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Abstract: The autumnal moth (Epirrita autumnata) is a cyclically outbreaking forest 

Lepidoptera with circumpolar distribution and substantial impact on Northern ecosystems. 

We have isolated 21 microsatellites from the species to facilitate population genetic studies 

of population cycles, outbreaks, and crashes. First, PCR primers and PCR conditions were 

developed to amplify 19 trinucleotide loci and two tetranucleotide loci in six multiplex PCR 

approaches and then analyzed for species specificity, sensitivity and precision. Twelve of 

the loci showed simple tandem repeat array structures while nine loci showed imperfect 

repeat structures, and repeat numbers varied in our material between six and 15. The 

application in population genetics for all the 21 microsatellites were further validated in  

48 autumnal moths sampled from Northern Norway, and allelic variation was detected in  

19 loci. The detected numbers of alleles per locus ranged from two to 13, and the observed 

and expected heterozygosities varied from 0.04 to 0.69 and 0.04 to 0.79, respectively. 

Evidence for linkage disequilibrium was found for six loci as well as indication of one  
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null allele. We find that these novel microsatellites and their multiplex-PCR assays  

are suitable for further research on fine- and large-scale population-genetic studies of  

Epirrita autumnata. 

Keywords: tri- and tetranucleotide microsatellites; multiplex PCR; Lepidoptera;  

population genetics 

 

1. Introduction 

The autumnal moth (Epirrita autumnata) is a forest pest insect with cyclic outbreak dynamics, 

widespread across the northern hemisphere. In the northern-boreal birch forests of Fennoscandia, 

outbreaks by autumnal moth and other defoliating geometrid moths, in particular winter moth 

(Operopthera brumata) but locally also the ecologically similar and recently established scarce umber 

moth (Agriopis aurantiaria), may have severe and large-scale impacts on both tree and understory  

layers [1–4]. This includes local or regional defoliation of mountain birch (Betula pubescens ssp. 

tortuosa) and sometimes forest death following multiyear defoliation [5]. The impact of the outbreaks 

may cascade through other food web compartments [4] and, occasionally, extend into neighboring tundra 

ecosystems [6]. These geometrid moth species are a model system in population ecology, which is partly 

due to the pronounced spatial population synchrony and decadal population cycles [7–9], but also due 

to the rapid outbreak range shifts shown by these three species during recent decades due to climate 

warming [10–12]. However, so far, no microsatellites have been isolated and characterized from any of 

these species. 

Development of microsatellite DNA markers for identification and application of lepidopteran 

species is difficult, associated to high similarity in flanking regions between different microsatellites 

within the same species [13–15] and/or the lack of conserved flanking regions leading to unrepeatable 

banding patterns [16]. In addition, the sequences flanking the microsatellites have been shown to have  

a high incidence of single nucleotide polymorphisms and indels [17]. These properties can result in  

a deficit of heterozygotes due to the presence of null alleles [14]. Nevertheless, microsatellites can  

be used for lepidopterans with proper attention being paid to these issues [17–20]. The application  

of next generation sequencing of enriched genomic libraries has previously been shown to be favorable 

for development of short tandem repeats (STR) in Lepidoptera, as suggested in [18] and shown in  

several other studies [19,21,22]. 

Thus, we have here applied Sanger sequencing of enriched genomic libraries to identify novel  

Epirrita autumnata (E. autumnata) microsatellites. Furthermore, we have developed multiplex-PCR 

assays for 21 of those loci. We have also performed tests for species specificity, measurements of 

sensitivity and precision for all the 21 microsatellites, and evaluated these assays in a Northern European 

E. autumnata population. With the species specificity test we tested for cross-amplification with the two 

sympatric outbreak species winter moth and scarce umber moth, as a common set of microsatellites for 

all three species would greatly facilitate comparative population genetic studies of population cycles, 

outbreaks, crashes and climate driven range shifts. 
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2. Results and Discussion 

Genomic screening of 192 contigs from E. autumnata yielded in total 90 sequences that contained an 

STR, and 40 STRs were selected for the development of primer sets after elimination of the dinucleotide 

motifs and deletion of regions where the microsatellite was too close to an end of the sequence. The  

40 primer sets were tested using DNA from four moth samples to insure amplification of an appropriate 

amplicon. Of these, 27 were selected for detailed genotype analysis and tested on 12 field collected 

larvae samples as well as on 15 cultivated larvae samples. Among these 27 microsatellites, 21 showed 

unambiguous genotype patterns, and gave successful amplification. 

