- 1 Stand structure, recruitment and growth dynamics in mixed subalpine spruce and Swiss stone
- 2 pine forests in the Eastern Carpathians
- 3

4 Popa Ionel^{1,2*}, Nechita Constantin¹, Hofgaard Annika³

- 5
- 6
- 7 Affiliation: ¹ National Institute for Research and Development in Forestry "Marin Drăcea"
- 8 (INCDS), Calea Bucovinei, 73bis, Câmpulung Moldovenesc, Romania
- 9 ² Research Centre for Mountain Economy (CEMONT), Petreni 49, Vatra Dornei, Romania
- ³ Norwegian Institute for Nature Research (NINA), NO-7485 Trondheim, Norway 10
- 11 * Corresponding author: popaicas@gmail.com
- 12

13 Abstract

14 Natural subalpine forests are considered to be sensitive to climate change, and forest 15 characteristics are assumed to reflect the prevalent disturbance regime. We hypothesize that stand history determines different stand structures. Based on large full inventory datasets 16 17 (including tree biometric data, spatial coordinates, tree age, and basal area increment) we 18 assessed the size structure, tree recruitment dynamics and radial growth patterns in three 19 permanent plots along an altitudinal gradient in a mixed coniferous forest (Picea abies and 20 Pinus *cembra*) in the Eastern Carpathians. Both discrete disturbances (large scale or small 21 scale) and chronic disturbances (climate change) were identified as drivers of stand structure 22 development in the studied plots. A stand replacing wind disturbance generated a unimodal 23 bell-shaped size and age distribution for both species characterized by a sharp increase in 24 post-disturbance recruitment. By contrast, small-scale wind-caused gaps led to a negative 25 exponential diameter distribution for spruce and a left-asymmetric unimodal for pine. Climate-driven infilling processes in the upper subalpine forest were reflected as I-shaped 26 27 size and age distributions for both species, but with pine predating spruce. The growth patterns for both species demonstrated an increased basal area increment since the early 28 29 1900s, with an emphasis in the last few decades, irrespective of stand history. Pine 30 demonstrated a competitive advantage compared to spruce due to the higher growth rate and 31 size at the same age. Recognition of combined discrete and chronic disturbances as drivers of 32 the tree layer characteristics in a subalpine coniferous forest is essential in both stand history 33 analyses and growth predictions.

- 34
- 35
 - Key words: high altitude forest, age structure, disturbance, Swiss stone pine, Norway spruce
- 36

37 Popa, Ionel; Nechita, Constantin; Hofgaard, Annika.

Stand structure, recruitment and growth dynamics in mixed subalpine spruce and Swiss stone pine forests in the Eastern Carpathians. 38 Science of the Total Environment 2017 ;Volum 598. s. 1050-1057

40 **1. Introduction**

41

39

Understanding forest structure dynamics in relation to natural disturbances and climate change is essential from a sustainable management point of view, for both managed and protected forests (Franklin et al., 2002; Kulakowski et al., 2016). The actual stand structure of a natural subalpine forest is the result of centuries of interactions between internal forest ecosystem drivers and external natural disturbance regimes (Frelich, 2002; Kulakowski and Bebi, 2004; Čada et al., 2013).

48 Subalpine forest dynamics are sensitive to climate change, and growth responses and 49 stand density alterations close to the upper altitudinal occurrence are considered to be 50 reliable proxies of climate change effects (Kupfer and Cairns, 1996; Qi et al., 2015). A warming 51 temperature at a high altitude induces both shifts in the tree distribution and increased tree 52 growth (Wilmking et al., 2004; Camarero and Gutierrez, 2004; Bunn et al., 2005) as well as 53 changes in disturbance regimes (Čada et al., 2016). Episodic disturbances, such as extensive 54 wind throws, induce relatively homogeneous post-disturbance stand structures compared to less-severe or small-scale disturbances. An uneven age structure with continuous 55 56 regeneration is a general characteristic of stands affected by low severity disturbances 57 (Frelich, 2002). Both large-scale and small-scale disturbances occur in natural forests and 58 generate a mosaic of even-aged and uneven-aged forests at the landscape level (Motta et al., 59 1999; Čada and Svoboda, 2011). In temperate European forests, the main disturbance agents 60 that cause widespread damage are stem-felling winds and bark beetle attacks (Schelhaas et 61 al., 2003). The frequency of both small-scale and large-scale wind damage events has 62 increased over the last few decades both at the Central European level and in the Carpathians 63 (Seidl et al., 2014; Popa, 2010).

64 Numerous studies, in Europe and worldwide, have addressed the structure, dynamics and physiological ecology of subalpine forests (Hofgaard, 1993; Motta et al., 2002; Carrer et 65 66 al., 2013; Svoboda et al., 2013). In Central Europe and the Balkans, disturbance regimes and regeneration dynamics as well as their impacts on forest structure have been relatively well 67 68 studied in pure spruce and mixed spruce, silver fir and beech mountain forests (Svoboda and 69 Pouska, 2008; Zielonka and Malcher, 2009; Zielonka et al., 2010; Panayotov et al., 2011; 70 Svoboda et al., 2013; Kulakowski et al., 2016). However, few studies on forest dynamics have 71 been conducted in mixed subalpine forests of Picea abies (L.) Karst (Norway spruce, 72 henceforward spruce) and Pinus cembra L. (Swiss stone pine, henceforward pine) (Cenuşă,

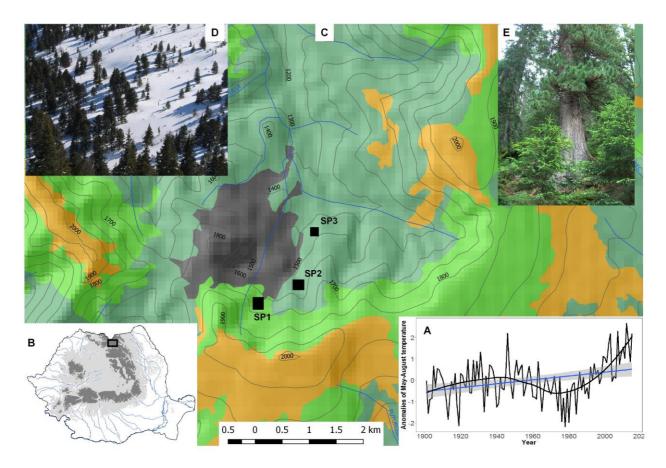
1996; Vlad et al., 2013; Carrer et al., 2013). Subalpine mixed spruce and pine forests are rare
forest types, but are found in the Romanian Carpathians (Blada, 2008; Casalegno et al, 2010).
Given the climate diversity and regional specificity of European subalpine forests, more
knowledge is needed to understand the effects of climate change in less studied regions, such
as the Romanian Carpathians.

