenarios and the percentage of grid cells gained (percentage

of absent cells in the current period occupied in the future). To exam-

ine spatial shifts we took the centroid of the species range from the

present (2000) and the future (2050 and 2100). A positive value indi-

cates northerly shift and negative, a southerly shift.

To determine the role of the different models, (i.e. climate-only

model [COM], dynamic LULC model [DLM] and static LULC model

[SLM]), we created separate mixed effects models for each of the three

metrics for both Europe and BENELUX projections. We included spe-

cies as a random effect, as we were interested in how changes in distri-

bution of the species vary across the different model types, periods

and scenarios, and not in the inherent variation between species. Fur-

thermore, to determine if our results are related to the structure of the

data we also included the current range of the species as a covariate.

Due to large numbers of zeros both range loss and range gain at the

BENELUX scale were analysed with two separate mixed models: Ber-

nouli distributed models of the probability of gain or loss and a linear

mixed effects model of values given range loss/gain were projected.

Finally, in addition to presenting results for bumblebees as a group,

we chose two species, Bombus argillaceus (Scopoli, 1763; increasing in

range) and B. veteranus (Fabricius, 1793; decreasing in range), to look

more closely at the difference between model projections with and

without LULC covariates. We chose these two species as they are at

opposite end of the spectrum of climate risk, both had high model per-

formance values, both have a large number of collection records within

Europe and we believe them to be representative of two futures, i.e.

considerable range gain and considerable range loss, respectively (Ras-

mont et al., 2015). The current distribution of B. argillaceus is in South-

ern and South Eastern Europe as well as Western Asia (Rasmont &

Iserbyt, 2013). In previous climate-only models of future conditions B.

argillaceus was projected to increase its range considerably in Western

Europe (Rasmont et al., 2015). Bombus veteranus exhibits an already

patchy distribution in the plains of Northern Europe and has already

declined in Belgium, shifting from an abundant species to one which is

barely present (Rasmont & Iserbyt, 2013). Under future climate-only

projections B. veteranus is expected to decrease in range considerably

(Rasmont et al., 2015).

3 | RESULTS

3.1 | Model training fit and variable contribution

For models trained on the current period, we assessed model fit

using AUC scores. An AUC value below 0.5 indicates a model fit that
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is not better than random, values above indicate enhanced model fit.

We used AUC values to compare the change in model fit per species

with LULC vs. a COM (Figure 1). The mean AUC values for all spe-

cies are above 0.7, indicating better than random model fit. For all

48 species, model fit improves by the addition of LULC covariates. A

paired Wilcoxon rank sum test indicates that the mean difference

between the AUC values of the models with LULC and the COMs is

0.013 � 0.004 (p value <.001).

We also compared the variable contributions of the different

explanatory covariates included in the models (Figure 2). Climatic

variables are the most important in explaining the current distribu-

tion of all species. The total annual number of growing degree-days

was included amongst the four most important variables for 44 of

the species modelled. The most important LULC covariate is the per-

centage cover of arable land but the percentage cover of forest is

also important for a number of species (Figure 2). Overall LULC vari-

ables contribute 15% of total variable importance.

3.2 | The future of bumblebees projected at the
BENELUX scale

Of the distribution change metrics analysed, the largest discrepancies

were found in the projected range loss (Figure 3a,b). There is consid-

erable variability between species and between scenarios but model

type has a significant effect on the projections of whether species

will lose range and how much range will be lost (Table 1). Overall

species are more likely to lose range under DLMs than both COMs

and SLMs (p < .001 and .002; Table 2). However, given range loss

occurs (i.e. excluding species that showed no range loss) then greater

loss is projected by COMs than both SLMs and DLMs (1.3%;

p < .001; Table 2). However, this relationship is highly variable and

species specific. Under COMs 11 species show greater mean range

loss averaged across scenario and resolution, however, five species

show greater range loss under DLMs (Figure 3a). The relationship

between projected range loss of SLMs and DLMs, while not signifi-

cant at the BENELUX scale, (Table 2) also appears to be species

specific, with some species below the equal projection line, indicat-

ing greater range loss under DLMs (Figure 3b). There are no signifi-

cant interactions between model type and other explanatory

variables, suggesting a consistent effect of model type across scenar-

ios, periods and resolutions (Table 1).