The 21 microsatellites were then successfully organized into six PCR multiplex panels, making 

genotyping faster and cost effective, which is important if a large number of samples have to be analyzed 

for population genetic studies. The multiplex panels had also easily readable chromatograms with very 

low stutter peaks. Figure 1 shows the results obtained using these six multiplex PCRs, while primers and 

combination of markers used in each multiplex reaction are given in Table 1. 

Amplifications for Operophtera brumata and Agriopis aurantiaria were unsuccessful, indicating 

species specificity of the developed primers to E. autumnata, and thus showing their applicability  

to comparative population genetic studies of these sympatric outbreak species. Development of  

species-specific primers for the two other species is necessary. 

 

Figure 1. Cont. 
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Figure 1. Chromatograms from capillary electrophoresis (ABI 3130xl) showing multiplex 

PCR reactions I–VI (see also Table 1) for the 21 microsatellites developed for E. autumnata. 

The peak height (Relative fluorescence units (RFU)) is indicated on the Y-axis, and fragment 

length (base-pairs) is indicated on the X-axis. The names of the microsatellites markers are 

indicated below the peaks. 

Table 1. Twenty-one microsatellite loci arranged into six multiplex PCR panels for  

E. autumnata. 

Multiplex  

Panel 
Locus Primer Sequences (5ʹ–3ʹ) a 

Repeat 

Motif 

Size  

Range 

(bp) b 

Primer 

Conc.,  

Dye 

GenBank 

Accession 

Number 

I A021 F: CCTAAGAGGGAGGCCCATGT TGA 86–95 2 µM, FAM KT428619 

  R: CAGCTTGGTTCGTTAGCAAGG     

 A019 F: GCGTTGGCGCATCTGTAAAT CAT 146–173 3 µM, FAM KT428620 

  R: CGCCACAGAGGTCGTCAAA     

 A022 F: CTGCGTGCTAAAACCTACGGA CAT 141–147 1 µM, VIC KT428621 

  R: CAGCAGTGGACTTCTTCTGGC     

 A016 
F: AGACCTACACCTGA 

GTGCATCTTAGTT 
CAT 135–141 3 µM, NED KT428622 

  R: CCATCCCAGGTGTGGTGATT     

II D005 F: CGGTGGTTGCTATGGGTGTT CTT 142–163 2 µM, FAM KT428623 

  R: TTGCATTCTATGTGGGAGGCT     

 A015 F: AATTGTATGCCACCGCTGCT CAT 301–325 2 µM, FAM KT428624 

  R: TCCGTCTGCCAAGTGTA     

 A139 F: ACCTGCGATTACCAATCCGA GAT 140–149 1 µM, NED KT428625 

  
R: TTCCGTGGTTCTTCT 

TCATCAAC 
    

III B115 
F: TTATAGGTGTCGGT 

TAAACACTTTAAAAAC 
ACT 141–148 2 µM, VIC KT428626 

  
R: GGTTAAGGCTGCGC 

TAAAGCT 
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Table 1. Cont. 

