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Abstract

Mapping fluvial hydromorphology is an important part of defining river habitat. Mapping

via field sampling or hydraulic modeling is however time consuming, and mapping

hydromorphology directly from remote sensing data may offer an efficient solution.

Here, we present a system for automated classification of fluvial hydromorphology

based on a deep learning classification scheme applied to aerial orthophotos. Using

selected rivers in Norway, we show how surface flow patterns (smooth or rippled sur-

faces vs. standing waves) can be classified in imagery using a trained convolutional neu-

ral network (achieving a training and validation accuracy of >95%). We show how

integration of these classified surface flow patterns with information on channel gradi-

ent, obtained from airborne topographic LiDAR data, can be used to compartmentalize

the rivers into hydromorphological units (HMUs) that represent the dominant flow fea-

tures. Automated classifications were broadly consistent with manual classifications that

had been made in previous ground surveys, with equivalency in automated and manu-

ally derived HMU classes ranging from 61.5% to 87.7%, depending on the river stretch

considered. They were found to be discharge-dependent, showing the temporally

dynamic aspect of hydromorphology. The proposed system is quick, flexible, generaliz-

able, and provides consistent classifications free from interpretation bias. The deep

learning approach used here can be customized to provide more detailed information on

flow features, such as delineating between standing waves and advective diffusion of

air bubbles/foam, to provide a more refined classification of surface flow patterns, and

the classification approach can be further advanced by inclusion of additional remote

sensing methods that provide further information on hydromorphological features.
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1 | INTRODUCTION

Categorizing fluvial habitat is an essential step for supporting river

habitat management and conservation programs. Indeed, the physical

habitat composition in a river or stream and the corresponding

hydraulic parameters are considered to be basic elements to river

health assessment (Maddock, 1999). A range of approaches with asso-

ciated terminology—river landform, morphological unit, mesohabitat

type, hydromorphological unit (HMU), physical/hydraulic biotope, eco-

tope, channel geomorphic unit (see Belletti et al., 2017)—have been
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developed for categorizing fluvial habitat, reflecting differences in

research focus, rationales, and the scale at which the research is con-

ducted. The term “mesohabitat” (e.g., Tickner et al., 2000) applies to a

locally contiguous area (typically less than several 100 m in length)

consisting of similar hydromorphological conditions, such as flow

velocity, turbulence, and depth (see Wegscheider et al., 2020). Pardo

and Armitage (1997) characterize mesohabitats as being “visually dis-

tinct units of habitat within the stream, recognizable from the bank

and with an apparent physical uniformity.” Mesohabitats are often

associated with particular depth-velocity conditions (Kemp

et al., 1999) and it is these interactions between flow and physical hab-

itat characteristics that create the variety of mesohabitats. In particu-

lar, surface flow type is considered a major descriptor of physical

habitats. The composition and particular assemblage of mesohabitats

in a river is an indicator of conditions for fish, macroinvertebrates, and

other river biota. Fausch et al. (2002) advocated for the pertinence of

mesohabitat characterization for the study of fish ecology, arguing that

features relevant to fish movement and behavior, as well as barriers

and obstacles, were best assessed at this scale. Mesohabitats are usu-

ally defined as distinct classes, such as riffle, glide, pool or run, to cite a

few (see, e.g., Parasiewicz, 2007). There is some inconsistency in how

mesohabitat types are defined (Newson & Newson, 2000), but typi-

cally, these classes compartmentalize a continuum of overall hydro-

morphological conditions, from slower and more laminar flows in low

gradient areas (e.g., glides), to faster and more turbulent flows in higher

gradient areas (e.g., rapids). The term HMU is often used as a synonym

for mesohabitat (Alcaraz-Hernandez et al., 2011; Suska &

Parasiewicz, 2020), but in the current study we define this as a broad

class, based on the flow features and gradient of the water surface.

A range of methods for classifying fluvial hydromorphology and

mesohabitats exist (see Harby et al., 2004 for a first summary

and overview), ranging from simple field-based qualitative assessment

(e.g., the River Habitat Survey method [Newson et al., 1998]; the Norwe-

gian Mesohabitat Classification Method [Borsany, 2006; Borsányi

et al., 2004]) to numerical modeling approaches (e.g., MesoCASiMir

[Eisner et al., 2005, 2007], MesoHabsim [Parasiewicz, 2007]). Field-

based mesohabitat classification may simply involve observing features

such as surface flow type from the riverbank and inferring the habitat

types from these. For example, in Norway, Borsany (2006) developed a

system based on surface flow features or types, surface gradient, flow

velocity and depth, all of which can be visually assessed in the field.

