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Abstract
Animals that co-occur in a region (sympatry) may share the same environment 
(syntopy), and niche differentiation is expected among closely related species com-
peting for resources. The masked booby (Sula dactylatra) and smaller congeneric red-
footed booby (Sula sula) share breeding grounds. In addition to the inter-specific size 
difference, females of both species are also larger than the respective males (reversed 
sexual size dimorphism). Although both boobies consume similar prey, sometimes in 
mixed-species flocks, each species and sex may specialize in terms of their diet or 
foraging habitats. We examined inter- and intra-specific differences in isotopic val-
ues (δ13C and δ15N) in these pelagically feeding booby species during the incubation 
period at Clarion Island, Mexico, to quantify the degrees of inter- and intra-specific 
niche partitioning throughout the annual cycle. During incubation, both species 
preyed mainly on flyingfish and squid, but masked boobies had heavier food loads 
than red-footed boobies. There was no overlap in isotopic niches between masked 
and red-footed boobies during breeding (determined from whole blood), but there 
was slight overlap during the non-breeding period (determined from body feathers). 
Female masked boobies had a higher trophic position than conspecific males during 
breeding; however, no such pattern was detected in red-footed boobies. These re-
sults provide evidence of inter- and intra-specific niche partitioning in these tropical 
seabird species, particularly during the breeding period and in the more-dimorphic 
species. Our results suggest that these closely related species use different strategies 
to cope with the same tropical marine environment.
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1  |  INTRODUC TION

An ecological niche defines the multi-dimensional space of bi-
otic and abiotic conditions that comprise the habitat or resource 
requirements of an organism (Chase & Leibold,  2003; Newsome 
et al., 2007). Species that occur in the same region (sympatry) and 
share habitats at the same time (syntopic) may compete for limited 
resources, especially closely related species with similar morpho-
logical traits (Gause, 1934; Hart et al., 2018; Shealer, 2002; Tanner 
et  al.,  2023). Theoretically, two species with identical ecological 
niches cannot coexist within the same habitat, and partitioning on 
at least some dimensions of the trophic niche, such as diet, space, or 
time, has been documented in many marine species, such as seabirds 
(Cherel et al., 2008; Navarro et al., 2015; Shealer, 2002).

Niche partitioning can occur spatially (Ashmole, 1971; Navarro 
et al., 2013), temporally (Kronfeld-Schor & Dayan, 2003), or by diet 
(Robertson et al., 2014; Shealer, 2002), and occur both among and 
within species. Examples of intra-specific niche partitioning are par-
ticularly common in species with sexual size dimorphism (Lerma, 
Dehnhard, et  al., 2020; Mancini et  al., 2013; Phillips et  al.,  2017). 
Inter- and intra-specific differences are often linked to differences 
in body size, with larger individuals or species dominating in areas 
with higher prey availability (Catry et al., 2005; Phillips et al., 2017; 
Selander,  1966), using different foraging areas (Shoji et  al., 2023; 
Weimerskirch et  al.,  2009; Zavalaga et  al.,  2007, 2010), or feed-
ing on a greater range of prey sizes (Cohen et al., 1993; Mancini & 
Bugoni, 2014). In contrast, smaller individuals or species might be 
more agile, travel longer distances, or specialize in smaller prey, 
thanks to their lower energetic constraints (Ballance et  al.,  1997; 
Mancini et al., 2014; Shoji et al., 2023; Weimerskirch et al., 2006).

Tropical oceanic areas are considered to have relatively low 
productivity and a more patchy and less predictable distribution 
of resources compared with polar and temperate areas, but still 
host large colonies of seabirds (Ballance et  al.,  1997; Longhurst & 
Pauly,  1987; Weimerskirch,  2007). Tropical seabird species are 
often limited to foraging at or near the sea surface (Ashmole, 1971; 
Shealer, 2002), potentially leading to intense competitive exclusion 
(Ballance et  al.,  1997). Nevertheless, many tropical seabird spe-
cies rely on similar prey items, use other birds as information cues 
to detect prey, and forage in mixed-species flocks (Ashmole, 1971; 
Ballance et al., 1997; Spear et al., 2007; Thiebault et al., 2014; Veit 
& Harrison, 2017), leading to questions about the degree to which 
tropical seabird species are able to coexist and practice niche parti-
tioning. Little evidence for trophic segregation has been found for 
some species of fish (Teffer et al., 2015), sharks (Lear et al., 2021), 
cetaceans (Peters et  al., 2022), and seabirds (Forero et  al., 2004; 
Petalas et  al.,  2024; Weimerskirch et  al.,  2009), and this was at-
tributed to food being sufficiently abundant to allow species to co-
exist, at least during specific periods of the year.

Stable isotopes are a useful tool for evaluating inter-  and 
intra-specific niche differences, because the isotopic composi-
tion of the tissues reflects the isotopic composition of their as-
similated prey. Blood samples can provide information on the 

diet assimilated during the previous 3–4 weeks (Vander Zanden 
et  al.,  2015), whereas body feathers give information about 
the diet during the period of formation (from weeks to months; 
Grecian et  al.,  2015; Petalas et  al.,  2024), which usually occurs 
during the non-breeding period. Nitrogen isotopes (δ15N) increase 
predictably from prey to predator and are a useful proxy for the 
trophic position of the organism (DeNiro & Epstein, 1981; Hobson 
& Clark, 1992), while carbon isotopes (δ13C) increase predictably 
from inshore to offshore food webs (Cherel & Hobson, 2007). The 
isotopic niche and its dimensions have thus been used to study 
the trophic ecology and niches of several marine predators includ-
ing fish (Kojadinovic et al., 2008; Teffer et al., 2015), sharks (Lear 
et al., 2021), cetaceans (Peters et al., 2022), and many species of 
seabirds (Kojadinovic et al., 2008; Navarro et al., 2015; Robertson 
et al., 2014; Shoji et al., 2023).