The general objective of this study is to highlight how different developmental stages in subalpine mixed coniferous forests that result from disturbances and climate change are reflected in the stand structure, tree age distribution, and tree growth in the Eastern Carpathians. Our specific research questions are: (1) What is the actual size structure (diameter and height) of stands with different stand histories? (2) Is the tree age structure related to the site-specific stand history? (3) Are tree growth patterns congruent with regional warming trends?

85

86 2. Material and methods

87


88 2.1. Study area and sample plots

Mixed pine and spruce subalpine forests are only present in two Eastern Carpathian massifs: Ronda and Calimani (Blada, 2008). The study area is located on a north-western slope of the Calimani Mts. (47° 06' N, 25° 14' E) (Fig. 1) and belongs to the Calimani National Park. The area is a strict forest reserve with full protection status since 1971 (Seghedin, 1983).

94 Three permanents plots representing different development stages were established 95 along an altitudinal gradient from closed forest to sparsely tree covered areas close to the 96 timberline (Fig. 1). The selected plot locations lacked signs of historical wood logging or 97 removal or other human disturbances. The uppermost plot (SP1) of 2.1 ha (140x150 m) was 98 located at the transition between closed forest and treeless areas at 1750 m a.s.l. and was 99 characterized by a sparse tree layer and climate-driven infilling processes. The plot was 100 covered by a dense layer of dwarf mountain pine (*Pinus mugo* Turra) and juniper (*Juniperus* 101 *communis* L.) over 50% of the plot area in addition to spruce and pine. The middle plot (SP2) 102 (1.0 ha - 100x100 m, 1550 m a.s.l.) was established in a closed forest without signs of stand-103 level destructing disturbances. A spatial mosaic of gaps, regeneration patches and large sized 104 trees characterized the plot. The lowermost plot (SP3) (0.49 ha - 70x70 m 1450 m a.s.l.) was 105 established in a closed forest that was characterized by post-wind disturbance self-thinning 106 processes.

107 In addition to spruce and pine, the tree layer of the three plots included sparse 108 occurrences of rowan (*Sorbus aucuparia* L.). The field vegetation layer was dominated by 109 *Vaccinium myrtillus* L., *Vaccinium vitis-ideae* L. and *Luzula sylvatica* in all three plots. The soil 110 was podzol, and the bedrock was andesites along the entire gradient (Seghedin, 1983).

The climate is typical montane climate with continental influence. The mean annual temperature is +1.4°C, with the warmest period during July-August (+9.8°C) and coldest during January-February (-6.8°C). Annual precipitation normally exceeds 1200 mm, with a maximum in June-July (Popa and Kern, 2009).

115

Fig. 1. Location and characteristics of the study area in the Calimani Mts. A - anomalies of summer temperature (May-August) development and trend for 1900-2013 (CRU 3.2, Harris et al., 2014); B – map of Romania, with the box indicating the study area; C – plot locations (dark green – forest, light green – transitional woodland shrubs, orange – pasture, dark grey – abandoned mining area); D-E show aspects from SP1 and SP2, respectively.

121

122 *2.2. Stand data*

123 In the study plots, all living trees and standing dead trees with DBH (diameter at 1.3 m 124 above ground) >6 cm were identified, labelled and mapped in a 10x10 m grid network. The following variables were recorded for each tree: species, DBH, status (live or dead), totalheight, and spatial position in a local Cartesian system.

127 In addition, living trees with DBH >8 cm were cored to study the tree's establishment 128 period, age structure and radial growth patterns. Increment cores were taken at a 50 cm 129 height above ground, or in the case of stem rot at this sampling height, a second core was 130 taken at a 0.8-1.0 m height. Trees with DBH >8 cm accounted for 89%, 86% and 98%, 131 respectively, of sampled trees with DBH >6 cm in SP1, SP2 and SP3. In the laboratory all of the 132 cores were fixed to wood supports and sanded to highlight the tree ring boundaries. The tree 133 ring widths were measured to 0.01 mm accuracy with a Lintab sliding-stage measuring device 134 with TsapWin software (Rinntech, 2006). Each individual tree ring width series was 135 crossdated and checked for measurement error with the COFECHA program (Holmes, 1983). 136 For cores that did not include the pith, the number of missing rings was estimated based on 137 the mean growth rate of the last 5 to 10 years using the pith locator (Duncan, 1989). Trees 138 with rotten cores and cores for which a reliable estimation of the missing rings was not 139 possible were removed from future analysis. Following these procedures, the tree age was 140 successful determined for most of the trees, but the proportion of trees without an age 141 determination varied slightly between plots, 10% in SP1, 8% in SP2, and 6% in SP3.

142 As all of the age data refer to the stem age at 50 cm above ground, the difference between the age at this height and age at the ground level, as given by seedling establishment 143 144 (Niklasson, 2002), is not included in the study. In this study, analysis of recruitment into the 145 stand is thus restricted to trees with DBH >8 cm that were cored at 50 cm above ground. The 146 age at core height is widely used in stand age analysis (Svoboda et al., 2010; Qi et al., 2015). In 147 this study, the stem ages are aggregated into 20-year age classes (where, e.g., the 1840 class includes trees with ages between 1821 and 1840). Inventory and core sampling was 148 149 performed in 2006 (SP1), 2007 (SP2) and 2013 (SP3).