Such a system requires no specialized instrumentation and can be done

using bankside observations, possibly supplemented with qualitative

interpretation of aerial photographs. The diversity of methods for iden-

tification of mesohabitats in the field has four major difficulties in com-

mon: (1) They require some training to provide consistent and robust

results; (2) Researcher variability may lead to the same mesohabitat

being characterized differently depending on the surveyor; (3) The same

mesohabitat type may be identified differently depending on the

method used, and similar terms are used by different methods to iden-

tify different features; (4) They can be time-consuming depending on

the method used and length of river to be surveyed. Numerical model-

ing approaches, for instance hydraulic modeling, may remove some of

the subjectivity but can be very time-consuming, both in terms of

obtaining data for model validation and for setting-up the model. Given

this, models may benefit from calibration and sensitivity analysis

(Franceschini et al., 2019; Martinez-Capel et al., 2016).

Remote sensing, typically based on airborne or satellite true color

or multispectral imagery and/or LiDAR data, offers the advantage of

providing synoptic coverage of the river at a range of spatial scales

pertinent to the mesohabitat and over larger distances. Remote sens-

ing is particularly useful as a source of empirical data for numerical

models. For instance, channel bathymetry may be derived from a

range of methods (Sundt et al., 2022), and such data can then be used

to derive flow properties and other habitat metrics, either by

empirical-based hydraulic rules (Hugue et al., 2016) or by hydraulic

models (Hauer et al., 2009; Sundt et al., 2022). For example, Hauer

et al. (2009) used a rule-based system to classify a watercourse into

distinct mesohabitat types (riffles, fast runs, runs, pools, shallows,

backwaters) based on predictions from a hydraulic model calibrated

using LiDAR data. Drawbacks and limitations to this approach are that

establishing hydraulic properties is time-consuming and requires spe-

cific expertise. It may also not always be possible to use remote sens-

ing to obtain depth estimates, for instance if the river bottom is not

visible in aerial images and/or LiDAR data are unavailable.

Remote sensing may be used to directly determine hydromorphol-

ogy and mesohabitat because properties of the river's water surface,

detectable from remote sensing, are linked to hydromorphology (see

Milan et al., 2010). For example, a smooth or rippled water surface may

indicate more laminar flows (associated with glide or run mesohabitats).

In contrast, standing waves on the surface may indicate the presence of

steep channels with coarser bed material: broken standing waves,

where the wave breaks and white water is present, being associated

with rapids or cascade mesohabitats; and unbroken standing waves,

where there is no broken water, being associated with riffle mesohabi-

tats (Faro et al., 2022; Newson & Newson, 2000). Use of surface char-

acteristics has now been incorporated into river science workflows,

ranging from mapping surface flow types (Woodget et al., 2016) to

mapping mesohabitat (Demarchi et al., 2016). The advantage of deriving

hydromorphology directly from remote sensing is that it is possible to

retain the primary advantage of remote sensing (synoptic coverage)

without the requirement to introduce subsequent modeling

(e.g., hydrodynamic modeling). Ideally, the remote sensing approach

should be automated to reduce subjectivity and effort.

Automated extraction of information on river habitats from

remote sensing imagery is difficult due to a large number of confound-

ing factors (Hedger et al., 2022). Artificial intelligence techniques offer

the potential to deal with the complexity existing in imagery of river

habitats, and have been used to classify surface cover type

(Carbonneau et al., 2020), river sediment sizes (Takechi et al., 2021),

hydromorphological features (Rivas Casado et al., 2015), mesohabitats

(Milan et al., 2010), and salmon redds (Harrison et al., 2020). There is

potential for such an approach to be used to classify features of the

water surface (e.g., identifying whether the surface is smooth or

whether the surface has standing waves). Flow features identified in

such a manner can then be combined with information on surface
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gradient (readily obtainable from digital terrain model, DTM, or digital