Boobies (Sula spp.) are ideal species for understanding the prev-
alence of inter- and/or intra-specific trophic segregation in tropical 
areas. Masked boobies (Sula dactylatra, Lesson 1831) and red-footed 
boobies (Sula sula, Linnaeus 1766) (Figure 1) have a pantropical dis-
tribution and often share breeding grounds (Kappes et  al.,  2011; 
Nelson, 1978; Young, Shaffer, et al., 2010). Both booby species prey 
mostly on flyingfish and squid throughout their ranges (Donahue 
et  al.,  2020; Kappes et  al.,  2011; Lerma, Dehnhard, et  al.,  2020; 
Schreiber & Hensley, 1976; Young, McCauley, et al., 2010) and may 
form mixed-species flocks (Ballance et al., 1997; Spear et al., 2007). 
Both species also show reversed sexual size dimorphism, with fe-
males being larger than males; however, masked boobies are notably 
more dimorphic than red-footed boobies (Nelson, 1978; Van Oordt 
et al., 2018). Examples of, and exceptions to, inter- and intra-specific 
niche segregation are common in boobies and have been found in 
some, but not other colonies (see Tables 1 and 2). The contrasting 
results within species and colonies may be associated with the distri-
bution of their prey, with the study period, or with the size of the col-
onies. For example, foraging segregation might be more common in 
heterogeneous (Castillo-Guerrero et al., 2016) than in homogeneous 
environments (Lerma, Serratosa, et al., 2020), during breeding (when 
birds are limited to foraging close to their colonies) compared with 
non-breeding periods (Phillips et al., 2017; Roy et al., 2021), and in 
larger colonies compared to smaller ones (Austin et al., 2021; Petalas 
et al., 2024; Soanes et al., 2016; Wakefield et al., 2017).

Both masked and red-footed boobies breed at Clarion Island 
(Almanza-Rodríguez,  2019; Wanless et  al.,  2009), which is sur-
rounded by an oligotrophic environment (Lerma, Castillo-Guerrero, 
et al., 2020). The waters adjacent to Clarion Island show no extreme 
environmental variations throughout the year (Lerma, Castillo-
Guerrero, et  al., 2020), and some masked and red-footed boobies 
can be found at the island, regardless of the time of year (Almanza-
Rodríguez, 2019; Brattstrom & Howell, 1956; Everett, 1988; Wanless 
et al., 2009). The year-round occurrence of tropical seabird species 
close to their colonies has been attributed to low but stable prey 
abundances, which might offer continuous foraging and breeding 
opportunities, but only for a limited number of individuals (Almeida 
et al., 2021; Lerma, Serratosa, et al., 2020; Roy et al., 2021). Recent 
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studies accordingly showed that both masked (Roy et al., 2021) and 
red-footed boobies (Votier et al., 2023) can be resident species.

We aimed to investigate the degrees of inter- and intra-specific 
trophic segregation in masked and red-footed boobies during the 
breeding and non-breeding period. We collected and analyzed diet 
samples, and measured δ13C and δ15N values in blood and feather 

samples. Whole blood indicates the food assimilation during the in-
cubation and/or pre-laying period, whereas body feathers, during the 
non-breeding period. We had four main predictions. First, masked 
boobies, as the larger species, were expected to consume more-
diverse and larger prey items (Kappes et al., 2011; Young, Shaffer, 
et al., 2010), resulting in higher δ15N values and wider trophic niche 

F I G U R E  1 Red-footed boobies (Sula sula) (a) and masked boobies (Sula dactylatra) (b) occur sympatrically at Clarion Island, Revillagigedo 
Archipelago, Mexico.

Red-footed Masked Abbots Nazca Brown Blue-footed

Masked ≠T1,T2,T3

Abbott's NC UC1

Nazca UC2 UC2 NC

Brown ≠T1,T4,T5 ≠T1,C1,C3 UC1 NC

Blue-footed UC4 NC NC ≠T7 ≠T6

Peruvian NC NC NC NC NC UC5

Note: Only studies that evaluated either foraging parameters and/or stable isotopes were included 
in this comparison.
Abbreviations: ≠, inter-specific differences were found; NC, not co-occurring; U, undetermined.
T1Tested on Palmyra atoll: red-footed boobies traveled farther from the colonies than masked 
boobies, δ13C was more depleted in masked boobies than in red-footed boobies (Young, McCauley, 
et al., 2010; Young, Shaffer, et al., 2010).
T2Tested on Tromelin Island: masked boobies traveled farther from the colonies and consumed 
larger prey than red-footed boobies (Kappes et al., 2011).
T3Tested on Clipperton Island: δ15N values were higher and δ13C was more depleted in masked 
boobies than in red-footed boobies (Bustamante et al., 2023).
T4Tested on Cabo Verde: red-footed boobies traveled farther from the colonies than brown 
boobies and there were isotopic niche difference between species (Almeida et al., 2021).
T5Tested on Cayman Islands: red-footed boobies traveled farther offshore than brown boobies 
(Austin et al., 2021).
T6Tested on Baja California: no difference in foraging range or isotopic niches between blue-
footed boobies and brown boobies, but blue-footed boobies dived deeper than brown boobies 
(Weimerskirch et al., 2009).
T7Tested on Galapagos: Nazca boobies (formerly masked) made longer trips than blue-footed 
boobies (Anderson & Ricklefts, 1992).
Co-occurring but inter-specific foraging differences have not been tested: C1Christmas Island, 
C2Galapagos Islands, C3Abrolhos, Atol das Rocas, and Fernando de Noronha, C4Isla Isabel, C5Lobos 
de Tierra.

TA B L E  1 Inter-specific foraging 
differences in sympatrically breeding 
booby species.
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(Queirós et  al., 2021; Wu et  al.,  2017) compared with red-footed 
boobies. However, we did not have clear predictions for δ13C values, 
because both species have been reported to forage in mixed flocks 
(Ballance et al., 1997; Spear et al., 2007), or masked boobies have 
been found to forage closer to their colonies than red-footed boo-
bies in some studies (Young, Shaffer, et al., 2010), while the opposite 
occurred in other studies (Kappes et al., 2011). Second, sexual size 
dimorphism in both booby species should enable the larger females 
to feed on more diverse and larger prey, and we therefore predicted 
that females would exhibit higher δ15N values than in males in both 
species. Furthermore, males are expected to travel farther from 
their colonies, and we therefore predicted lower δ13C values in fe-
males than in males in both species. Third, we expected that higher 
competition and constraints in foraging areas during the breeding 
period, due to central-place foraging, would lead to greater differ-
ences both within and between species, and therefore predicted 
that whole blood samples would show pronounced differences in 
niche width (variety of resources consumed) and niche position 
(types of resources consumed), and lower niche overlap (similarity in 
resource use). In contrast, lower competition and less constraint in 

foraging areas would lead to greater niche overlap between booby 
species and sexes during the non-breeding period. Fourth, given that 
masked and red-footed boobies might be resident species, we pre-
dicted that each species would have relatively similar δ15N and δ13C 
values in their breeding and non-breeding periods.