150 For growth pattern analysis, we used the basal area increment (BAI) instead of the tree 151 ring width as the BAI is more closely related to the tree biomass increment and net 152 productivity (Motta and Nola, 2001). We use the raw BAI as the growth indicator, which is a 153 conservative approach (Tognetti et al., 2000) that is less influenced by statistical techniques, 154 such as standardization, that are usually applied to tree ring width to remove age effects 155 (Cook and Kairiukstis, 1990). The BAI was thus based on the measured tree ring widths 156 assuming a circular stem section and calculated according to the following equation 157 (Monserud and Sterba, 1996):

158 BAIt= $\pi(r^2t-r^2t-1)$

where rt is the radius at year t and rt-1 is the radius at year t-1. To show the influence of age on the growth pattern, the data set was split in three parts: trees with ages up to 50 years, 51-100 years and trees with ages of more than 100 years. The mean BAI chronology for each

162 group was established by averaging of the individual tree-ring series.

163 All data processing was performed in R (R team, 2016).

164

165 **3. Results**

166

3.1. Stand structure

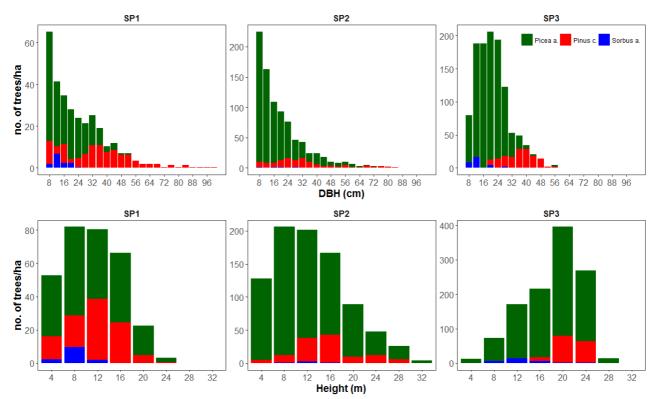
168 In terms of the number of trees, spruce is the dominant species in all of the plots (Table 169 1), but the stand density of the species in SP1 is only 20-26% of the value of the lower altitude 170 plots. The total basal area, on the other hand, is dominated by pine in SP1 (66% of the total) 171 and by spruce in SP2 and SP3 (66% and 67%, respectively) (Table 1). Rowan is present at a 172 low proportion in all of the plots. The frequency of standing dead trees, computed as the ratio 173 of the basal area of living trees, is higher in SP2 and SP3 (9% and 10%, respectively) 174 compared with SP1 (3%) and dominated by spruce in all plots. The highest number of 175 standing dead trees is found in SP3 (27% of total tree number), and the small diameter of 176 these trees (mean DBH: 10.9 cm) indicates an intensive on-going self-thinning process.

The mean stem diameter of living trees at the plot level is similar for all of the plots, with pine having twice the mean diameter of spruce in all cases (Table 1). The diameter distribution of pine is bimodal in SP1 (maximum at 16 cm and 36 cm), left asymmetric unimodal in SP2, and unimodal bell-shaped in SP3 (Fig. 2). Spruce shows a negative exponential diameter distribution in both SP1 and SP2, but is unimodal bell-shaped in SP3.

The mean tree height is largest in SP3 and dominated by pine in all three plots (although the pine and spruce heights are similar in SP1). The height distribution is unimodal both for spruce and pine in all three plots, with left asymmetry for spruce in SP2 and right asymmetry in SP3 (Fig. 2).

186

187 **Table 1**


188 Structural characteristics of the study plots

	Live trees		Standing dead trees		Mean DBH	Mean	Mean
Species	Basal area	Stems	Basal area	Stems	(cm)*	height	age
	(m ² ·ha ⁻¹)	(n∙ha-1)	(m²·ha-1)	(n·ha⁻¹)		(m)*	(years)*

SP1

Picea abies	6.81	195	0.20	11	18.5±10.2	11.2±5.2	69±32
Pinus cembra	13.54	102	0.41	3	36.2±19.6	11.7±4.3	105±46
Sorbus aucuparia	0.20	14	0.01	1	13.9±4.2	8.0±1.9	48±14
Total	20.55	311	0.62	15	24.1±16.3	11.2±4.8	81±41
SP2							
Picea abies	26.82	745	2.89	77	17.8±11.8	12.2±6.2	112±56
Pinus cembra	13.80	124	0.87	5	32.8±18.5	15.2±5.5	159±100
Sorbus aucuparia	0.12	4	-	-	17.7±9.5	11.9±2.8	92±14
Total	40.74	873	3.76	82	20.0±13.9	12.6±6.2	119±67
SP3							
Picea abies	33.33	975	4.30	404	19.6±7.1	17.8±4.9	131±18
Pinus cembra	16.28	149	0.53	14	36.4±8.3	21.3±2.0	126±14
Sorbus aucuparia	0.50	31	0.13	16	13.2±6.0	8.6±5.4	106±19
Total	50.11	1155	4.96	434	21.6±9.3	18.2±4.8	130±18

* Mean±standard deviation; values refer to living trees.

190

Fig. 2. Distribution of the number of trees by diameter (upper panels) and height classes (lower panels). The total bar height represents the cumulative values of the numbers of trees for all species. The X-axis tick marks represent the centre of the 4 cm and 4 m classes (i.e., the first diameter class includes trees with DBH 6.1-10 cm, and the first height class 2.1-6 m trees).

- 196
- 197 *3.2. Tree recruitment*

198 The stem age distribution of trees (age at 50 cm height) varied between plots (Fig. 3). 199 In SP1, the maximum age is 285 years for pine, 231 years for spruce, and less than 100 years 200 for rowan. The oldest trees are found in SP2, where pine reached a maximum age of 546 years 201 and spruce reached a maximum age 450 years. In SP3, the maximum age is similar for both 202 spruce (180 years) and pine (152 years). According to these maximum ages, pine and spruce have been present since the early or mid-18th century at SP1 (Fig. 3). After these initial 203 204 recruitments, both pine and spruce recruited at low frequency until the mid-19th century, 205 when pine recruitment first increased around 1840, followed by spruce around 1860. This 206 recruitment increase continued for both species until the 1920s. The resulting age structure is 207 unimodal for both species, but the mean age differs at ca. 35 years (Table 1). The first wide-208 aged cohort of pine starting from 1720 was mainly located in the middle part of the plot (Fig. 209 4) and for spruce in the left part of the plot. In comparison with pine and spruce, rowan 210 recruitment occurred over a much shorter time period and is only recorded for age classes 211 since the 1920s, with a maximum between 1931 and 1940.