Model type, period, scenario and resolution at which the mod-

elling occurred significantly influence the probability of range gain

(Table 1). Only 50% of species were projected to gain any range at

all within BENELUX by 2100 (Figure 4a,b). The odds of range gain

are significantly higher for DLM projections than for COM and SLM

(p < .0001; Table 2). When range gain occurs there is no significant

difference between COMs and DLMs, however, both projected sig-

nificantly higher loss than SLMs (1.4 and 1.2%, p < .0001 & .03;

Table 2). This can be visualized in Figure 4a, where variation

F IGURE 1 Area under the curve (AUC)
statistics for median-ensemble-model
performance visualized per species. Black
squares represent models with only climate
covariates and grey triangles models with
land use land cover (LULC) covariates and
climate covariates. Groupings represent
Climatic risk as calculated by the Climate
Risk Atlas for Bumblebees (Rasmont et al.,
2015). Potential risk (PR), low risk (LR),
Risk (R), high risk (HR), very high risk
(HHR), extreme risk (HHHR)
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between species is evenly distributed and clustered at zero and Fig-

ure 4b, where seven species have a considerably greater range gain

under DLMs.

Period and scenario at which the modelling occurred significantly

influence the directional shift of the distribution centroid (p < .001;

Table 1 and Figure 1). Model type did not significantly affect the

projected shift.

3.3 | The future of bumblebees projected at the
European scale

At the European scale with lower spatial resolution (50 9 50 km),

SLMs project significantly less range loss than both COMs and DLMs

(2.9% and 1.7%; p = <.001 and .02, Table 2). Overall, all 48 species

are projected to lose at least some range and the relationships

between the different model types shows a strong linear correlation,

but with considerable deviation from the assumption of the projec-

tions being equal (Figure 5a,b). Eighteen species are projected to

lose greater range under COMs whilst fourteen species are projected

to lose greater range under DLMs (Figure 5a). The relationship

between DLMs and SLMs is clearer with a higher number of species

below the equal protection line than above, which supports the sig-

nificant effect found in the mixed models (1.21%, p < .01; Figure 5b

and Table 1).

At the European scale greater range gain is projected by COMs

than SLMs and DLMs (2% and 1.6%; p < .001; Table 2). DLMs pro-

ject greater range gain than SLMs (1.2%, p value = .01; Table 2). This

relationship is visible in Figure 6a with the majority of species con-

siderably above the equal projection line. The same pattern is

observed for SLMs and DLMs, with 12 species below the equal pro-

jection line. The majority of species only illustrate modest range gain,

and the differences between model types are emphasized when

range gain is high (Figure 6a,b).

Centroid distributional shifts are greater under COMs than SLMs

and DLMs (48.2 and 51.7 km; p < .001). There is no significant dif-

ference in centroid distributional shift between SLMs and DLMs

(Figure 7).

3.4 | The role of other explanatory variables in the
mixed models

Scenario, period, and resolution are included in the majority of best

models. The effect of these explanatory variables is consistent across

the different distribution change measures and scales. The more

extreme change scenario (GRAS) projects greater loss and northern

shift of the centroid than business as usual (BAMBU) and sustainable

scenarios (SEDG). The probability of range gain is lowest under the

GRAS scenario and the largest range gain occurs under SEDG. In the

period 2000–2050 lower percentage range loss, and lower centroid

shift were projected. The SEDG scenario showed a significant inter-

action with period with range loss and centroid shift much lower for

the period 2050–2100. The effect of resolution at the BENELUX

scale did not interact significantly with model type, however, overall

lower range loss and greater gain occurs at the finer resolutions.

Finally, the current size of the distribution was also included in some

best models, at the European scale more widespread species lose

less and gain more range (for full details of all models see Table S3

and Figs. S3–S10).