2  |  METHODS

2.1  |  Sample collection

This study was conducted at Clarion Island, Revillagigedo Archipelago, 
Mexico (18°21′7.53″ N, 114°43′18.61″ W; Figure 2), in March 2017 
and March 2018. The island lies 985 km from the Mexican mainland 
and is 710 km southwest of the Baja California Peninsula (Wanless 
et  al.,  2009), situating the island far from the coastal upwelling. 
The environmental conditions within the foraging ranges of boo-
bies (<180 km) did not differ significantly between March 2017 and 
March 2018: chlorophyll concentrations average 0.09 ± 0.02 mg/m3 
and sea surface temperature averages 26.3 ± 1.3°C in both years 

Blood Feathers References

Red-footed booby

Clarion Islanda F = M F = M This study

Palmyra Atollb F = M F = M Young, McCauley, 
et al. (2010)

Raine Islandc F = M F = M Pontón-Cevallos et al. (2017)

Europa Islandd F ≠ M F = M Cherel et al. (2008)

Cayman Islandse F ≠ M Austin et al. (2021)

Clipperton Islanda F = M Bustamante et al. (2023)

Cabo Verdef F = M Almeida et al. (2021)

Xisha Islandsg U Wu et al. (2018)

Masked booby

Clarion Islanda F ≠ M F = M This study

Palmyra Atollb F = M F = M Young, McCauley, 
et al. (2010)

Rapa Nuic F ≠ M Lerma, Serratosa, 
et al. (2020)

Clipperton Islanda F = M Bustamante et al. (2023)

Abrolhosh F = M Mancini et al. (2013)

Atol das Rocash F = M Mancini et al. (2013)

Fernando de Noronhah F = M Mancini et al. (2013)

Note: Only studies were stable isotopes where evaluated are included.
Abbreviations: F, female; M, male.
aEastern Pacific Ocean.
bCentral Pacific.
cSouth Pacific Ocean.
dIndian Ocean.
eCaribbean Sea.
fCentral Atlantic Ocean.
gSouth China Sea.
hSouth Atlantic Ocean.

TA B L E  2 Intra-specific isotopic niche 
segregation in masked and red-footed 
boobies.
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(Lerma, Castillo-Guerrero, et al., 2020). The red-footed booby col-
ony includes >3000 breeding pairs and the masked booby colony 
includes <100 breeding pairs (Almanza-Rodríguez, 2019; Wanless 
et  al., 2009). Other seabird species breeding on Clarion Island in-
clude Nazca boobies (Sula granti, two pairs), Brown boobies (S. 
leucogaster, eight pairs), Laysan Albatross (Phoebastria immutabilis, 
46 pairs), and Red-billed tropicbirds (Phaethon aethereus, 48 pairs) 
(Almanza-Rodríguez, 2019; Wanless et al., 2009).

Diet samples were collected opportunistically from masked and 
red-footed boobies that regurgitated spontaneously as a result of 
our presence in the colony or during manipulation. A total of 34 
samples were collected in March 2017 and 38 in March 2018. From 
this, 59 diet samples were from masked boobies (prey items = 221) 
and 13 from red-footed boobies (prey items = 36). Due to the op-
portunistic method of sample collection, the sex of the bird was 
not recorded. The whole regurgitate was placed in an individual 
plastic bag and weighed to the nearest 1 g. Each prey item was 
then removed from the bag, measured to the nearest 1 mm using 
a ruler, and photographed for subsequent reference. Due to diges-
tion, prey samples were only identified to family level, based on 
Pacific fish guides (Fischer et al., 1995). The samples were collected 
at night, and given that boobies are diurnal feeders (Nelson, 1978), 
night sampling might have unintentionally led to a higher propor-
tion of partly digested items, thus preventing the detection of small 
or soft prey items (Barrett et al., 2007). This can be particularly im-
portant for detecting differences in dietary analysis in red-footed 
boobies, which are known to prey on a higher proportion of squid 
(Donahue et al., 2020).

Individual masked and red-footed boobies were captured at their 
nest by hand or using a hand net from a distance of 1–2 m. Masked 
boobies were captured at their nest on the ground, and red-footed 

boobies were captured at their nest in the bushes. Individuals were 
captured between 19:00 and 03:00 h to prevent sunstroke to the 
birds and to avoid potential predation of eggs and chicks by common 
ravens (Corvus corax) or Clarion Island whip snakes (Masticophis an-
thonyi). Captured individuals were incubating, and most nests were 
confirmed to contain eggs. A total of 42 individuals were captured 
in March 2017 (32 masked boobies and 10 red-footed boobies) and 
39 in 2018 (26 masked boobies and 13 red-footed boobies). Sex 
was determined based on size and vocalizations in masked boobies 
and confirmed using molecular markers in red-footed boobies. The 
total handling time never exceeded 10 min, to minimize distress to 
the birds. All captured individuals were measured using Vernier cal-
ipers (±0.01 mm) and weighed using a digital balance (±1 g). Masked 
boobies were 38% heavier and 17%–38% larger than red-footed 
boobies (Table 3). The degree of dimorphism was greater in masked 
boobies and almost absent in red-footed boobies: in masked boo-
bies, females were 10% heavier and 1.9%–4.5% larger than males, 
whereas in red-footed boobies females were 5% heavier and 0.3%–
0.4% larger than males (Table 3).