In SP2, two clear age groups can be distinguished. A first group of old trees with an age between 180 and 400 years (Fig. 3) consisting of both pine and spruce was located as a matrix in the right half of the plot (Fig. 4). The frequency of trees recruited before 1840 is low, but a sharp change in regeneration is observed after 1840 (spruce) and 1860 (pine) (Fig. 3). This wave of recruitment reaches its maximum between 1861 and 1880 for both species. After 1920, the regeneration is mainly represented by spruce. The age structures are bimodal for both pine and spruce, but the mean age differs by ca. 45 years (Table 1).

In SP3, few trees (spruce) regenerated before 1840, but an apparent recruitment increase took place in both species between 1841 and 1900. The increase was characterized by spruce predating pine. No pine and very few spruce trees were recruited after 1920. Rowan recruitment occurred at a low frequency from 1860 to 1940. The age structure has a unimodal bell-shape with low variability for all three species (Fig. 3). The mean age difference between spruce and pine is only 5 years (Table 1). The spatiotemporal recruitment pattern is similar for spruce and pine (Fig. 4), but spruce is dominating in all classes (Fig. 3).

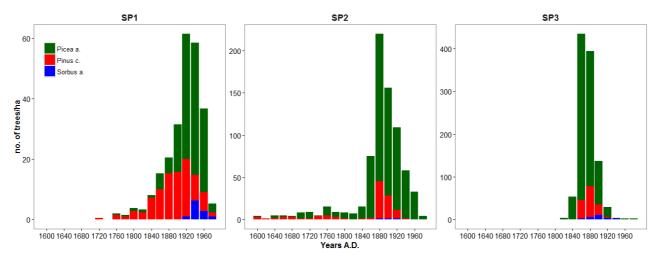


Fig. 3. Recruitment pattern of trees >8 cm DBH and recorded at 50 cm above ground presented in 20-year age classes (breaks represent the end of the classes, e.g., the 1840 age class includes trees with an age between 1821 and 1840). Note the differences in the y-axis scales.

231

Fig. 4. Spatial distribution of tree recruitment (DBH classes: <10 cm, 11 – 30 cm, 31 – 50 cm,
51 – 100 cm)

234

235 *3.3. Growth pattern*

236 Growth patterns expressed as BAI values show apparent differences between plots and 237 species (Fig. 5). Pine has a higher growth rate compared with spruce in all plots and both age 238 groups, but no apparent difference was observed between plots (although growth of old pine 239 trees was highest in SP1). For spruce for all age classes trees showed a higher growth rate in 240 SP1 in the last century compared to SP2 and SP3 (2-3 times higher in SP1 than in SP2 or SP3). 241 In SP2, the growth rate of old spruce has been more or less constant over the last 300 years, 242 with some inter-annual and decadal variation. The results show an evident BAI peak during 243 1990-2000 for all plots and species followed by the growth drop after 2000.

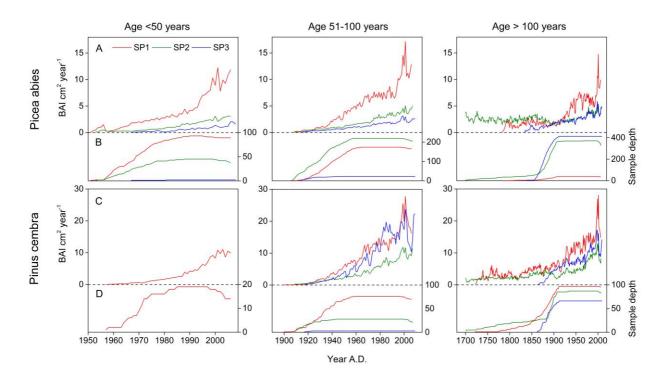


Fig. 5. Basal area increment (BAI) development in the three study plots separated into spruce
(*Picea abies* Karst L.) and pine (*Pinus cembra* L.), and trees with stem age <50 years, age
between 51 and 100 years and age>100 years. A – BAI for spruce; B – sample depth for
spruce; C – BAI for pine; D – sample depth for pine.

249

250 4. Discussion

251

252 Our results highlight climate- and disturbance-driven tree layer changes that 253 characterize subalpine mixed coniferous forests in three different stand history areas. The 254 long-term regional increase in temperature, particularly since the 1980s, is likely a main 255 driver of documented recent growth rate increase across sites and the apparent infilling 256 process at the timberline. However, it cannot explain the observed age structure differences. 257 A spatiotemporal combination of small- and large-scale disturbances characterizes the forest 258 below the timberline, although the entire studied subalpine forest area has had apparent tree 259 cover since the early 19th century. In addition, the presence of more than 500-year-old trees 260 and large amounts of dead wood is indicative of a naturally developed forest that is suitable 261 for stand history analyses (Popa and Kern, 2009).

262

263 4.1. Climate-driven stand development

The natural subalpine forests, including the timberline areas, of the studied northern slope of the Calimani Mts. are well preserved and without apparent human disturbance (e.g., 266 grazing, wood logging) since the establishment of Calimani National Park and experienced 267 low or negligible disturbances prior to the park's establishment (Kern and Popa, 2008). 268 Historical records from the early 20th century indicate the presence of dense areas of dwarf 269 mountain pine with a sparse tree layer of pine and spruce in the upper part of the studied 270 subalpine area (Fekete and Blattny, 1913), which is indicative of low or absent herding 271 activity. The current presence of dwarf mountain pine with maximum age over 130-150 272 years, lack of typical wind disturbance signs (e.g. pits and mounds), and low amount of dead 273 stems confirms the dominance of a non-land-use and non-event driven succession. Instead, 274 based on the field inventory and historical records, a significant climate-driven upward shift 275 of the timberline (65 m in altitude) and krummholz tree form (95 m in altitude) limits is 276 indicated for the 20th century (Kern and Popa 2008).

277 In spite of this altitudinal advance, the current forest structure still shows 278 characteristics typical for a colonization/infilling phase and ongoing transition from dwarf 279 mountain pine cover to mixed pine and spruce forest with a low stand density and low tree 280 layer competition with specific spatial structure (Popa and Sidor, 2013). The mixed spruce 281 and pine recruitment is mediated by combined wind (spruce) and avian (pine) seed dispersal, 282 in which the feeding behaviour of the Eurasian nutcracker (Nucifraga caryocatactes) plays a 283 central role (Zong et al., 2010). The most important food source of this bird is pine seeds, and 284 surplus seeds are stored for winter use. Open areas, such as ridges, rock outcrops and 285 subalpine forest gaps, are preferred sites to hide cones and seed batches (Tomback et al., 286 1993; Zong et al., 2010), and dismissed seeds might germinate and form recruits for a future 287 tree layer. The survival of these seedlings might be climate dependent, but the behaviour of 288 the nutcracker jointly explains the ongoing increase in pine recruitment.