Multiplex  

Panel 
Locus Primer Sequences (5ʹ–3ʹ) a 

Repeat 

Motif 

Size  

Range 

(bp) b 

Primer 

Conc.,  

Dye 

GenBank 

Accession 

Number 

III A107 F: TAGGGCCAGCAGTGGACTTC ATG 147–201 2 µM, NED KT428627 

  
R: GTTTCTTTGGATG 

TCCCTTGGCCTTTA 
    

IV A124 F: TGAATCGGTGCTCCAATAGGA TAA 115–124 3 µM, NED KT428628 

  R: GTCTCTGTTGACCCCAGGGA     

 A113 F: AGACCTCGTCCAACAGTGGG GAT 144–165 1 µM, FAM KT428629 

  
R: AACATTGGACGAT 

CTTATCGCC 
    

 D014 
F: TCGTTTTCATCTATT 

ATTAGTTTAGGATTCA 
CAAT 140–156 2 µM, NED KT428630 

  R: TTGTTGCACGCCTTAAATGG     

 B008 
F: TGCATTGTAATAGG 

ACCTTCATATTTTT 
ACAG 173–178 5 µM, PET KT428631 

  
R: TTATAGGATCACTT 

TGTTGTCCGTCT 
    

V A114 
F: TGTCGAGCTCTA 

CAAAAACTGCA 
CAT 118 2 µM, FAM KT428632 

  R: AATTGGGCCTCAGGTTTCTGT     

 A101 F: GAAGCCGCGCTGTTTCTTAA GTT 151 1 µM, VIC KT428633 

  
R: GAGAGGTCGTCG 

AAACACCCT 
    

 A011 F: CTAGACCGGAGGCAAACCAA TGA 153–159 0.5 µM, NED KT428634 

  R: CAAAATGACGGTTTGAGCGA     

 A137 F: GATCCAGGATCTGAAGCGGA CAT 153–174 1 µM, FAM KT428635 

  R: AAGACCGTTCGTCATGGCAT     

VI A111 F: GGCGGAGGTCTTTTCTAGCAG ATG 122–137 2 µM, FAM KT428636 

  
R: AACAAGTTTGG 

GTTGCAAAAGTTT 
    

 A130 F: AACACACTCGAGGGTCCCAA CAT 173–227 3 µM, FAM KT428637 

  R: GTTCTAGGGCCAGCAGTGGA     

 A135 F: TCCTCCAACTCTTTCCGTGG CAT 160–187 1 µM, PET KT428638 

  R: TTATGGGTGAGGCTTCGTCC     

 A024 
F: TCGTCTGTAGAT 

ATCAACTGCTGGA 
CAT 145–199 1 µM, NED KT428639 

  R: GTGGACGTAAGCAGGCTGGT     
a F forward, R reverse; b Allele size range in base pairs observed in 48 individuals of E. autumnata (see Table 4); 

and Conc., Concentration. 

We tested a concentration series of 20, 10, 1, 0.5, 0.2, 0.1, 0.05, 0.04, 0.03, 0.02 and 0.01 ng of 

template DNA in the six multiplex reactions. All markers successfully typed with signals above the 

lower peak height threshold of 200 RFU with template DNA in the range 20–1.0 ng. The sample material 

in this work had high DNA-concentration, using fresh larval head material for extraction, and the 
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protocol were optimized to extract approximately 20 ng of DNA. This indicates a relatively low 

sensitivity of the assays, and for studies with other material with degraded DNA, like decades-old dried 

museum specimens, a new optimization is likely needed. The extraction protocol presented here should 

be ideal for most population genetic applications where field collected larvae or adults are used as  

source material. 

We also tested the within-run precision using ten independent amplifications and subsequent runs of 

one tissue-sample of E. autumnata (Table 2). These results show that the standard deviations (S.D.) from 

allele length measurements of all the 21 loci tested were between 0.03 and 0.1 bp. The electrophoretic 

separation is, thus, not affected by origin of the template (Table 2). 

DNA sequencing was performed on the largest and the smallest alleles in each marker found so far 

in the material. The sequencing revealed that all size variation observed between the two alleles selected 

from the same loci could be explained by variation in repeat numbers in the tandem repeat arrays  

(Table 3). Nineteen loci were tandem arrays of trinucleotide repeats while two had a repeat array of 

tetranucletide repeats (D014 and B008). Twelve of the loci showed simple tandem repeat array structures 

while nine loci showed complex repeat structures, often common in microsatellites in insects [23]. 

Table 2. Measurements of precision for 21 STRs from E. autumnata. 