From all captured individuals, a total of 26 individuals were sam-
pled in March 2017 (16 masked boobies and 10 red-footed boobies) 
and 32 individuals in 2018 (20 masked boobies and 12 red-footed 
boobies). A few drops of blood (~0.15 mL) were collected from the 
brachial vein of individual birds using a 25 G needle and non-coated 
capillary tubes. The blood samples were placed on glass microscope 
slides and air-dried. Whole blood reflects the diet assimilated during 
the previous 3–4 weeks (Vander Zanden et  al.,  2015), and whole 
blood samples therefore provide information on the bird's diet 
during the incubation and/or pre-laying period. Body feathers were 
collected from the ventral part of adult birds and stored in individual 
paper bags. Body feathers were considered optimal given that they 

F I G U R E  2 Location of Clarion Island, part of the Revillagigedo Archipelago, Mexico, in the Pacific Ocean. On Clarion Island, the masked 
booby (Sula dactylatra) colony includes <100 breeding pairs and the red-footed booby (Sula sula) colony includes >3000 breeding pairs. In 
order to study variations in inter-specific and sex-related niche partitioning, whole blood and body feathers from a total of 36 masked and 22 
red-footed boobies were collected during March 2017 and 2018.
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are easy to collect and do not impair the flight ability of the sampled 
birds (Bighetti et al., 2022; Jaeger et al., 2009). In contrast to whole 
blood, body feathers integrate information about the diet during 
the period when the feather was formed (from weeks to months; 
Grecian et al., 2015; Petalas et al., 2024), which is usually during the 
non-breeding period for these boobies (Grace et al., 2020; Schreiber 
et  al.,  2020). As mentioned before, no signs of molting, such as 
missing primary feathers, worn feathers of feather growth were ob-
served while manipulating the individuals, supporting that molting 
occurs outside the breeding season.

2.2  |  Laboratory analyses

Dried whole blood samples (0.2–0.6 mg) were scraped from the 
slides and placed in tin cups in the laboratory. The feathers were im-
mersed in a 2:1 chloroform and methanol solvent to remove surface 
oils and associated contaminants (Hobson et al., 2014). The samples 
did not undergo lipid extraction, and the low C:N (all <4) mass ratios 
indicated that mathematical correction for high lipid content was 
not required (Post et  al.,  2007). The isotope values of all samples 
were analyzed at the Leibniz Institute for Zoo and Wildlife Research, 
Berlin, Germany, using a Flash elemental analyzer (Thermo Fisher 
Scientific, Bremen, Germany) connected in sequence via a ConFlo 
(Thermo Fisher Scientific) to a stable isotope ratio mass spectrom-
eter (Delta V; Thermo Fisher Scientific). The instrument was flushed 
with chemically pure helium gas for measurements. Stable isotope 
ratios were expressed in delta notation indicating the deviation 
from international standards (in air nitrogen for nitrogen and V-PDB 
for carbon), according to the equation: δX = [(Rsample/Rstandard) − 1], 
where X is 13C or 15N and R is the ratio 13C/12C or 15N/14N, re-
spectively. Secondary isotopic reference materials were tyrosine 
(δ13C: −23.96 ± 0.02‰; δ15N: 4.36 ± 0.04‰) and leucine (δ13C: 
−30.15 ± 0.05‰; δ15N: 10.82 ± 0.08‰). The analytical precision of 
both δ13C and δ15N was of <0.2‰.

2.3  |  Statistical analyses

Using a total of 59 diet samples collected from masked boobies (prey 
items = 221) and 13 from red-footed boobies (prey items = 36), the rel-
ative frequency of occurrence, diet composition, food-load mass, and 
length of prey items were compared between species. The relative 
frequency of occurrence was defined as the percentage of birds with 

a particular species in their diet sample. The diet composition accord-
ing to prey families was compared between the booby species by a χ2 
test, and the food-load mass was compared using t-tests. Food-load 
mass included partly digested and undigested items and was only an 
approximation. The length of the prey items was also compared using 
t-tests, but only included prey items that were complete from head 
to tail. Among a total of 257 samples, only 16% were complete, 34 
samples from masked boobies and seven from red-footed boobies.

We investigated inter- and intra-specific differences in masked 
and red-footed boobies between the breeding and non-breeding 
periods based on stable isotope data. First, niche width was an-
alyzed as a proxy for the variety of resources consumed and was 
evaluated using a test for differences in dispersion following Turner 
et al. (2010), which measures the average trophic variability within 
groups. Using analyses of nested linear models and a residual permu-
tation procedure, the mean distance to the centroid was calculated 
per group, and the absolute value of the difference was evaluated 
between groups (Hammerschlag-Peyer et  al.,  2011). Second, the 
niche position was used as a proxy of the types of resources con-
sumed and was measured by computing the Euclidean distance be-
tween the centroids of the groups (Turner et al., 2010). Third, niche 
overlap was used as a proxy of similarity of resource use and was 
calculated using the function: [area of overlapping region]/([area 
of ellipse 1] + [area of ellipse 2] − [area of overlapping region]) using 
standard ellipse areas adjusted for small sample sizes calculated 
using the package SIBER (Jackson et al., 2011). Differences between 
the breeding and non-breeding periods were determined using 
body feathers for the non-breeding period and standardized whole 
blood values for the breeding period. A mathematical correction 
was applied to standardize whole blood δ13C and δ15N to make it 
comparable with isotope values in feathers (Cherel et al., 2014). The 
equation to standardize whole blood is as follows: δ13Cfeather = 0.972 
(±0.020) δ13Cblood + 0.962 (±0.414) and δ

15Nfeather = 1.014 (±0.056) 
δ15Nblood + 0.447 (±0.414). This equation allows to account for 
blood being impoverished in 13C and 15N compared with feathers. 
Differences in bulk δ13C and δ15N values were additionally compared 
using Tukey's HSD tests. Due to numerous combinations of species, 
sex, and periods, comparisons between years in niche width, niche 
position, and niche overlap would have resulted in small sample sizes 
and were therefore omitted. Moreover, as already indicated, the en-
vironmental conditions between the years of the study were similar 
(Lerma, Castillo-Guerrero, et al., 2020). All statistical analyses were 
performed in R 4.0.3 (R Core Team, 2023), and an alpha of 0.05 was 
used as the threshold for significance.

TA B L E  3 Body measurements of breeding masked boobies (Sula dactylatra, 28 females, 30 males) and red-footed boobies (Sula sula, nine 
females, 14 males) at Clarion Island, Mexico.

Masked booby Red-footed booby

Female Male Both % Female Male Both %

Body mass (g) 2150 ± 250 1900 ± 180 2040 ± 240 10.0 1330 ± 77 1260 ± 250 1270 ± 180 5.0

Culmen (mm) 110 ± 5 107 ± 4 108 ± 4 1.9 90 ± 3 90 ± 6 90 ± 4 0.4

Tarsus (mm) 64 ± 3 61 ± 2 62 ± 3 4.5 44 ± 2 44 ± 6 43 ± 4 0.3
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    |  7 of 16LERMA et al.