surface model, DSM, data) for a refined hydromorphological classifica-

tion. Convolutional neural networks (CNNs) are particularly appropri-

ate for this type of work. These are deep learning algorithms that can

be trained on images to assign importance (learnable weights and

biases) to features of the image within a network linking the images to

a predefined classification. A trained network can then be used to

predict class types in additional, unclassified images. An effective

CNN-based classification of mesohabitat requires the model to be cal-

ibrated correctly. Selection of classes may be difficult. An obvious

delineation is between smooth/rippled surfaces and those with stand-

ing waves. However, river surfaces are often characterized by addi-

tional phenomena, such as air bubbles/foam, generated upstream and

advectively diffusing downstream (see Chanson, 2012; Schilling &

Zessner, 2011). These features have not yet been incorporated into

automated mesohabitat mapping systems. This is a limitation because

there is potential for a classification system to misidentify diffusing air

bubbles/foam, generated by processes upstream, as being broken

standing waves, generated by processes beneath the waves. This

could lead to mischaracterization of hydromorphology.

Here, we evaluate the potential for automated river classification

into HMUs based on airborne remote sensing data. We use a classifica-

tion system that requires information on only (1) surface patterns, iden-

tified by applying a CNN to aerial photographs, and (2) surface gradient,

identified from NIR (topographic) LiDAR-derived DTMs, to classify

areas of three river stretches, in the Norwegian rivers Alta, Nidelva, and

Orkla, into one of four broad HMU classes. These stretches were

selected because they offered a range of surface hydromorphological

phenomena typical of medium-scale rivers, ranging from smooth or rip-

pled surfaces (in pools, glides, and walks) to standing waves (in splashes,

rills, cascades, and rapids). Following Borsányi's rule system

(Borsany, 2006), we begin with a simple surface pattern classification

(smooth or rippled vs. standing waves), but we also investigate a more

detailed surface pattern classification that allows the distinguishment

between standing waves (generated locally) and air bubbles/foam (gen-

erated upstream and being advected downstream).

2 | MATERIALS AND METHODS

In the following sections, we describe the procedure for automated

HMU classification and its application to selected stretches in three

Norwegian rivers. First, we describe the structure of the automated

HMU classification system (Section 2.1), which uses a Norwegian

mesohabitat assessment method based on surface flow pattern (iden-

tified by a CNN) and surface gradient. Second, we describe a system—

a Refined surface pattern classification system—that incorporates an

additional surface class (“diffusing foam”) to better characterize flow

features (Section 2.2). We then describe the application of these sys-

tems to remote sensing data of the selected river stretches

(Section 2.3). All processing was done in R using the terra and insol

libraries, with the exception of the CNN, which was run in python

3.9.7 using TensorFlow 2.9.1 (Joshi et al., 2018) with Keras 2.9.0.

2.1 | HMU classification system

The HMU classification system was devised such that it could classify

a river stretch into contiguous cells of preset user-determined dimen-

sions (e.g., 10 � 10 m), where each cell is defined as one of four HMU

classes (Figure 1), based on a decision tree using the surface pattern

(a feature of the flow) and the surface gradient of the cell. This system

is based on the mesohabitat classification system of Borsany (2006),

which is commonly used within Norway, but is simplified in that the

HMUs are broad in scope, and may include several of Borsányi's

mesohabitat types: for example, pools, walks, and glides are within

the same HMU. Surface patterns, classified into smooth or rippled sur-

faces and standing waves, indicate broad conditions of the flow. HMU

classes are defined as:

1. Mild—smooth or rippled. This is characterized by a smooth or rip-

pled surface pattern occurring in a mild surface gradient, and cor-

responds to the pool, glide, and walk mesohabitat types.

2. Steep—smooth or rippled. This is characterized by a smooth or rip-

pled surface pattern and a steep surface gradient, and corresponds

to the run mesohabitat type.

3. Mild—standing waves. This is characterized by a standing wave

surface pattern and a mild surface gradient, and corresponds to

the splash and rill mesohabitat types.

4. Steep—standing waves. This is characterized by a standing wave

surface pattern and a steep surface gradient, and corresponds to

the cascade and rapid mesohabitat types.

The range of mesohabitat types in Borsany (2006) does not

include the riffle habitat, but, as characterized in the literature, this

can be included in the mild—standing waves HMU.