3.5 | Focus on one atypical and one representative
species

Bombus argillaceus is atypical compared to the majority of European

bumblebees. It is one of only two species projected to increase in

range under climate change. At the 5 9 5 km resolution B. argilla-

ceus increases in range and latitude under all model types and sce-

narios. The projected range gain percentage is larger for COMs

(BAMBU: 16%, GRAS: 42%, SEDG: 14%; Figure 8a–c) than DLMs

F IGURE 2 Average variable importance values and standard
errors of all covariates included in the training models. Black squares
represent models with only climate covariates and grey triangles
models with land use land cover (LULC) covariates and climate
covariates. The numbers in the brackets represent the number of
species for which this variable was one of the four most important
variables
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(9%, 34%, 7%; Figure 8d–f) or SLMs (10%, 36%, 10%; Figure 8g–i).

At the BENELUX scale only new areas of habitat suitability are pro-

jected. At the European scale we observe that B. argillaceus is one of

the few species to significantly increase in range. This range gain is

much less under SLMs and DLMs than COMs. Under COMs B. argil-

laceus is projected to gain considerable range in the West and East

F IGURE 3 Comparison of percentage loss projections between model types for BENELUX 2000–2050. (a) Climate-only Models (COM) and
Dynamic Land Use Models (DLM) and (b) Static Land Use Models (SLM) and DLM. (a) N = 36, (b) N = 38. Results are averaged across
resolution (5 9 5, 10 9 10 and 20 9 20 km) and scenario (BAMBU, SEDG, GRAS), represented by standard error bars (dashed lines). The
equal projection line (dashed line 0,0 to 100,100) represents the point at which the two model projections are equal. Red = above the equal
projection line, Blue = below the equal projection line, Grey = overlapping the equal projection line

TABLE 1 Effects of SDM variability on the distributional change of bumblebees

Explanatory variables

BENELUX (20 3 20, 10 3 10, 5 3 5 km) Europe (50 3 50 km)

Probability of
loss

Percentage
loss

Probability of
gain

Percentage
gain

Centroid
shift

Percentage
loss

Percentage
gain

Centroid
shift

Single terms

Range size present Europe – ** – – – *** *** ***

Model type (COM, DLM, SLM) *** *** *** ** – *** *** ***

Period (2000–50, 2050–80) – *** *** *** *** *** *** ***

Scenario (BAMBU, GRAS,

SEDG)

*** *** *** *** *** *** – ***

Resolution (20 9 20, 10 9 10,

5 9 5 km)

– *** *** – –

Two-way interactions

Range size present 9 Model

type

– – – – – – – –

Range size present 9 Period – – – – – – *** ***

Range size present 9 Scenario – – – – – – – –

Range size

present 9 Resolution

– – – – –

Model type 9 Period – – *** – – – – –

Model type 9 Scenario – – – – – – – –

Model type 9 Resolution – – – – –

Period 9 Scenario – *** *** – – *** – ***

Period 9 Resolution – – – – –

Scenario 9 Resolution – – – – –

Degrees of freedom 1,706 1,511 1,617 726 1,361 853 856 847

p-values: .01 ≤ p ≤ .05 = *, .001 ≤ p ≤ 0.01 = ** and <.001 = ***

The most parsimonious models as chosen by Bayesian information criteria (BIC) for the percentage range loss, percentage range gain, and shift in the

distributional centroid for 48 bumblebee species at European and BENELUX scales. The significance of each term included in the model is shown. The

symbol “–” represents a variable not included in the best model. The random term for all models was ‘1 | species.’ For a detailed version of the table see

Supplementary Table S3.
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of Europe (Figure 9). A large amount of the projected range loss is in

areas with novel climatic conditions, making the predictions

unreliable.