3  |  RESULTS

3.1  |  Diet

Flyingfish (Exocoetidae) was the main prey item for both masked and 
red-footed boobies with more than 80% of frequency of occurrence 
in both species (Figure 3). Masked boobies had a more diverse diet 
than red-footed boobies by including jacks (Carangidae), halfbeaks 
(Hemiramphidae), and pufferfish (Tetraodontidae), whereas red-
footed boobies included a higher proportion of squid in their diet 
than masked boobies (Figure  3). Masked booby diet samples con-
tained an average of 3.7 ± 2.4 items from one to five families, and 
red-footed booby diet samples contained 2.8 ± 2.4 items from one 
to two families. The proportion of prey items in the diet according 
to family was homogeneous between species (χ26 = 10, p = .12). The 
food-load mass for masked boobies was 149.5 ± 88.7 g, while that 
for red-footed boobies was almost half that weight (87.5 ± 65.3 g) 
(t-test = 2.56, p = .02). The average prey length for masked boobies 
was 15.9 ± 8.3 mm (max 33.7 cm) and that for red-footed boobies 
was 13.1 ± 3.4 mm (17.0 cm), with no significant difference between 
the species (t-test = 1.47, p = .15).

3.2  |  Stable isotopes

3.2.1  |  Breeding period

Masked and red-footed boobies showed inter-specific niche parti-
tioning during the breeding period. The niche width (based on δ13C 
and δ15N isotope values) differed between species (mean distance to 
centroid = 0.09, p < .01), and the Euclidian distance between centroid 
locations (taking both δ15N and δ13C values) also differed significantly 

between the species (p < .01), with no niche overlap (Figure 4). As 
predicted, δ15N values were significantly higher in masked than in 
red-footed boobies (Tukey's HSD < 0.01), but there was no signifi-
cant difference in δ13C values (Tukey's HSD = 0.08) (Figure 5).

Masked boobies showed intra-specific differences during the 
breeding period. Females and males did not differ in their niche 
width (mean distance to centroid = 0.11, p = .16) and their isotopic 
niche areas overlapped (<33% overlap) (Figure 4), but the Euclidian 
distance between centroid locations (niche position) differed signifi-
cantly between the sexes (p < .01). The δ15N values were higher in 
females than in males (Tukey's HSD < 0.01), whereas the δ13C values 
(Tukey's HSD = 0.88) were not significantly different.

There were no intra-specific differences in red-footed boobies 
during breeding. Females and males did not differ in terms of niche 
width (mean distance to centroid <0.01, p = .67), or Euclidian dis-
tance between centroid locations (p = .60), and there was high over-
lap in their isotopic niche areas (<46% overlap) (Figure 4). Moreover, 
the δ13C and δ15N values for female and male red-footed boobies 
were not significantly different (Tukey's HSD > 0.05).

3.2.2  |  Non-breeding period

Masked and red-footed boobies showed niche partitioning during 
the non-breeding period, with significant differences in niche width 
between species (mean distance to centroid = 0.06, p < .01) and the 
Euclidian distance between centroid locations (p < .01). Masked 
boobies had significantly higher δ15N and δ13C values than red-
footed boobies (Tukey's HSD < 0.01), suggesting that masked boo-
bies generally foraged on different prey and/or in different areas 
than red-footed boobies during the non-breeding period. However, 
the standard ellipse areas showed some overlap (<0.16% overlap) 

F I G U R E  3 Relative frequency of occurrence (FO%) of prey items in diet samples from masked boobies (Sula dactylatra, n = 59) and red-
footed boobies (Sula sula, n = 13) on Clarion Island, Revillagigedo Archipelago, Mexico, in the Pacific Ocean. Families identified included 
flyingfish (Exocoetidae), squid (Omnastrephidae), jacks (Carangidae), halfbeaks (Hemiramphidae), dolphinfish (Coryphaenidae), seachubs 
(Kyphosidae), and pufferfish (Tetraodontidae).
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8 of 16  |     LERMA et al.

(Figure 4), suggesting that both species shared at least some subset 
of prey diversity during the non-breeding period.

During the non-breeding period, female and male masked boo-
bies showed no significant difference in niche width (mean distance 
to centroid = 0.02, p = .62), or Euclidian distance between centroid 
locations (p = .49), and there was high niche overlap (<67% overlap) 
(Figure  4). There was also no difference in δ15N and δ13C values 
between females and males masked boobies (Tukey's HSD > 0.05) 
(Figure 5).

Similarly, during the non-breeding period, female and male red-
footed boobies showed no differences in niche width (mean distance 
to centroid = 0.11, p = .12), or Euclidian distance between centroid 
locations (p = .29), and there was niche overlap (<38% overlap) 
(Figure 4). Although δ15N appeared to be higher in non-breeding fe-
male than male red-footed boobies, the differences in δ15N (Tukey's 
HSD = 0.13) and δ13C (Tukey's HSD = 0.56) were not significant.

3.2.3  |  Breeding versus non-breeding period

In masked boobies, niche width differed significantly between 
the breeding and non-breeding periods (mean distance to cen-
troid = 0.09, p < .01). The Euclidian distance between centroid loca-
tions showed differences in niche positions between these periods 
(p < .01), and there was no niche overlap (Figure 6). Body feathers 
showed significantly higher δ13C and lower δ15N values than stand-
ardized whole blood (Tukey's HSD < 0.01 for both).

For red-footed boobies, niche width (mean distance to cen-
troid = 0.24, p = .01) and Euclidian distance between centroid 
locations also differed significantly between the breeding and 

non-breeding periods (p < .01). Red-footed boobies showed sig-
nificantly lower δ15N values in body feathers than in standardized 
whole blood (Tukey's HSD < 0.01), suggesting that they consumed 
different prey during the breeding and the non-breeding periods. 
However, there was niche overlap (<14% overlap) (Figure 6), indi-
cating that at least a subset of their general prey was used during 
both periods. Moreover, δ13C values were not significantly different 
(Tukey's HSD = 0.99), suggesting that red-footed boobies might use 
similar foraging habitats year-round.