289 The significant basal area increment increase shown since the 1980s is a consistent 290 pattern irrespective of tree age and stand history (although emphasized at timberline for 291 spruce). Growth The consistency of the pattern calls for a common, possibly climatic, 292 explanation. The significant and positive correlation between the radial growth and summer 293 temperature shown for the study region (Popa and Kern, 2009) indicates warming and the 294 length of the growing season as plausible important factors. The main limitation at high 295 altitude is the capacity to form new wood tissues during the short growing season (Körner, 296 2003; Holtmeier, 2009). The positive effects of a warmer temperature on radial growth 297 depend on the capacity to compensate for increased transpiration (Paulsen et al., 2000). 298 which in the Calimani Mountains, is accomplished by high annual precipitation levels. Similar 299 recent climate-dependent radial growth increases have been observed in other central and

south European subalpine areas (Motta and Nola, 2001; Vittoz et al., 2008; Rolland et al.,1998).

302 In addition to warming, the low stand density in the timberline part of the subalpine forest may explain the higher growth rate compared to the lower altitude subalpine forest, 303 304 where competition in the tree layer is important. Further and hypothetically, the recorded 305 increased growth rate could be associated with rising CO₂ (Spiecker, 1999; Pretzsch et al., 306 2014), but no information is available regarding this factor for our study area. However, a 307 growth-promoting increase in nitrogen deposition (Pretzsch et al., 2014) might have had a 308 local effect in the study area, as nitrogen-based explosives were used in an opencast mine 309 close to the study area. Reducing of the growth after 2000 may be linked to the reduction in 310 nitrogen fertilization due to the closure of mining activity. This mining activity occurred in the 311 1970s and 1990s, and dendroclimatological studies reveal somewhat of a divergence of the 312 radial growth response to the summer temperature during this period (Popa and Kern, 2009). 313 4.2. Small-scale disturbance-driven stand development

314 The magnitude and frequency of disturbances in subalpine forests determine the size 315 and spatiotemporal distribution of canopy gaps available for tree regeneration (Frelich, 316 2002). Consequently, analyses of the tree size and age structure lead to a better 317 understanding of the stand disturbance history. For a subalpine forest, small-scale wind 318 disturbances generate dead wood and canopy gaps (Holtmeier, 2009). This stand 319 heterogeneity, including single tree falls, blow-down tree groups, wind uprooting, and 320 standing and downed dead trees, mediates a spatiotemporal tree recruitment pattern that is 321 typical for stands with frequent small-scale disturbances. This type of spatial heterogeneity, in 322 terms of gap openings and the presence of dead wood at different decay stages, represents a 323 sustainable environment for tree establishment and diversity (Khakimulina et al., 2015). In 324 particular, spruce regeneration in a subalpine forest is strongly related to the abundance of 325 dead wood at different decay stages, as evidenced in a variety of European natural spruce 326 forests (Hofgaard, 1993; Kuuluvainen, 1994; Motta et al., 2006). Pine regeneration, on the 327 other hand, is favoured by open spaces with low tree layer competition and good light 328 conditions (Hattenschwiler and Korner, 1995; Risch et al., 2003; Carrer et al., 2013). However, 329 small gaps will be dominantly regenerated by spruce, which is tolerant to low light availability 330 over long periods (Čada et al., 2013; Popa and Sidor, 2013).

These species-specific responses to gap conditions are also evident in the present study, with spruce showing spatiotemporal dominance in areas controlled by small-scale disturbance regimes. The continued coexistence of spruce and pine will depend on the

frequency of large gap-creating disturbances. Successive events of disturbance-regeneration that generate almost exclusively small-scale windthrow gap formations are beneficial to spruce and for maintaining uneven-age mountain forests (Svoboda et al., 2010).

337

338 *4.3. Large-scale disturbance-driven stand development*

339 The coinciding mid- to late-19th century recruitment period, which was shown for both 340 small-scale and large-scale disturbed areas, points to a disturbance event with relevance beyond the study site scale. The unimodal bell-shaped age structure indicates tree 341 342 recruitment in open spaces after a large-scale catastrophic windthrow event dated to 343 approximately 1840-1850 (Nechita et al., 2013). Information about a high magnitude wind 344 damage event in the Eastern Carpathians during this time is both noted in historical records 345 (December 1843) (Popa, 2007) and evidenced by disturbance reconstruction based on spruce radial growth data (Svoboda et al., 2014). In the studied area, this disturbance event produced 346 347 a typical wind uprooting geomorphology with mounds and pits (Nechita et al., 2013). These edaphic structures and the presence of decaying coarse wood promote high frequency 348 349 regeneration of both spruce and pine trees during relatively short post-disturbance periods 350 (Ulanova, 2000). Consequently, a typical homogeneous post-disturbance stand development 351 phase is produced (Oliver and Larson, 1996; Čada and Svoboda, 2011; Svoboda et al., 2010) 352 that is characterized by an even-aged high tree density, bell-shaped diameter distribution, large basal area of living trees, and high density of standing dead trees, as was found in the 353 354 studied area. Although the recruitment periods of pine and spruce overlap, the pine trees 355 have a larger DBH and are taller compared to spruce of the same age. This growth pattern and 356 associated high competitiveness of pine ensure a long-term presence for the species in old 357 stands (Oliver and Larson, 1996).

358 In the next few decade(s) the homogeneous post-disturbance stand structure will 359 likely change due to an increasing self-thinning process characterised by death of individual trees, evolving small-scale disturbance events, and subsequent gap development allowing for 360 361 new regeneration. The process would thus hypothetically lead to structural dynamics 362 characterizing areas driven by small-scale canopy perturbations. A second scenario might be 363 a new large-scale catastrophic wind damage event that will reset (re-initialization) the stand 364 dynamics. The probability of a large wind damage event in the study region is high, taking into 365 account the recent history of windthrow and forecasted climate change (Popa, 2007; Seidl et 366 al., 2014).