Following Borsany (2006), standing waves were defined as undu-

lations with a height ≥5 cm caused by interaction of the flow and the

riverbed in the location of the standing wave and can either be broken

(involving “white water”) or unbroken (lacking “white water”). Mild

and steep gradients were defined as those with a slope <4% and ≥4%,

respectively. Surface patterns and gradients were defined across the

river channel within cells of 10 � 10 m, corresponding to 100 � 100

pixels for imagery with a pixel resolution of 0.1 � 0.1 m. This cell size

was chosen so that it would be sufficiently large for the CNN to iden-

tify differences in pattern among cells, which were dependent on dif-

ferences in flow. The driving impetus for selecting cell size was to

have a sufficient number of pixels for classifying patterns, so the

ground size (in meters) was dependent on the spatial resolution of

the remote sensing imagery.

Each cell of 100 � 100 pixels was classified as being one of two

surface pattern classes—(1) smooth or rippled; and (2) standing waves—

using a CNN constructed using the TensorFlow and Keras libraries

(see Lee & Song, 2019). The CNN consisted of two convolution layers

(with zero padding), each followed by a pooling layer to down sample

the feature maps (Figure 2). Convolution layers and the first dense

layer had a rectified linear unit (relu) activation function. The training/

validation dataset was split into separate training (70% of the data)
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and validation (30% of the data) sets using a random approach. The

model was compiled using the Adam Optimizer Algorithm, using a

sparse cross-entropy loss function with mini batch gradient descent

(batch size = 32). Fifteen epochs (number of times the learning algo-

rithm runs through the entire training dataset) were used to train the

model: a greater number of epochs was not used as this sometimes

led to overfitting models. The models were evaluated using training

and validation accuracy and loss curves.

2.2 | Refined surface pattern classification system

To test the ability to refine the surface pattern classification, the CNN

was trained with three classes: (1) smooth or rippled; (2) standing

waves; and (3) diffusing foam. Both the standing waves and the diffus-

ing foam classes were characterized by unsmooth surfaces, typically

with white water. However, standing waves were created locally; for

example, waves overlying submerged boulders. The diffusing foam

class represented areas where foam at the water surface had been

created by upstream turbulence and was diffusing downstream by a

process of advection (see Chanson, 2012; Schilling & Zessner, 2011).

Model architecture was equivalent to that used in the two-class CNN.

2.3 | Application of the classification systems

2.3.1 | Remote sensing imagery

To classify surface patterns, aerial orthophotos (resolution

= 0.1 � 0.1 m) were acquired from Norge i bilder (https://norgeibilder.

no), an image repository of orthomosaics provided by the Norwegian

Mapping Authority in collaboration with the Norwegian Public Roads

Administration and the Norwegian Institute of Bioeconomics. The

orthophotos had been obtained under differing light conditions, which

affected the illumination of flow features (see Section 4.2), so their use

provided an indication of the effectiveness of automated mapping using

archived orthophotos rather than dedicated aerial surveys conducted

under optimal light conditions. To identify gradients, DTMs

(resolution = 1 � 1 m, vertical accuracy s.d. = 0.04 m) were obtained

from the Høydedata portal (http://hoydedata.no) of the Norwegian

Mapping Authority. DSM data, which showed surface elevation includ-

ing surface objects such as trees and buildings, were also acquired from

the Høydedata portal for use in image pre-processing (Section 2.3.2).

CNN training and validation

The CNNs used in the two classification systems—HMU classification

system and the Refined surface pattern classification system—were

trained using orthophotos of stretches of the rivers Nausta in central

Norway (length = 1370 m, area = 23,900 m2, imaged on May

17, 2018) and Suldalslågen in south-west Norway (length = 2650 m,

area = 58,400 m2, imaged on June 2, 2020) (Figure 3). River stretches

were compartmentalized into cells (100 � 100 pixels representing

10 � 10 m), and those cells showing clear examples of the surface

pattern types—smooth or rippled (N = 279), standing waves (N = 166),

and diffusing foam (N = 135)—were selected visually for use in training

and validation (Figure 2).