4  |  DISCUSSION

In the present study, we had four main predictions. First, we found 
that breeding masked and red-footed boobies consumed items from 
similar prey families at Clarion Island, but in line with our predic-
tions, the food-load mass was heavier in masked than in red-footed 
boobies. Despite preying on similar families though, there were 
differences in niche position and niche overlap between the two 
booby species during the breeding period. After matching differ-
ences in food-load mass, masked boobies had higher δ15N values 
than red-footed boobies, as expected, while δ13C values were simi-
lar. Second, we found evidence of intra-specific resource partition-
ing, as expected, but this only occurred in masked boobies during 
the breeding period, and not during the non-breeding period, and 
did not occur in red-footed boobies in either period. This agreed 
with our expectation that sexual size dimorphism might play a role 
in promoting resource partitioning, but it was only relevant during 
the breeding period and in the more-dimorphic species. Third, dif-
ferences between the species in niche position also occurred during 

F I G U R E  4 Isotopic niche ellipses from masked boobies (Sula dactylatra) and red-footed boobies (Sula sula) on Clarion Island, Revillagigedo 
Archipelago, Mexico, in the Pacific Ocean during March 2017 and 2018. Upper panels: whole blood (breeding) from masked (females = 18, 
males = 18) and red-footed boobies (females = 8, males = 14). Lower panels: body feathers (non-breeding) from masked (females = 15, 
males = 18) and red-footed boobies (females = 7, males = 13). Standard ellipses of 50% are depicted as dotted and 95% ellipses as complete 
ellipses. Points represent individual measurements.
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    |  9 of 16LERMA et al.

the non-breeding period, but there was some overlap, supporting 
our expectation that differences would be greater during the breed-
ing than during the non-breeding period. Fourth, we found larger 
differences between the breeding and the non-breeding period 

in masked than in red-footed boobies, suggesting that red-footed 
boobies foraged in similar areas year-round, as predicted, whereas 
masked boobies moved their foraging areas between the breeding 
and non-breeding period.

F I G U R E  5 Violin plots of δ13C and δ15N values in samples from masked (Sula dactylatra) and red-footed boobies (Sula sula) on Clarion 
Island, Revillagigedo Archipelago, Mexico, in the Pacific Ocean during March 2017 and 2018. Left panels: whole blood (breeding) from 
masked boobies (females = 18, males = 18) and red-footed boobies (females = 8, males = 14). Right panels: body feathers (non-breeding 
period) from masked boobies (females = 15, males = 18) and red-footed boobies (females = 7, males = 13). Dots represent individual 
measurements, lines represent mean values, and asterisk indicates significant differences between sexes.

F I G U R E  6 Isotopic niche ellipses from masked boobies (Sula dactylatra) and red-footed boobies (Sula sula) on Clarion Island, Revillagigedo 
Archipelago, Mexico, in the Pacific Ocean during March 2017 and 2018. Standardized whole blood (breeding) from masked boobies (n = 36) 
and red-footed boobies (n = 22) and body feathers (non-breeding) from masked boobies (n = 33) and red-footed boobies (n = 20) were 
included in the analyses. Standard ellipses of 50% are depicted as dotted and 95% ellipses as complete ellipses. Points represent individual 
measurements.
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10 of 16  |     LERMA et al.

4.1  |  Diet

In agreement with the literature, flyingfish and squid were the 
main prey items in the diets of both masked and red-footed boo-
bies (Donahue et al., 2020; Kappes et al., 2011; Lerma, Dehnhard, 
et  al.,  2020; Schreiber & Hensley,  1976; Young, McCauley, 
et al., 2010). Aguilar Nuño (2019) found that oceanic two-wing fly-
ingfish (Exocoetus obtusirostris) and whitetip flyingfish (Cheilopogon 
xenopterus) dominated the diet of masked boobies at Clarion Island, 
whereas spotfin flyingfish (Cheilopogon furcatus) and oceanic two-
wing flyingfish (Exocoetus obtusirostris) were dominant in the diet 
of red-footed boobies. In the current study, we were unfortunately 
unable to identify prey items to species level due to our sampling 
method. We also acknowledge that the current sample size was small 
(59 diet samples from masked boobies and 13 diet samples from red-
footed boobies), and thus, the importance of particular prey species 
and differences in prey length between booby species might have 
been underestimated. Nonetheless, we found that the overall food-
load mass was larger in masked than in red-footed boobies, matching 
findings from Tromelin Island (Kappes et al., 2011) and in accordance 
with the larger size of masked boobies (38% heavier and larger than 
red-footed boobies, see Table 3). Although there was no significant 
difference in the length of the prey items consumed by each booby 
species, we found that the maximum prey length for masked boo-
bies was almost double that for red-footed boobies. Ideally how-
ever, future studies should increase the sample size and/or include 
metagenomic analyses (Carreiro et al., 2022; Donahue et al., 2020) 
to account for partially digested items.

4.2  |  Inter-specific differences

As expected, masked boobies had higher δ15N values than red-
footed boobies, in agreement with the literature (see Table  2 for 
references). The difference in δ15N values between booby species 
is likely an effect of niche specialization and of physiological differ-
ences associated with body size, which allows each species to reach 
different habitats and consume different resources. Here, as ex-
pected, the larger size of masked boobies compared with red-footed 
boobies enabled them to feed on a greater range of prey species 
and sizes (Cohen et al., 1993; Mancini & Bugoni, 2014), which in turn 
had higher δ15N values (Queirós et al., 2021; Wu et al., 2017). In ad-
dition, the larger size of masked boobies might allow them to dive 
deeper in the water column (Zavalaga et  al.,  2007, 2010). Masked 
boobies have been shown to dive up to 5.5 m (Lerma, Castillo-
Guerrero, et al., 2020), whereas red-footed boobies only reach 2.4 m 
(Weimerskirch et  al.,  2005), providing additional support for the 
inclusion of deeper-water fish, such as pufferfish and jacks, in the 
masked boobies' diet. Although in other booby species the inclu-
sion of deeper-water fish has been associated with fishing discards 
(Mancini et al., 2023), it would be difficult to explain why one, but not 
the other booby species would be making use of fisheries discards. 
Moreover, the use of fishing discards by boobies is unlikely to occur 

at Revillagigedo, as most foraging trips are concentrated within the 
protected area (Lerma, Castillo-Guerrero, et al., 2020) where fish-
ing boats were not observed, and fishing is not allowed (DOF, 2017).