Same disturbance event may have varying impact on stand structure dynamics as a consequence of deviating pre-event stand structures. The climate-growth relationships in spruce mountain forest from Calimani NP differ among altitude with influence on regeneration processes (Primicia et al., 2015). The slowest regeneration was at the SP1 (the very harsh climate limiting tree growth), faster regeneration processes were at the SP2 and SP3, where is the lowest impact of climate.

373

374 *4.4. Methodological implications*

375 The age structure combined with tree ring width data is frequently used to date tree 376 layer destroying disturbances and post-disturbance tree establishment patterns (Lorimer and 377 Frelich, 1989; Nowacki and Abrams, 1994; Carrer et al., 2013). However, when the stand 378 structure, recruitment, and growth analyses are restricted to trees larger than a given DBH, 379 interpretations of stand dynamics do not include processes linked to smaller size classes. The 380 presented structure for the studied plots reflects the pattern of tree layer trees that survived 381 up to the sampling time. This structure does not reflect the mortality rate or other life history 382 processes during the time between tree regeneration and study-specific size requirements 383 (Motta et al., 2002). Further, age structure analysis based on the age at a 50 cm height, 384 without extrapolation to the ground level, results in a systematic underestimation of the tree 385 age. Although the size of this underestimation is unknown, any interpretation has to consider 386 this bias. In subalpine spruce forest, the time necessary to reach a coring height of 50 cm is at 387 least 20 years (Szewczyk et al., 2011). A high stand density, shading and frequent snow 388 breakage can increase that period considerably. Consequently, the number of years needed to 389 attain the coring height will be species and site dependent (Wong and Lertzman, 2001). 390 Species differences in the height growth of small/young trees are pronounced in subalpine 391 forest due to species-specific differences in stem elasticity. Consequently, spruce is more 392 frequently affected by snow breakage compared to pine. In subalpine forests, large gaps 393 determine faster sapling growth (diameter and height) compared with that in small gaps or 394 under a dense canopy (Svoboda et al., 2011). However, there are also examples that show no 395 significant difference between open conditions and below canopy conditions for spruce 396 sapling growth to reach 50 cm height (Tsvetanov et al., 2016).

397

398 **5. Conclusion**

400 Recognition of combined discrete and chronic disturbances as drivers of the tree layer 401 characteristics in a subalpine coniferous forest is essential for both stand history analyses and 402 growth predictions. Our results highlight the importance of wind disturbances and climate 403 change as drivers of stand structure dynamics and associated tree recruitment dynamics in 404 Eastern Carpathian subalpine mixed coniferous forests. These forests represent an important 405 European forest biome, and further investigations focusing on disturbance effects, stand 406 structure dynamics, and spatiotemporal regeneration patterns are needed. Better knowledge 407 of combined warming and disturbance effects in high altitude forest ecosystems can be 408 obtained by coupling altitudinal advance information with tree growth and stand structure 409 analyses. Networks of permanent plots provide prominent conditions in this respect through 410 production of high quality information on stand dynamics driven by interplaying disturbance 411 regimes, including climate change.

- 412
- ---

413

414 Acknowledgements

The research leading to these results has received funding from EEA Financial Mechanism 2009–2014 under the project CLIMFOR contract no. 18SEE/2016, the Research Council of Norway (grant no. 160022/F40 and 244557/E50), and ANCS grant no. TE40. We would like

418 to thank C. Sidor, R. Vlad and D. Vladeanu for assistance in the field.

- 419
- 420

421 **References**

- 422
- Blada, I., 2008. *Pinus cembra* distribution in the Romanian Carpathians. Annals of
 Forest Research. 51:115-132.
- Bunn, A.G., Graumlich, L.J., Urban, D.L., 2005. Trends in twentieth-century tree growth at high elevations in the Sierra Nevada and White Mountains, USA. Holocene. 15:481– 488.
- Čada, V., Svoboda, M., 2011. Structure and origin of mountain Norway spruce in the
 Bohemian Forest. Journal of Forest Science. 57:523–535.
- Čada, V., Svoboda, M., Janda, P., 2013. Dendrochronological reconstruction of the disturbance history and past development of the mountain Norway spruce in the Bohemian Forest, central Europe. Forest Ecology and Management. 295:59-68.
- Čada, V., Morrissey, R. C., Michalová, Z., Bače, R., Janda, P., Svoboda, M., 2016. Frequent severe natural disturbances and non-equilibrium landscape dynamics shaped the mountain spruce forest in central Europe. Forest Ecology and Management. 363:169-178.
- 437
 Camarero, J.J., Gutierrez, E., 2004. Pace and pattern of recent treeline dynamics:
 response of ecotones to climatic variability in the Spanish Pyrenees. Climatic Change.

439 63:181–200.