CNN prediction

To predict surface patterns from the CNN and classify HMUs, target

images were acquired from stretches of the rivers Alta (imaged on

August 2, 2011), Nidelva (imaged on April 27, 2019 and August

7, 2020) and Orkla (imaged on June 10, 2014) (Figure 3). Images were

F IGURE 1 Hydromorphological unit classification system structure and associated mesohabitat types. Mesohabitat types are listed in
Borsany (2006).
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selected on the basis of them containing a range of mesohabitats,

based on ground surveys that have been previously conducted in

these rivers. The imaged stretch of the river Alta (reach

length = 2780 m, area = 174,300 m2, mean width = 63 m) was a

mild-gradient meandering reach (mean gradient = 0.23%), with

a sequence of areas with smooth or rippled surfaces over deeper

waters (glides) and areas with standing waves over shallower

waters (splashes). Two images of the river Nidelva were used, one

acquired at low discharge and the other at high discharge, to examine

how predicted HMUs changed according to discharge. The imaged

stretch (reach length = 1090 m, area = 75,500 m2, mean

width = 69 m) had an overall shallow gradient (mean = 0.26%) but

consisted of alternating fast turbulent flow mesohabitats with higher

gradients (cascades, rapids) and mesohabitats with more laminar flows

(pools, walks, glides) in lower gradients (see Borsany, 2006). The

imaged stretch of the river Orkla (reach length = 2250 m,

area = 183,600 m2, mean width = 81 m) mainly had a shallow but

slightly steeper gradient (mean = 0.62%) than the Alta or Nidelva

stretches. It mainly consisted of alternating glides and splashes, with

the channel bifurcating around islands, but also included a short cas-

cade in a steeper part of the channel. For assessing the CNN predic-

tion, HMU classes derived from the CNN were compared with the

HMU classes manually derived from previously conducted mesohabi-

tat ground surveys. These surveys had been used to derive mesohabi-

tat types based on observations from the bank and/or observations

from within the channel using the method developed by Borsany

(2006). Surveys in Alta and Orkla were conducted by the Norwegian

Institute for Nature Research (see Hindar et al., 2007, 2019), and the

survey in the Nidelva was conducted by Borsany (2006). A slight mod-

ification was made to the survey classification for the Nidelva, where

one mesohabitat that had been initially classified as run mesohabitat

was reclassified as a rill based on surface gradient and further survey

data. Surface gradient was related to the ground-surveyed mesohabi-

tat types: mean = 0.63% (pool), 0.85% (glide), 1.49% (rill), 1.67%

(splash), 2.21% (rapid), 8.97% (cascade) across surveys. Mesohabitat

types from these surveys were clustered into the appropriate HMU

classes (see Figure 1). Classifications from the automated approach

were compared with those from the ground surveys to provide an

indication of the “success” of the automated HMU method

(i.e., equivalence in HMU classes indicated success).

2.3.2 | Preprocessing of imagery

Surface pattern

Prior to selection of cells used in the CNN (for training and validation,

and for prediction), areas outside of the channel and areas that were

too dark to observe surface patterns (those under shadow)

were removed by masking using the terra::mask R function.

• Masking non-channel areas: Channel boundaries were digitized by

modifying a polygon database of water bodies across Norway

(included in the N50 Kartdata of the Norwegian Mapping Authority;

https://www.kartverket.no/api-og-data/kartgrunnlag-fastlands-

norge). Areas outside the polygons were then masked, leaving only

the wetted channel.

• Masking shaded areas: Shaded areas were identified by visual com-

parison of shadows in the orthophotos with predicted positions

from a shading algorithm (insol::doshade R function). Raster maps of

shadows were predicted from how the sun would cast shadows

based on the elevations of ground surface features (estimated as

the difference between the DSM and the DTM elevations) for solar

azimuths and elevations on the day of imaging. The raster map of

shadows that corresponded best to those in the orthophoto was

then used to mask the orthophoto, leaving only the areas under

direct sunlight.

F IGURE 2 Convolutional neural network (CNN) architecture, and

sample cell types used in CNN training and validation. Note that the
hydromorphological unit classification system only includes the
smooth or rippled class and the standing wave class; the refined
surface pattern classification system includes all three classes. [Color
figure can be viewed at wileyonlinelibrary.com]
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Surface gradient

Non-channel areas of the DTM were masked by excluding pixels

outside of the channel boundary polygon identified in the preproces-

sing of the aerial orthophotos. The gradient (expressed as a %) for

each 1 � 1 m DTM pixel within the channel was estimated by a two-

stage procedure: (1) a gradient (in degrees) was calculated using the

eight neighboring pixels with the terra:terrain R function, and con-

verted to a percentage; (2) this gradient was subsequently smoothed

using the terra:focal R function (bandwidth = 7 pixels,

function = “mean”). The result, referred to as the surface gradient,

was used in the decision rule framework for automated classification

of HMUs.