The similar δ13C values in masked and red-footed boobies sug-
gest that both species forage in areas with similar carbon sources 
during breeding. However, both species may have used distinct 
foraging areas, which were not reflected in the δ13C levels (Mancini 
et  al., 2013), and thus our results should be interpreted with cau-
tion. By using only stable isotopes, it is challenging to discriminate 
between areas at the boobies' foraging scales since the isoscape 
may exhibit homogeneous δ13C values at a regional scale (Magozzi 
et al., 2017). Moreover, whole blood reflects the diet assimilated in 
the previous 3–4 weeks (Vander Zanden et al., 2015), and our sam-
ples might thus have included information from the early incubation 
and/or pre-laying periods, when differences in foraging distances 
and area use may have been absent. Nevertheless, our results of 
masked and red-footed boobies showing similar δ13C values are in 
accordance with the fact that both species forage in mixed-species 
flocks (Ballance et al., 1997; Spear et al., 2007), but contrasts with 
the findings that red-footed boobies traveled farther from their col-
onies than masked boobies (Young, Shaffer, et al., 2010), or remained 
closer to their colonies than masked boobies (Kappes et al., 2011) at 
other breeding sites.

In Clarion, we found no difference in δ13C values, whereas in 
Palmyra masked boobies had more depleted δ13C values and for-
age closer to their colony than red-footed boobies, in contrast 
to Tromelin where red-footed boobies remained closer to the 
colony than masked boobies (see Table 1). Previous studies have 
attributed inter-specific differences in δ13C values and foraging 
ranges to competitive exclusion. However, the small colony size 
of masked booby to the ratio of red-footed boobies pairs makes 
it unlikely that masked boobies could exclude red-footed boobies 
from extensive areas close to their colony. At Clarion Island, the 
masked booby colony is much smaller (<100 breeding pairs) than 
that of red-footed booby (>3000 breeding pairs), in Palmyra Atoll, 
only 50 masked booby pairs breed sympatrically with 2500 red-
footed booby pairs (Young, Shaffer, et al., 2010), and in Tromelin, 
130 masked booby pairs breed sympatrically with 200 red-footed 
booby pairs (Kappes et al., 2011). Alternatively, predator presence 
can have an impact on inter-specific segregation. Booby species 
with chicks vulnerable to predation might perform shorter trips 
to reduce their absences at the nest (Anderson, 1991; Anderson 
& Ricklefts, 1992). However, this might not be the case for Clarion 
Island, as eggs and chicks of both, masked and red-footed boobies, 
are predated by common ravens (Corvus corax) and Clarion Island 
whip snakes (Masticophis anthonyi). On the other hand, although 
the environmental conditions are not extremely different between 
Clarion Island (SST: 26.3°C; CHL 0.09 mg/m3, Lerma, Castillo-
Guerrero, et  al.,  2020), Palmyra Atoll (SST: 25.5–29.9°C; CHL 
0.1–0.2 mg/m3, Young, Shaffer, et  al.,  2010), and Tromelin (SST: 
~28°C, CHL 0.03–0.13 mg/m3, Kappes et al., 2011), the differences 
in inter-specific segregation between studies might be related to 
local-scale environmental variations. At Palmyra Atoll, red-footed 

 20457758, 2024, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.11255 by N

O
R

W
E

G
IA

N
 IN

ST
IT

U
T

E
 FO

R
 N

A
T

U
R

E
 R

esearch, N
IN

A
, W

iley O
nline L

ibrary on [16/04/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



    |  11 of 16LERMA et al.

boobies were suspected to travel to specific areas of the atoll that 
were slightly more productive (Young, Shaffer, et al., 2010), and in 
Tromelin, masked boobies use warmer, deeper, and less windy oce-
anic waters than red-footed boobies (Kappes et al., 2011). Around 
Clarion Island, however, remotely sensed environmental data show 
no major variations within the boobies' foraging range, and thus, 
segregation between species might be weak. Boobies are known to 
adjust their foraging strategies to local oceanographic habitats at 
different locations (Gilmour et al., 2018; Mendez et al., 2017), and 
thus, the presence or absence of differences in space use between 
booby species might reflect differences in the local-scale distribu-
tion of their preferred habitats or prey.

4.3  |  Intra-specific differences

We predicted that there would be intra-specific differences in the 
isotopic niches within both booby species, and that these differences 
would be larger during the breeding than during the non-breeding pe-
riod, particularly in the more-dimorphic species. Our results accord-
ingly showed that female masked boobies had a higher trophic level 
than males during breeding, but there was no intra-specific difference 
during the non-breeding period or in red-footed boobies for either pe-
riod. Sex-specific differences in masked boobies agreed with results 
from Rapa Nui, where incubating females had higher δ15N values than 
males, but contrasted with results from Palmyra Atoll, Clipperton 
Island, Abrolhos, Atol das Rocas, and Fernando de Noronha, where 
no differences were found (see Table 2). For red-footed boobies, the 
lack of isotopic niche differences between females and males agreed 
with results from Palmyra Atoll and Clipperton Island, but contrasted 
with those from Europa Island and the Cayman Islands (see Table 2). 
On Europa Island, chick-rearing females had similar δ15N values but 
higher δ13C values than males (Cherel et al., 2008), and in the Cayman 
Islands, incubating and chick-rearing females had higher δ15N and 
δ13C values than males (Austin et al., 2021).

The occurrence of intra-specific differences in one but not the 
other booby species and the apparent conflicting results of previous 
studies might be related to four, not mutually exclusive reasons: the 
degree of sexual dimorphism, their prey distribution, reproductive 
roles, or the breeding stage studied. First, the degree of sexual size 
dimorphism in boobies is colony-specific (Nelson, 1978; Van Oordt 
et al., 2018), and greater size dimorphism might facilitate competitive 
exclusion and niche specialization. For example, red-footed booby 
females were 5% heavier than males and had a 0.4% larger culmen in 
the current study (Table 3), whereas females in the Cayman Islands 
were 15% heavier and had a 3.9% larger culmen than males (Austin 
et al., 2021) and females at Europa Island were 14% heavier and had 
a 3.5% larger culmen (Weimerskirch et al., 2006). Second, the oc-
currence of differences in some but not other booby colonies might 
due to an effect of environmental conditions on local prey distri-
bution and availability. Foraging behavior in boobies varies accord-
ing to local oceanographic habitats (Gilmour et  al., 2018; Mendez 
et al., 2017); however, both species in the present study faced similar 