- Carrer, M., Soraruf, L., Lingua, E., 2013. Convergent space-time tree regeneration patterns along an elevation gradient at high altitude in the Alps. Forest Ecology and Management. 304:1-9.
- Casalegno, S., Amatulli, G., Camia, A., Nelson, A., Pekkarinen, A., 2010. Vulnerability of Pinus cembra L. in the Alps and the Carpathian mountains under present and future climates. Forest Ecology and Management. 259:750-761.
- 446
 446 Cenusă, R., 1996. Probleme de ecologie forestieră Aplicații la molidișurile naturale 447 din Bucovina. Editura Universitatea Ștefan cel Mare din Suceava. 165 p.
- 448 Cook, E.R., Kairiukstis, L. (eds.), 1990. Methods of dendrochronology: applications in the environmental sciences. Kluwer. 408 p.
- Duncan, R.P., 1989. An evaluation of errors in tree age estimates based on increment cores in kahikatea (*Dacrycarpus dacrydioides*). New Zealand Natural Sciences. 16:1-37.
- Fekete, L., Blattny, T., 1913. Az erdészeti jelentőségű fák és cserjék elterjedése a Magyar Állam területén. [Distribution of trees and shrubs significant in forestry in Hungary.] vol. I, Selmecbánya, 793 p.
- Franklin, J., Spies, T.A., Van Pelt, R., Carey, A.B., Thornburgh, D.A., Berg, D.R., Lindenmayer, D.B., Harmon, M.E., Keeton, W.S., Shaw, D.C., Bible, K., Chen, J., 2002.
 Disturbances and structural development of natural forest ecosystems with silvicultural implications, using Douglas-fir forests as an example. Forest Ecology and Management: 155: 399–423.
- Frelich, L.E., 2002. Forest Dynamics and Disturbance Regimes. Cambridge University
 Press, Cambridge. 266 p.
- Harris, I., Jones, P.D., Osborn, T.J., Lister, D.H. 2014. Updated high-resolution grids of monthly climatic observations – the CRU TS3.10 Dataset. International Journal of Climatology: 34:623–642.
- Hättenschwiler, S., Körner, C., 1995. Responses to recent climate warming of *Pinus sylvestris* and *Pinus cembra* within their montane transition zone in the Swiss Alps.
 Journal of Vegetation Science. 6:357-368.
- Hofgaard, A., 1993. Structure and regeneration patterns in a virgin *Picea abies* forest in northern Sweden. Journal of Vegetation Science. 4:601–608.
- Holmes, R.L., 1983. Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bull. 43:69–78.
- Holtmeier, F.K., 2009. Mountain Timberlines: Ecology, Patchiness and Dynamics.
 Springer. 437 p.
- Kern, Z., Popa, I., 2008. Changes of Frost Damage and Treeline Advance for Swiss Stone
 Pine in the Calimani Mts. (Eastern Carpathians, Romania). Acta Silvatica Lignaria
 Hungarica. 4:39-48.
- Khakimulina, T., Fraver, S., Drobyshev, I., 2015. Mixed-severity natural disturbance regime dominates in an old-growth Norway spruce forest of northwest Russia. Journal of Vegetation Science. 27:400–413.
- 480
 480
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
- 482
 483
 Kulakowski, D., Bebi, P., 2004. Range of variability of unmanaged subalpine forests.
 483
 Forum für Wissen: Schutzwald und Naturgefahren. Davos, Switzerland. p. 47–54.
- Kulakowski, D., Seidl, R., Holeksa, J., Kuuluvainen, T., Nagel, T. A., Panayotov, M., Svoboda M., Thorn, S., Vacchiano, G., Whitlock, C., Wohlgemuth, T., Bebi, P., 2016. A walk on the wild side: Disturbance dynamics and the conservation and management of European mountain forest ecosystems. Forest Ecology and Management (in press). http://dx.doi.org/10.1016/j.foreco.2016.07.037

- 489
 Kupfer, J.A., Cairns, D.M., 1996. The suitability of montane ecotones as indicators of global climatic change. Progress in Physical Geography. 20:253–272.
- Kuuluvainen, T., 1994. Gap disturbance, ground microtopography, and the regeneration dynamics of boreal coniferous forests in Finland—a review. Annales Zoologici Fennici. 31:35–51.
- 494
 Lorimer, C.G., Frelich, L.E., 1989. A methodology for estimating canopy disturbance 495
 frequency and intensity in dense temperate forests. Canadian Journal of Forest 496
 Research. 19:651–663.
- Monserud, R.A., Sterba, H., 1996. A basal area increment model for individual trees growing in even-and uneven-aged forest stands in Austria. Forest Ecology and Management. 80:57–80.
- Motta, R., Nola, P., Piussi, P. 1999. Structure and stand development in three subalpine
 Norway spruce (*Picea abies* (L.) Karst.) stands in Paneveggio (Trento, Italy). Global
 Ecology and Biodiversity. 8:455–473.
- Motta, R., Nola, P., 2001. Growth trends and dynamics in sub-alpine forest stands in the
 Varaita Valley (Piedmont, Italy) and their relationships with human activities and
 global change. Journal of Vegetation Science. 12:219–230.
- Motta, R., Nola, P., Piussi, P., 2002. Long-term investigations in a strict forest reserve in the eastern Italian Alps: spatio-temporal origin and development in two multi-layered subalpine stands. Journal of Ecology. 90:495-507.
- Motta, R., Berretti, R., Lingua, E., Piussi, P., 2006. Coarse woody debris, forest structure and regeneration in the Valbona Forest Reserve, Paneveggio, Italian Alps. Forest Ecology and Management. 235:155–163.
- Nechita, C., Popa, I., Roibu, C., 2013. Disturbance history in a stone-pine (Pinus cembra) multicentury tree-ring chronology from Calimani Mountains (Eastern Carpathians).
 Advances in Agriculture & Botanics. 5:91-95.
- Niklasson, M., 2002. A comparison of three age determination methods for suppressed
 Norway spruce. Implications for age structure analysis. Forest Ecology and
 Management. 161:279–288.
- Nowacki, G.J., Abrams, M.D., 1994. Forest composition, structure, and disturbance history of the Alan Seeger Natural Area, Huntington Country, Pennsylvania. Bulletin of Torrey Botanical Club. 121:277–291.
- Oliver, C.D., Larson, B.C., 1996. Forest Stand Dynamics. Wiley. 520 p.

- Panayotov, M., Kulakowski, D., Laranjeiro Dos Santos, L., Bebi, P., 2011. Wind disturbances shape old Norway spruce-dominated forest in Bulgaria. Forest Ecology and Management. 262:470–481.
 - Paulsen, J., Weber, U. M., Korner, C., 2000. Tree growth near timberline: abrupt or gradual reduction with altitude? Artic, Antarctic, and Alpine Research. 32:14–20.
- Popa, I., 2007, Managementul riscului la doborâturi produse de vânt (Windthrow risk management). Tehnică Silvică. Bucharest. 235 p.
- Popa, I., Kern Z., 2009. Millennial summer temperature reconstruction inferred from tree ring records for Calimani Mts. (Eastern Carpathians, Romania). Climate Dynamics. 32:1107-1117.
- Popa, I., Sidor, C., 2013. Serii dendrocronologice seculare pentru pădurile virgine din lanțul carpatic din România. In Giurgiu, V. (eds.). Pădurile virgine și cvasivirgine ale României. Romanian Academy Publishing House. p. 310-318.
- Popa, I., Sidor, C., 2013. Structura spațială a unei păduri naturale de limită altitudinală superioară din Munții Călimani (Carpații Orientali, România). In Giurgiu, V. (eds.), 2013, Padurile virgine și cvasivirgine ale României. Romanian Academy Publishing House. p. 257-276.