3 | RESULTS

The training and validation of the CNN for surface pattern classifica-

tion achieved high accuracies (Figure 3), both for the two-class and

the three-class classification. Accuracies were higher for the two-class

(≈99%) than the three-class (≈95%) training and validation. Training

losses were similar to validation losses, suggesting a reasonable model

fit. There was no evidence of overfitting, as validation loss continued

to decline with epoch. The change in training loss tended to decline

with each successive epoch, but was still gently declining by epoch

15 for the three-class surface classification system, suggesting slight

underfitting of the model. However, the CNN performed well when

predicting on new datasets, whether based on two classes

(Sections 3.1) or three classes (Section 3.2).

3.1 | HMU classification

Overall, the HMU classification system predicted HMUs that were

consistent with those that had been identified manually from ground

surveys conducted earlier: HMUs derived from the automated

approach were equivalent to those of the manual survey classifica-

tions in 87.7% (Alta), 81.5% (Nidelva), and 61.5% (Orkla) of cells (see

Table S1).

3.1.1 | Alta

The Alta stretch, showing a sequence of alternating slow flowing,

mild—smooth or rippled HMUs and fast flowing, mild—standing waves

HMUs (Figure 4; upper panel), was classified into a similar sequence

by the automated HMU classification system (Figure 4; middle

panel). The gentle gradient of the watercourse (<4%) meant that

steep—smooth or rippled HMUs (associated with runs) were absent.

Only one cell was classified as being a steep—standing waves HMU,

where the surface gradient locally exceeded 4%: its small size

F IGURE 3 Locations of study
sites used for training and validation
(Nausta and Suldalslågen) and
prediction (Alta, Nidelva, and Orkla).
Inlet panels show sites used for
prediction (white boxes) within the
surrounding watercourse. [Color
figure can be viewed at
wileyonlinelibrary.com]
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suggests that it is not a functionally “realistic” classification of flow

conditions. The automated classification showed a finer level of

detail than the manual classification, reflecting the surface patterns

identified by the CNN (Figure 4; lower panel). For example, standing

waves extended around the outer bank of a meander into an area

that had been manually classified into a mild—smooth or

rippled HMU.

3.1.2 | Nidelva

The automated HMU classification for the Nidelva stretch alternated

between mainly mild—smooth or rippled and mild standing waves or

steep—standing waves HMUs (Figure 5). Steep—smooth or rippled

HMUs were rare and only found as isolated cells. The HMUs with

more turbulent flows were found in the mid-part of the imaged

stretch, where higher gradients occurred (Figure S1). The spatial con-

figuration of mesohabitat types largely concurred with those identi-

fied by Borsany (2006) (Figure S1). HMU classifications depended on

flow conditions, and the middle parts of the imaged stretch showed

an increase in the prevalence of standing waves HMUs at high dis-

charge (see inlet panels in Figure 6).

3.1.3 | Orkla

The automated HMU classification of the Orkla stretch was consistent

with the manual classification in the mid- to downstream part but

diverged from the manual classification in the upstream part

(Figure 7). The middle part of the stretch consisted of a smooth water

surface in a mild channel gradient (mainly classified as the mild—

smooth or rippled HMU); the surface became more turbulent further

downstream (mainly classified as the mild—standing waves HMU). The

upstream part of the Orkla stretch consisted of smooth surfaces, sep-

arated by short regions of white water associated with rapids or cas-

cades. While the automated HMU classification system was

successful in classifying the mild—standing waves and steep—standing

waves areas successfully, it did not, however, always correctly identify

areas free from standing waves. For example, some areas were mis-

classified as mild—standing waves HMUs due to the two-class CNN

assigning then a standing wave classification, when manual examina-

tion of the imagery showed the presence of air bubbles/foam rather

than standing waves. These misclassifications typically occurred in

mild gradient areas, downstream of rapids or cascades where there

was white water at the surface from the downstream advective diffu-

sion of air bubbles/foam.