Bombus veteranus is one of the numerous European bumblebee

species projected to lose a large part of its suitable habitat under cli-

mate change; it is therefore representative of the majority of

TABLE 2 Pairwise comparisons between model types

Contrasts

BENELUX (20 3 20, 10 3 10, 5 3 5 km) Europe (50 3 50 km)

Probability of loss
(Odds ratio)

Percentage
loss

Probability of gain
(Odds ratio)

Percentage
gain

Centroid
shift (km)

Percentage
loss

Percentage
gain

Centroid
shift (km)

COM–

DLM

0.13*** 1.32*** 0.30*** 1.17 NA 1.17 1.62*** 51.7***

COM–

SLM

0.34*** 1.32*** 0.58* 1.45** NA 2.91*** 1.97*** 48.2***

DLM–

SLM

2.57** 1 1.93*** 1.24* NA 1.74* 1.21** �3.5

p-values: .01 ≤ p ≤ .05 = *, .001 ≤ p ≤ .01 = ** and <.001 = ***

Showing the fixed effect and the significance of the best models as chosen by Bayesian information criteria BIC. Null hypothesis tested: that the differ-

ence between contrasts is equal to 0. Values are averaged over other explanatory variables included in the model (see Table S1.)

F IGURE 4 Comparison of percentage gain projections between model types for BENELUX 2000–2050. (a) Climate-only Models (COM) and
Dynamic Land Use Models (DLM) and (b) Static Land Use Models (SLM) and DLM. (a) N = 25, (b) N = 35 bumblebee species in BENELUX for
2000–2050. Results are averaged across resolution (5 9 5, 10 9 10 and 20 9 20 km) and scenario (BAMBU, SEDG, GRAS), represented by
standard error bars (dashed lines). The equal projection line (dashed line 0,0 to 70,70) represents the point at which the two model projections
are equal. Red = above the equal projection line. Blue = below the equal projection line. Grey = overlapping the equal projection line

F IGURE 5 Comparison of percentage loss projections between model types for Europe 2000–2050. (a) Climate-only Models (COM) and
Dynamic Land Use Models (DLM) and (b) Static Land Use Models (SLM) and DLM. N = 48. 50 9 50 km resolution. Results are averaged
across scenario (BAMBU, SEDG, GRAS), represented by standard error bars (dashed lines). The equal projection line (dashed line 0,0 to
100,100) represents the point at which the two model projections are equal. Red = above the equal projection line. Blue = below the equal
projection line. Grey = overlapping the equal projection line
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bumblebees in Europe. Bombus veteranus under BAMBU and GRAS

is expected to lose almost its entire suitable habitat in BENELUX.

The species is not projected to go extinct at 5 9 5 km resolution,

but projections of the GRAS scenario show only a tiny pocket of

remaining suitable habitat in South-east Belgium (Figure 5k,n,q).

Significant gain is only projected under SEDG for COMs (25%; Fig-

ure 8l). At the European scale B. veteranus loses more range under

COMs (54%, 67%, 38%; Figure 9j–l) than SLMs (32%, 50%, 19%; Fig-

ure 9p–r) and DLMs (40%, 55%, 26%; Figure 9m–o). Bombus veter-

anus is projected to expand into Northern Europe, further under

COMs. Overall SLMs project more persistence in the landscape but

less Northern shift. Finally, the centroid of the distribution of B.

veteranus is projected to shift further North overall under DLMs

than SLMs (BAMBU: +95 km, GRAS: +68 km SEDG: +98 km,

Figure 9m–r).

4 | DISCUSSION

This study shows that incorporating dynamic LULC change scenarios,

even those with low precision and few classes, can have significant

effects on the projected distributions of bumblebee species. Species

can only occur in a location at any time when a series of critical con-

ditions are met, including both suitable climate and land use and land

cover types that allow them to feed, grow, survive and reproduce.

Therefore, it is surprising that the use of climate change projections

is commonplace, whereas LULC change projections are rarely used

in species forecasting (Titeux et al., 2016). We tested the effect of

dynamic LULC variables on projecting future distribution changes for

48 European Bombus species in 2050 and 2100. Bombus being a

genus for which change in major land use classes has affected his-

torical distribution patterns (Aguirre-Guti�errez et al., 2015; Senapathi

et al., 2015).