Locus Allele/Genotype a Mean b S.D. (bp) c 

A021 allele A 92 92.24 0.07 
A021 allele B 95 95.49 0.1 
A019 allele A 135 135.36 0.08 
A019 allele B 138 138.47 0.08 
A022 allele A 145 145.92 0.08 
A022 allele B 188 188.56 0.1 
A016 allele A 144 144.20 0.1 
A016 allele B 147 148.62 0.09 
D005 allele A 148 148.43 0.07 
D005 allele B 154 154.99 0.03 
A015 allele A 301 301.08 0.07 
A015 allele B 310 309.28 0.07 
A139 allele A 143 143.53 0.07 
B115 allele A 141 141.70 0.06 
A107 allele A 147 146.45 0.09 
A107 allele B 201 201.98 0.05 
A124 allele A 121 121.44 0.06 
A124 allele B 124 124.24 0.07 
A113 allele A 147 147.06 0.08 
D014 allele A 152 152.47 0.07 
B008 allele A 181 181.21 0.06 
A114 allele A 118 118.48 0.06 
A101 allele A 151 150.68 0.07 
A011 allele A 159 158.89 0.08 
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Table 2. Cont. 

Locus Allele/Genotype a Mean b S.D. (bp) c 

A137 allele A 165 165.68 0.09 
A137 allele B 171 171.55 0.08 
A111 allele A 125 125.36 0.07 
A111 allele B 131 131.64 0.07 
A130 allele A 173 174.16 0.07 
A130 allele B 227 227.31 0.08 
A135 allele A 160 159.92 0.08 
A024 allele A 154 154.10 0.06 
A024 allele B 172 172.09 0.09 

a Genotype nomenclature is based on PCR fragment sizes.; b Mean value allele sizes when measured with POP7 

on ABI3730; and c SD from within-run measurement of 10 run per sample. 

Table 3. DNA sequencing of tandem repeat structure of 21 microsatellites from  

E. autumnata. 

Locus Allele/Genotype a Number Repeats Repeat Structure 

A021 allele A 92 6 R (TGA)6
 

A021 allele B 95 7 R (TGA)7 
A019 allele A 146 – (CAT)n(AAT)(CAT)n * 
A022 allele A 141 * 5 R (CAT)5

 

A022 allele B 147 * 6 R (CAT)6 
A016 allele A 138 6 R (CAT)6

 

D005 allele A 148 7 R (CTT)7
 

D005 allele B 154 9 R (CTT)9 
A015 allele A 301 5 R (CAT)5

 

A015 allele B 322 6 R (CAT)6 
A139 allele A 140 7 R (GAT)7 
A139 allele B 143 8 R (GAT)8 
B115 allele A 141 7 R (ACT)1(TT)(ACT)1(ACA)(ACT)5

 

B115 allele B 144 8 R (ACT)1(TT)(ACT)1(ACA)(ACT)6 
A107 allele A 147 – – 

A107 allele B 201 14 R 
(ATG)6(AGGCTG)(ATG)3(ACG)(ATG)3 

(CTG)(ATG)2 
A124 allele A 121 7 R (TAA)7

 

A124 allele B 124 8 R (TAA)8 
A113 allele A 147 9 R (GAT)9

 

A113 allele B 165 15 R (GAT)15 
D014 allele A 140 – (CAAT)n(CAAC)(CAT)n * 
D014 allele B 142 – – 
B008 allele A 173 5 R (ACAG)2(ACAT)(ACAG)3

 

B008 allele B 181 – – 
A114 allele A 118 6 R (CAT)6 
A101 allele A 151 8 R (GTT)3(GT)(GTT)2(T)(GTT)1(GTA)(GTT)2

 

A011 allele A 159 6 R (TGA)3(TGT)(TGA)3
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Table 3. Cont. 