local oceanographic habitats, suggesting that the differences were 
likely due to differences in their prey distribution. For example, the 
environmental conditions in Rapa Nui were homogeneous, and for-
aging segregation might thus not help to avoid intra-specific com-
petition for resources (Lerma, Serratosa, et al., 2020). This suggests 
that the prey of red-footed boobies at Clarion Island may be dis-
tributed more homogeneously than that of masked boobies. Third, 
the differences may be the result of reproductive role specialization 
and energetic constraints. Female masked boobies lay two eggs 
(Lerma, Serratosa, et al., 2020), whereas red-footed boobies only lay 
one (Lormee et al., 2005). Female masked boobies might thus have 
higher nutritional demands (Lerma et al., 2022; Machovsky-Capuska 
et al., 2016) and adapt their foraging to compensate for their initial 
investment in reproduction. Fourth, we studied incubating individ-
uals, but most studies found differences during the chick-rearing 
period, particularly for red-footed boobies. The current study might 
thus have covered an early part of the breeding period, when compe-
tition and the need for resource partitioning is lower compared with 
the chick-rearing period, when parents attending a chick are limited 
to foraging closer to the colony (Lerma, Dehnhard, et  al.,  2020). 
Comparative studies considering the degree of sexual size dimor-
phism, local prey availability, and distribution, and including more 
breeding stages are needed to test these hypotheses.

4.4  |  Breeding versus non-breeding period

We predicted that the δ15N and δ13C values would be similar 
in the breeding and non-breeding periods in these booby spe-
cies because both species are seen at Clarion Island year-round. 
Accordingly, red-footed boobies showed niche overlap and similar 
δ13C values between the breeding and the non-breeding periods, 
in agreement with this species being a year-round resident species 
at some colonies (Votier et  al., 2023). In contrast, masked boo-
bies showed low niche overlap between the breeding and non-
breeding periods and different δ13C values. This suggests that 
masked boobies migrate, in contrast to other studies showing that 
masked boobies stayed year-round (Roy et al., 2021); however, we 
cannot rule out the possibility that masked boobies might perform 
longer and farther foraging trips during the non-breeding period, 
once freed from the constraints of breeding, but still return to the 
colony to rest. Moreover, the hydro-geochemical processes re-
sponsible for temporal changes in isotope values at the base of 
the food web are unknown (Espinasse et al., 2022), making it dif-
ficult to draw conclusions about the movements of masked boo-
bies and temporal variations in the isoscapes. More information 
on the non-breeding movements of these species and a better 
understanding of the spatio-temporal changes in the isoscape of 
the Eastern Tropical Pacific are therefore needed to improve our 
understanding of the patterns found here.

Despite a lack of information on changes in prey composition 
and abundances around Clarion Island throughout the year, some 
flyingfish species form large aggregations during warmer periods 
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of the year, when they mate and spawn close to the surface wa-
ters (Ali,  2019; Casazza et  al.,  2005; Oliveira et  al.,  2015; Stevens 
et  al.,  2003). Aggregation of spawning flyingfish matched our ob-
servations of flyingfish containing eggs (4/116 flyingfish prey items 
of masked boobies). In contrast, squid, as a major prey species of 
red-footed boobies, tend to be less seasonal and are available year-
round (Donahue et al., 2020; Granados-Amores et al., 2010; Harman 
et al., 1989). We speculate that the breeding period of masked boobies 
matches a higher availability of their preferred prey, whereas their pre-
ferred prey is less available during the non-breeding period, and thus, 
masked boobies forage farther away from the colony. In contrast, the 
breeding period of red-footed boobies matches when a subset of their 
prey items becomes more abundant, whereas during the non-breeding 
period, red-footed boobies consume squid or other fish species that 
are available year-round in the waters surrounding Clarion Island.

Notably, flyingfish might be particularly important during 
breeding, as also shown for another marine animal in the Eastern 
Tropical Pacific, namely, spotted dolphins (Stenella attenuate), 
which prey on a higher proportion of flyingfish than squid during 
reproduction, attributed to its higher nutritional content compared 
with squid (Bernard & Hohn, 1989). A higher abundance of more 
nutritious prey items during breeding would also help to explain 
why both species showed narrower niche widths during breed-
ing and broader niche widths during the non-breeding period. 
Additionally, both species showed a larger niche overlap when 
their isotopic niche was broader, suggesting that they are more 
likely to use similar resources when not constrained to central-
place foraging. Furthermore, the presence of subsurface marine 
predators on Clarion on specific periods of the year may facilitate 
prey capture for boobies. Boobies form associations with subsur-
face marine predator species during foraging (Au & Pitman, 1986) 
and at the Archipelago, Albacore (Thunnus alalunga), yellow 
fin (T. albacares), bigeye (T. obesus) tuna, and spotted dolphins, 
which also consume flyingfish (Bernard & Hohn, 1989; Chagnon 
et al., 2018; Lacerda et al., 2017; Lewallen et al., 2018), are known 
to occur. Some of these predators are migratory and occur close to 
the Archipelago only during specific periods of the year (Schaefer 
et al., 2011). However, further work that investigates the environ-
mental factors determining variations in resource availability and 
its distribution, as well as the drivers of presence of subsurface 
marine predators at Clarion Island is necessary. For instance, to 
determine the influence of the Eastern Pacific Warm Pool and of 
the California Current on the presence and local-scale distribution 
of flyingfish, which in turn attracts subsurface marine predators to 
the vicinity of Clarion Island.

5  |  CONCLUSIONS

The present study provides new insights into the trophic relation-
ships between masked and red-footed boobies, which coexist in 
tropical areas. The continued difference in isotopic niches between 
the breeding and non-breeding periods suggests that both species 

have some degree of niche specialization. We also found evidence of 
intra-specific differences, but only during the breeding period, when 
female masked boobies show higher δ15N values than males. In con-
trast, the foraging ecology of red-footed boobies seems to be similar 
in both sexes year-round. Our results also suggest that red-footed 
boobies are more likely to be resident species at Clarion Island, while 
masked boobies may move farther away; however, more information 
on the year-round movements of these species, especially masked 
boobies, is needed. Overall, these results support the existence of 
niche partitioning in these taxonomically closely related species, and 
suggest that intra-specific niche partitioning is more likely to occur 
during the breeding than during the non-breeding period, particu-
larly in the more-dimorphic species. This study furthers our under-
standing of the strategies that breeding seabirds use to cope with 
the same oligotrophic environmental conditions.
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Functions used for analyses and plotting are available on github 
(https://​github.​com/​Miria​mLL/​isose​abird​).
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