4.1 | Models including LULC compared to
climate-only models

All models improved in fit (AUC) when adding LULC covariates.

However, this refers to goodness-of-fit and does not necessarily

mean greater predictive ability (Thuiller et al., 2004). A number of

F IGURE 6 Comparison of percentage gain projections between model types for Europe 2000–2050. (a) Climate-only Models (COM) and
Dynamic Land Use Models (DLM) and (b) Static Land Use Models (SLM) and DLM. N = 48. 50 9 50 km resolution. Results are averaged
across scenario (BAMBU, SEDG, GRAS), represented by standard error bars (dashed lines). The equal projection line (dashed line 0,0 to 15,15)
represents the point at which the two model projections are equal. Red = above the equal projection line. Blue = below the equal projection
line. Grey = overlapping the equal projection line

F IGURE 7 Mean and standard error of directional shift of
species distribution centroid. For Climate-only Models (COM),
Dynamic Land Use Models (DLM) and Static Land Use Models (SLM)
at Europe at 2050 (a) and 2100 (b) and BENELUX at 2050 (c) and
2100 (d) for three change scenarios (BAMBU, GRAS, SEDG)

110 | MARSHALL ET AL.



species are influenced by LULC covariates, in particular the percent-

age cover of arable land and forest. The results support research

showing that using only climate covariates may over-represent the

species range in the present (Luoto et al., 2007; Sohl, 2014; Stanton,

Pearson, Horning, Ersts & Res�it Akc�akaya, 2012). This is likely to

misrepresent species range change as well as the shift of species

range limits. The importance of LULC change is dependent on

whether habitat requirements, namely nesting and feeding resources

(Busch, 2006), can be adequately captured by the relationship

between these six land use covariates and the climate change covari-

ates. Therefore, we saw variation for bumblebees as they differ sig-

nificantly in their landscape requirements (Goulson et al., 2010;

Persson, Rundl€of, Clough & Smith, 2015). A result unique to our

study is that COMs (at the European scale) projected greater range

F IGURE 8 BENELUX maps showing 5 9 5 km resolution of change in habitat suitability between 2000 and 2100 for two species, Bombus
argillaceus (a–i; atypical) and Bombus veteranus (j–r; representative of many species). Habitat suitability change is shown for three future change
scenarios (BAMBU, GRAS, and SEDG) and for three model types (Climate-only [a–c, j–l], Dynamic LULC [d–f, m–o], and Static LULC [g–i, p–r]).
Yellow: cells that have remained as suitable habitat; Red: cells that were suitable in 2000 but unsuitable in 2100; Green: cells that were
unsuitable in 2000 but suitable in 2100; Grey: cells that were never projected as suitable habitat

F IGURE 9 European maps showing 50 9 50 km resolution of change in habitat suitability between 2000 and 2100 for two species,
Bombus argillaceus (a–i; atypical) and Bombus veteranus (j–r; representative of many species). Habitat suitability change is shown for three future
change scenarios (BAMBU, GRAS, and SEDG) and for three model types (Climate-only [a–c, j–l], Dynamic LULC [d–f, m–o], and Static LULC [g–
i, p–r]). Yellow: cells that have remained as suitable habitat; Red: cells that were suitable in 2000 but unsuitable in 2100; Green: cells that were
unsuitable in 2000 but suitable in 2100; Grey: cells that were never projected as suitable habitat
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loss and lower range gain than when land use covariates were

included. This is in part due to greater range size in the present

under COMs. However, there were also examples of areas that

became suitable for certain bumblebees with the introduction of

LULC covariates. These results suggest that for some species includ-

ing LULC covariates, projects, on average, a wider bioclimatic envel-

ope and is more likely to project persistence in the landscape. In

other words LULC covariates, provide a habitat filter over the cli-

mate prediction. However, we did not observe the same pattern for

all species, and there were species, which showed greater loss and

gain with dynamic land use covariates. Overall, the relationship was

highly variable (see Figs. S7–S10). This inconsistent relationship indi-

cates that dynamic LULC model predictions are not simply a level up

or down from climate-only models. Additionally, the introduction of

LULC covariates projected an inability of most bumblebees to com-

pletely track Northern climate shifts, particularly into Scandinavia,

supporting historical patterns (Kerr et al., 2015).