Locus Allele/Genotype a Number Repeats Repeat Structure 

A137 allele A 165 7 R (CAT)7
 

A137 allele B 171 9R (CAT)9 
A111 allele A 125 10 R (ATG)10

 

A111 allele B 134 7 R (ATG)7 
A130 allele A 173 6 R (CAT)6 

A130 allele B 227 19 R 
(CAT)7(CAGCCT)(CAT)6(CAGCCTCAC)

(CAT)6
 

A135 allele A 160 10 R (CAT)10
 

A024 allele A 145 6 R (CAT)6
 

A024 allele B 187 17 R CTGAT(CAT)2(CACA)(CAT)15
 

– Sequencing not interpretable; * Structure repeat is taken from the DNA sequences done at Armalil; and  
a Nomenclature of alleles is based on PCR fragment size. 

Allele size distribution was consistent for all STRs, except for A111, A130, B115 and D014. The 

irregular allele sizes observed in these STR markers are possibly caused by single base indels changing 

the expected sizes (see Table 3). This is also shown in other studies [17,24], and should be verified by 

sequencing the relevant alleles. 

The six final multiplex PCR panels were applied to DNA samples from 48 E. autumnata from 

Northern Norway, and we found 98 alleles (Table 4) for all the 21 microsatellite loci, and allelic variation 

was detected in 19 of those, ranging from 2 to 13 (Table 4). Observed and expected heterozygosities 

ranged from 0.04 to 0.69 and 0.04 to 0.79, respectively. 

Table 4. Basic statistics of 21 microsatellites loci developed for E. autumnata in a survey of 

48 individuals from Northern Norway. 

Locus NA HO FIS HE PI FNULL
 HWE p Values a 

A021 3 0.438 0.1258 0.495 0.32 0.0249 0.2676 
A019 3 0.553 −0.1423 0.479 0.32 −0.0496 0.9699 
A022 3 0.4375  0.2654 0.5877 0.24 0.0918 0.0054 ** 
A016 3 0.1667 −0.0697 0.1543 0.72 −0.0111 1.0000 
D005 7 0.6042  0.0347 0.6191 0.19 0.0091 0.6835 
A015 5 0.4583 0.3233 0.6680 0.17 0.1322 0.0001 ** 
A139 3 0.229 0.1009 0.252 0.59 0.0178 0.2429 
B115 5 0.354 0.2766 0.483 0.34 0.0913 0.0420 * 
A107 8 0.596 0.1796 0.717 0.12 0.0571 0.0341* 
A124 4 0.479 −0.0810 0.439 0.39 −0.0225 0.7396 
A113 7 0.158 0.7739 0.682 0.14 0.3127 0.0000 ** 
D014 6 0.106 0.4148 0.179 0.68 0.0625 0.0026 * 
B008 2 0.08 0.6336 0.211 0.64 0.1083 0.0194 * 
A114 1 0 0 0 1.00 0 No 
A101 1 0 0 0 1.00 0 No 
A011 2 0.041 −0.0108 0.041 0.92 −0.0009 1.0000 
A137 5 0.688 0.0061 0.645 0.16 0.0034 0.5214 
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Table 4. Cont. 

Locus NA HO FIS HE PI FNULL HWE p Values a 

A111 8 0.404 0.4519 0.726 0.12 0.1722 0.0000 ** 
A130 7 0.568 0.1975 0.698 0.14 0.055 0.0603 
A135 2 0.255 −0.1231 0.225 0.62 −0.0246 1.0000 
A024 13 0.614 0.2379 0.794 0.06 0.0833 0.0014 * 

NA: number of different alleles; HO: observed heterozygosity; FIS: inbreeding value; HE: expected 

heterozygosity; PI: probability of identity; FNULL: Null-alleles estimated with the Brookfiled1 method 

implemented in Micro-Checker (van Oosterhout et al., 2006 [25]); HWE: significance of departure from  

Hardy–Weinberg equilibrium; * <0.05, ** <0.01; and a Based on assay of 48 individuals from each locus. 

For this survey, we observed a significant linkage disequilibrium (p < 0.05) for nine of the  

210 pairwise comparisons between loci after sequential Bonferroni correction, particularly involving 

loci A015, A024, A111, A130, B115 and D014 (see Table S1). 