- Pretzsch, H., Biber, P., Schütze, G., Uhl, E., Rötzer, T., 2014. Forest stand growth dynamics in Central Europe have accelerated since 1870. Nature communications. 5.
- Primicia, I., Camarero, J. J., Janda, P., Čada, V., Morrissey, R. C., Trotsiuk, V., Bace, R., Teodosiu, M., Svoboda, M., 2015. Age, competition, disturbance and elevation effects on tree and stand growth response of primary Picea abies forest to climate. Forest Ecology and Management. 354:77-86.
- Qi, Z., Liu, H., Wu, X., Hao, Q., 2015. Climate-driven speedup of alpine treeline forest growth in the Tianshan Mountains, Northwestern China. Global Change Biology. 21: 816-826.
- Rinntech, 2006. LINTAB: Precision Ring by Ring. (<u>http://www.rinntech.com</u>)

562

563

564

565

- Risch, A.C., Nagel, L.M., Schutz, M., Krusi, B.O., Kienast, F., Bugmann, H., 2003. Structure and long-term development of subalpine *Pinus montana* Miller and *Pinus cembra* L. forests in the central European Alps. Forstwissenschaftlisches Centralblatt. 122:219-230.
- Rolland, C., Petitcolas, V., Michalet, R., 1998. Changes in radial tree growth for *Picea abies, Larix decidua, Pinus cembra* and *Pinus uncinata* near the alpine timberline since 1750. Trees. 13:40-53.
- Schelhaas, M.J., Nabuurs, G.J., Schuck, A., 2003. Natural disturbances in the European forests in the 19th and 20th centuries. Global Change Biology. 9:1620-1633.
 - Seghedin, T., 1983. Rezervatile naturale din Bucovina. Sport-Turism. Bucharest. 127p.
- Seidl, R., Schelhaas, M.J., Rammer, W., Verkerk, P.J., 2014. Increasing forest disturbances in Europe and their impact on carbon storage. Nature Climate Change. 4: 806-810.
 - Spiecker, H., 1999. Overview of recent growth trends in European forests. Water, Air, and Soil Pollution. 116:33-46.
 - Svoboda, M., Pouska, V., 2008. Structure of a central-European mountain spruce oldgrowth forest with respect to historical development. Forest Ecology and Management. 255:2177–2188.
- 567 Svoboda, M., Fraver, S., Janda, P., Bače, R., Zenáhlíková, J., 2010. Natural development 568 and regeneration of a Central European montane spruce forest. Forest Ecology and 569 Management. 260:707-714.
- Svoboda, M., Janda, P., Nagel, T.A., Fraver, S., Rejzek, J., Bače, R., 2012. Disturbance history of an old-growth sub-alpine *Picea abies* stand in the Bohemian Forest, Czech Republic. Journal of Vegetation Science. 23:86-97.
- Svoboda, M., Janda, P., Bače, R., Fraver, S., Nagel, T. A., Rejzek, J., .Mikolas, M., Douda, J.,
 Boublik, K., Samonil, P., Čada, V., Trotsiuk, V., Teodosiu, M., Bouriaud, O., Biris, I.,
 Sykora, O., Uzel, P., Zelenka, J., Sedlak, V, Lehejcek, J., 2014. Landscape-level variability
 in historical disturbance in primary *Picea abies* mountain forests of the eastern
 Carpathians, Romania. Journal of Vegetation Science. 25:386-401.
- Szewczyk, J., Szwagrzyk, J., Muter, E., 2011. Tree growth and disturbance dynamics in old-growth subalpine spruce forests of the Western Carpathians. Canadian Journal of Forest Research. 41:938–944.
- Tognetti, R., Cherubini, P., Innes, J.L., 2000. Comparative stem growth rates of Mediterranean trees under background and naturally enhanced ambient CO2 concentrations. New Phytologist. 146:59–74.
- Tomback, D.F., Holtmeier, F.K., Mattes, H., Carsey, K.S., Powell, M.L., 1993. Tree clusters and growth form distribution in *Pinus cembra*, a bird-dispersed pine. Arctic and Alpine Research. 25:374-381.
- Tsvetanov, N., Panayotov, M., Yurukov, S., 2016. Age estimation of Norway spruce saplings: analysis of the cambial age at various stem heights. TRACE. 14:128-133.

- Ulanova, N.G., 2000. The effects of windthrow on forests at different spatial scales: a review. Forest Ecology and Management. 135:155-167.
- Vittoz, P., Rulence, B., Largey, T., Freléchoux, F., 2008. Effects of climate and land-use change on the establishment and growth of cembran pine (Pinus cembra L.) over the altitudinal treeline ecotone in the Central Swiss Alps. Arctic, Antarctic, and Alpine Research. 40:225-232.
- Vlad, R., Sidor, C., Popa, I., 2013. High mountain forest structure in Calimani Mts.
 (Eastern Carpathians). Analele Universității din Oradea. 20:179-186.
- Wilmking, M., Juday, G.P., Barber, V.A., Zald, H.S.J., 2004. Recent climate warming forces contrasting growth responses of white spruce at treeline in Alaska through temperature thresholds. Global Change Biology. 10:1724–1736.
- Wong, C.M., Lertzman, K.P., 2001. Errors in estimating tree age: implications for studies of stand dynamics. Canadian Journal of Forest Research. 31:1262-1271.
- Zielonka, T., Malcher, P., 2009. The dynamics of a mountain mixed forest under wind disturbances in the Tatra Mountains, central Europe a dendroecological reconstruction. Canadian Journal of Forest Research. 39:2215–2223.
- 605 Zielonka, T., Holeksa, J., Fleischer, P., Kapusta, P., 2010. A tree-ring reconstruction of 606 wind disturbances in a forest of the Slovakian Tatra Mountains, Western Carpathians. 607 Journal of Vegetation Science. 21:31–42.
- Cong, C., Wauters, L.A., Van Dongen, S., Mari, V., Romeo, C., Martinoli, A., Preatoni, D., Tosi, G., 2010. Annual variation in predation and dispersal of Arolla pine (*Pinus cembra* L.) seeds by Eurasian red squirrels and other seed-eaters. Forest Ecology and Management. 260:587–594.
- 612