4.2 | Models including dynamic LULC compared to
static LULC models

Including static LULC change in SDMs is based on the incorrect

assumption that LULC will not change in the future or that this

change is negligible in comparison to climate change (Stanton et al.,

2012). In this study, loss and gain of suitable habitat was more likely

with dynamic LULC covariates. The distribution patterns of DLMs

represent more variable suitable habitat conditions in time than

SLMs under equivalent climate change, resulting in greater projected

range loss and gain. However, this pattern varied between species

and was more discernable for some over others. This variability is

supported by other studies; including dynamic LULC covariates pre-

viously led to more accurate model predictions for invasive bullfrogs

(Ficetola et al., 2010) and central European plants (Chytr�y et al.,

2012), but not so for a European butterfly species (Martin et al.,

2013). Our multispecies study indicates that a number species show

projected distribution changes under different model types, however,

some do not show any. This, in and of itself, is not surprising as spe-

cies differ in their dependency on specific characteristics of climate

and land use. Therefore, including dynamic LULC covariates, even at

coarse thematic resolution, can significantly alter the projected distri-

butional changes of certain species.

4.3 | Inclusion of LULC in models for individual
species distribution projections

We focused on the projections of two species, B. argillaceus was

atypical compared to the majority of species, demonstrating range.

The results suggest that dynamic LULC limits the availability of suit-

able habitat in the North. Overall, this illustrates the necessity of

dynamic LULC in prospective SDMs, and that change in major land

use classes such as grassland and urban affect observed species

range change under climate change. Bombus veteranus is representa-

tive of the patterns observed for many species. Climate drove the

distribution but LULC models projected extra areas of suitable habi-

tat, which were rarely continuous and perhaps indicative of real

world patterns. Fragmented suitable habitat increases the probability

of losing local populations and decreases the probability of establish-

ing new populations, both of which severely affect a species’

tracking of global change.

4.4 | LULC-inclusive models for forecasting and
guiding conservation efforts

The importance of including LULC projections depends on the goals

and desired outcomes of the modelling process. As a tool, SDMs

explore unknown areas and periods where conditions may be suit-

able for species occurrence, observe the role of environmental

covariates and influence conservation management (Franklin, 2010).

However, due to limitations in data availability and modelling meth-

ods their value to conservation and ability to predict occurrence

should not be overestimated (Lobo, 2016), particularly in the case of

undersampled and geographically and taxonomically restricted insect

data (De Palma et al., 2016). Regarding covariate influence, we

observe that for at least some species dynamic LULC covariates sig-

nificantly affect projected distributions. Regarding conservation man-

agement, variation between model types, model performance and

projected distributions suggests that using DLMs to inform conserva-

tion practices would be suitable at the broad scale. The absence of

dynamic LULC covariates could lead to significantly underfitted

potential distributions for specific landscapes or species with implica-

tions for management. (Franklin, 2013; Porfirio et al., 2014; Wright,

Hijmans, Schwartz, Shaffer & Franklin, 2015). Overall, species and

purpose-specific approaches to covariate selection should be

preferred.

4.5 | The generation of dynamic LULC scenarios
deserves more attention

The observed patterns strongly support the case for more detailed

LULC change scenarios. This supports the conclusions of similar

studies (Barbet-Massin et al., 2012; Martin et al., 2013). The scenar-

ios presented here intend to provide a platform on which to relate

species conservation to socioeconomic factors and policy decisions,

they also aim to make it possible to assess which improvements at

landscape level are needed to improve species persistence (Van Vuu-

ren et al., 2011). However, it is likely that the LULC change maps

produced by these scenarios will become superseded by updated,

more detailed LULC change scenarios, linked to new climate change

models. Finer resolution and more detailed classes would greatly

improve LULC projections (Busch, 2006; Verburg, Van De Steeg,

Veldkamp & Willemen, 2009). In the case of bumblebees, we know

that to model wild bee species adequately we need ecologically rele-

vant LULC covariates that represent local management (Aguirre-

Guti�errez et al., 2015; Marshall et al., 2015; Scheper et al., 2015).