Of the nine loci that deviated significantly from HWE, three loci (A111, A113 and B008) showed 

large heterozygote deficiencies. These three loci also exhibited overall significant excess of 

homozygotes with null allele frequency of 0.172, 0.313 and 0.108, respectively, possibly indicating the 

presence of null allele in this population. Simulations have shown that the bias induced by null alleles is 

negligible at frequencies below 0.2 [26], and therefore in this population only A113 showed null allele 

frequency that is not negligible. Excess of homozygotes can also be due to small sample size of  

48 individuals, but heterozygote deficiencies and the presence of null allele are highly common in 

Lepidoptera [20,27,28]. Future population studies applying these loci in a broader sampling area will 

help clarify both this question and whether any of the observed deviations from linkage and HW also 

occur consistently in other populations, which may suggest that the respective loci should be excluded 

from the marker set. 

3. Materials and Methods 

3.1. Sampling and Materials 

For method development, PCR specificity and precision larval samples from a laboratory culture of 

E. autumnata, Operophtera brumata and Agriopis aurantiaria were used. The cultivated larvae 

originated from eggs laid by multiple females collected at Reinøya near Tromsø in Northern Norway. 

Thus, the cultivated larvae originated from different families within the same population. For the 

sensitivity test and the tests of the final set of 21 microsatellite markers (see below) we used  

48 individual E. autumnata larvae collected at Storelva near Tromsø in Northern Norway. The  

48 larvae were collected from birch trees along a linear transect with 12 individual sampling stations 

spaced at 200 m intervals. This was done to ensure that the larval samples were collected from  

a reasonably large area within the study site. Four larvae were collected from each station. Each  

larvae was stored individually in an Eppendorf tube and frozen at −18 °C until it was used in the  

DNA analysis. 
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3.2. Identification of Microsatellites Markers 

A total of 40 adult moth samples of E. autumnata were selected and sent to Armalil  

Microsatellite Identification Service (www.geneticidentificationservices.com) for genome sequencing 

and construction of enriched genomic libraries. Here, four libraries, employing 16 capture motifs  

(6 TETRAs, 8 TRIs and 2 DIs), were produced using magnetic bead capture technology, and a total of 

192 clones from these libraries were sequenced by Sanger sequencing using an ABI 3100 Genetic 

Analyzer (Applied Biosystems (ABI), Waltham, MA, USA) with a Big Dye Terminator V3.1 Cycle 

Sequencing Kit (ABI). Among these sequences, there were 90 microsatellite loci, and from these regions, 

with help of ABI Primer Express primer determining program, 40 were selected for the development of 

primer sets after elimination of the di-nucleotide motifs and deletion of regions where the microsatellite 

was too close to an end of the sequence. The 40 primer sets were tested using DNA from four moth 

samples to insure amplification of an appropriate amplicon. Of those tested, 27 were selected for detailed 

genotype analysis and tested on 16 moth samples using ABI3700 genetic analyzer. 

3.3. DNA Extraction 

DNA was extracted from head tissue of E. autumnata using Qiagen DNeasy Tissue kit (Qiagen, 

Hilden, Germany) following the manufactures’ instructions, except for the final step where we used  

400 µL elution buffer to decrease the concentration of DNA. The yield of DNA was quantified using a 

NanoDrop 2000 (Thermo Scientific, Waltham, MA, USA). 

3.4. Development of PCR Assays 

PCR primers for the 27 loci were tested using OligoPerfect™ Designer (ABI), with the following 

criteria: (i) length of PCR product should be as short as possible and between 90 and 300 bp; (ii) flanking 

regions should not contain a mononucleotide stretch of more than five bases; (iii) annealing temperature 

were optimized to fall between 56 and 63 °C; and (iv) difference in temperature between forward and 

reverse primer should not exceed 2 °C. 

Single PCRs were initially performed on 15 individuals for each of the 27 primer pairs, in a 10 µL 

containing 1× PCR Gold buffer (ABI), 200 µM dNTP (Eurogentec, Liège, Belgium), 1.5 mM MgCl2 

(ABI), 0.2 µM of each primer (ABI), 1 U Amplitaq Gold DNA polymerase (ABI), 1× BSA  

(New England Biolabs (NEB), Ipswich, MA, USA) and 1 µL template. 

DNA amplification was on an ABI 2720 for 10 min at 95 °C, 30 cycles of 30 s at 94 °C, 30 s at  

56 °C, and 1 min at 72 °C, and ended with final extension for 45 min at 72 °C. 

Multiplex-PCR development involved tests of different combinations of markers and primer 

concentration (details not shown). For the final analysis, the 21 microsatellites were split into  

four tetraplex (multiplex I, IV, V and VI), one triplex (multiplex II) and one diplex (multiplex III) in  

PCR-approach in 10 µL reaction volume using the following conditions: 5 µL 2× multiplex PCR master 

mix (Qiagen Multiplex kit), 0.05 µg/µL BSA (NEB) and adjusted primer set concentrations (Table 1). 

PCR conditions for multiplex I–V were 10 min at 95 °C, 25 cycles of 30 s at 94 °C, 30 s at 58 °C,  

1 min 72 °C and final extension for 45 min at 72 °C. PCR conditions for multiplex VI were 10 min at 

95 °C, 25 cycles of 30 s at 94 °C, 30 s at 60 °C, 1 min 72 °C and final extension for 45 min at 72 °C. 



Int. J. Mol. Sci. 2015, 16 22551 

 

 

PCR products (1 µL) were mixed with Genescan 500 LIZ (ABI) size standard (0.25 µL) and Hi-Di 

formamide (9.75 µL) following capillary electrophoresis on an ABI 3130xl Genetic Analyzer (ABI). 

The POP-7™ (ABI) Polymer was used as separation matrix and the sample injection time were set to 

6–8 s/2 kV. PCR fragments were analyzed in GeneMapper 4.1 (ABI). 

To check for possible contamination, negative controls were included for every seventh sample in all 

measurements in this study. 

3.5. Testing for PCR Specificity, Sensitivity and Precision 

All 21 markers were tested for cross-species amplification against DNA samples from two other 

species, Operophtera brumata (n = 2) and Agriopis aurantiaria (n = 2). Extraction and PCR were 

performed as for E. autumnata. Sensitivity of the six multiplex reactions in the 21 STR approach  

was evaluated using three samples with different amount of template DNA ranging 20–0.1 ng. 

Measurements of within-run precision were performed in 10 independent amplifications and subsequent 

runs of a single sample of E. autumnata. 

3.5.1. DNA Sequencing 

The tandem repeat array and the immediate upstream and downstream sequences at each of the  

21 loci were analyzed by DNA sequencing. PCR products amplified from E. autumnata were sequenced 

using the BigDye Terminator v3.1 Cycle Sequencing Kit (ABI) as recommended by the manufacturer. 

Forward and reverse PCR primers were used as sequencing primers in forward and reverse sequencing 

reactions, respectively (Table 1). Forward and reverse sequences from each sample were aligned in 

Sequencher 4.7 (Gene Codes Corporation, Ann Arbor, MI, USA). The allelic sequences from each locus 

were aligned and the sequence and size variation at each locus was determined by manual inspection. 

The sequence data from Armalil were used as a guidance of the suggested repeat structure. 

3.5.2. Analysis of Data 

Analysis of Hardy–Weinberg equilibrium (HWE), expected and observed heterozygosities, 

population structure (FIS) and test for linkage disequilibrium (LD) were computed with Genetix [29]. 

Bonferroni corrected significance levels were applied when testing HWE and LD. Micro-Checker  

ver. 2.2.3 [25] was used to analyze the causes of departures from HWE: real disequilibrium, null alleles 

or scoring errors. 

4. Conclusions 

We find that these newly developed microsatellites and their multiplex-PCR assays are robust, fast, 

precise and promising to facilitate further research on fine- and large-scale population genetic studies of 

E. autumnata. 

Supplementary Materials 
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