New scenarios should emphasize a relevance to biodiversity and land

use management, for example, separating between natural-grassland
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and agricultural-grassland, and intensive and less intensive farming

systems. While the incidence of and change in forest and arable land

cover correlates with habitat suitability, this is an indirect effect. The

coarseness of these classifications does not provide an adequate

foundation to extract causal information or infer on the importance

of land use management (Thuiller et al., 2004). Moreover, national

and international policies, such as the CAP in Europe, tend not to

change land cover per se (grassland remains grassland), but the man-

agement level and thus biodiversity value. For example, arable land

cover is the most important LULC covariate for the majority of bum-

blebees as defined by the correlative variable importance values (see

Table S3). However, the ecological significance of this importance

could relate to agricultural intensification, pesticide use, availability

of floral resources, or most likely, a combination of these factors.

4.6 | Differences between the data sources

Among the 48 bumblebees modelled there are examples of polytypic

species representing significant intraspecific variation (Rasmont,

1983). For example, SDMs at subspecies level for B. terrestris per-

formed differently from aggregated models with all subspecies as a

single unit (Lecocq, Rasmont, Harpke & Schweiger, 2016). We did

not utilize this variation; we modelled the habitat requirements of

each species using all available records. Occurrence points were

selected to represent the highest resolution possible to model at

5 9 5 km resolution, and many points were removed. However, due

to the nature of the data and the multitude of sources it is still likely

that some point records were not accurately recorded, though we

expect this number to be minimal (Duputi�e, Zimmermann & Chuine,

2014).

There were distinctions between the resolution of the climate

and land use sources in the past and in the future. Due to the coarse

nature of Atmosphere-Ocean General Circulation Models (AOGCMs)

used to calculate the climate-change covariates they do not repre-

sent accurately fine scale effects (Fronzek et al., 2012). This means

at the 10 9 10 and 5 9 5 km resolutions that fine-scale topographic

effects of climate may be lost. This may result in a more homoge-

nous representation of climate at these resolutions, which may over-

represent range size and connectivity. However, this is representa-

tive of climate data often used in studies of this type to model in

the future, and in general climate is more homogenous than land

use, particularly at the BENELUX scale. To understand in detail the

climate effects on biodiversity, fine scale climate change projections

are required. The land-use change maps were downscaled to match

the availability of current LULC data at European scale. However,

the downscaling algorithm is likely to produce some clustering for

the future LULC covariates (Dendoncker et al., 2006). Therefore, we

focused on percentage cover covariates and it was not possible to

include covariates of connectivity and edge effects, as they would

not be comparable to present conditions. Furthermore, the land-use

change models were created in congruence with climate variables;

this means that present and future comparisons are valid at the dif-

ferent modelled resolutions (Rounsevell et al., 2006).

Finally, there are many methods for SDM and changes to the

modelling algorithms, covariates and resolutions can affect the

results (Aguirre-Gutierrez et al., 2013; Warren & Seifert, 2011). We

chose to use simplified algorithms in an ensemble modelling

approach to account for this variation (Thuiller, 2014).

5 | CONCLUDING REMARKS

This work represents a detailed analysis of the effect of dynamic LULC

scenarios at different scales on the projected distributions of multiple

species. We show species dependent responses to the effect of

dynamic LULC, which demonstrates that these types of scenarios can

play a significant role in projecting species distributions under climate

change. Climate variables alone, whilst driving habitat suitability, are

unlikely to project accurately the detailed distribution patterns of all

species. Therefore, we advocate repeated use and testing of these

available scenarios with multiple species. However, new scenarios and

projections of LULC change at finer spatial and thematic resolutions

that indicate management practices will be necessary to better assess

biodiversity change in an uncertain future.
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