F IGURE 4 Accuracy and loss
for training and validation samples
in the two-class and three-class
surface pattern classification
system. Note that the two-class
system forms the basis of the
hydromorphological unit
classification system; the three-
class system is the refined surface

pattern classification system. [Color
figure can be viewed at
wileyonlinelibrary.com]
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3.2 | Refined surface pattern classification

The refined surface pattern classification system (three classes:

smooth or rippled, standing waves, and diffusing foam) classified surface

patterns in the Orkla stretch that were consistent with visual inspec-

tion of the imagery (Figure 8). In particular, it identified the presence

of air bubbles/foam advectively diffusing across pool mesohabitats

immediately downstream of rapids. Here, white water was present on

the surface but was not in the form of standing waves generated by

interaction between the flow and the riverbed immediately beneath

the white water. Smooth or rippled surface patterns were more preva-

lent at the downstream side of pools, where surface foam had disap-

peared due to diffusion.

4 | DISCUSSION

This study has shown that an automated HMU classification system,

based on a CNN classification of surface patterns evident in aerial

orthophotos, and a rule-based classification of surface gradient based

on topographic LiDAR-derived DTMs, can be used to classify river

stretches into sections of distinct hydromorphology that are consis-

tent with those identified manually. For the three river stretches

examined, classifications broadly coincided with those previously

manually identified in ground surveys (Borsany, 2006; Hindar

et al., 2019). However, further refinement of the CNN with respect to

classification of surface patterns may lead to a better characterization

of hydromorphological conditions, particularly with regard to distin-

guishing between turbulence generated locally (standing waves) and

upstream (air bubbles/foam). In the following sections, we discuss the

HMU classifications for our study rivers, discuss the sensitivity of

the classification to the data used for training and validating the CNN

and for making subsequent predictions, and examine how the

approach outlined here can be further developed.

4.1 | HMU classifications in the study rivers

HMU classifications produced by the automated classification system

were generally consistent with existing manual classifications based

on ground surveys, with the automated HMU classifications coincid-

ing with the manual classifications in 87.7% (Alta), 81.5% (Nidelva),

and 61.5% (Orkla) of cells. The automated classification was derived

F IGURE 5 River Alta, showing manual and automated
hydromorphological unit (HMU) classifications, and surface patterns
determined by the convolutional neural network. The white overlaid
box on the HMU classifications corresponds to the area covered by
the surface pattern panel. [Color figure can be viewed at
wileyonlinelibrary.com]

F IGURE 6 Hydromorphological unit classification in the River
Nidelva at low and high discharge. [Color figure can be viewed at
wileyonlinelibrary.com]
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from the best currently available aerial orthophotos, which were

obtained subsequently to when the manual ground surveys of meso-

habitat had been made, so may have been based on different flow

conditions. Differences between automated and manual classifica-

tions may partly be attributed to differences in flow conditions, which

are known to affect mesohabitat classifications (Hauer et al., 2009).

No large contiguous area of steep—smooth or rippled HMU, asso-

ciated with the run mesohabitat, was found. Conditions of a smooth

or rippled surface pattern alongside a steep gradient are rare in

Norway because steep gradients are often associated with standing

wave surface patterns; in 16 Norwegian rivers for which manual

mesohabitat classifications are available (Alta, Aurland, Eidselva,

Enningdalselvam, Flomselvi, Halselva, Imsa, Jolstra, Laerdal, Laerdal,

Laukhelle, Nausta, Orkla, Stjorda, Stryn, Suldalslågen; see Hindar

et al., 2019), no locations have been classified as corresponding to

steep-smooth or rippled conditions. The steep—smooth or rippled HMU

has been identified in other rivers (see Harby et al., 2007) but, overall,

appears to be rare. Mesohabitats characterized as being runs are com-

monly reported, but depending on how the run is defined according

to the individual study (e.g., Hauer et al., 2009), may not correspond

to the class defined in Borsany (2006). Cases where isolated cells

were classified as steep-smooth could be argued to be misclassifica-

tions, suggesting that it is necessary to set a minimum size for an

HMU and/or that the classification should take into account the HMU

classifications of the neighboring cells when defining an HMU in any

given cell.

The HMU classification was dependent on the surface gradient of

the river. We used the 4% threshold of Borsany (2006). However,

Borsany (2006) noted, based on expert opinion, that this threshold

may be too high for a river reach close to the estuary, such as the

Nidelva. The HMU classification did not differentiate between turbu-

lent conditions that were generated locally (standing waves) and the

advective diffusion of air bubbles/foam generated upstream. This

resulted in inaccurate predictions of hydromorphology in the Orkla in

locations downstream of cascades or rapids. These were typically pool

habitats, a mesohabitat noted for low turbulence (Stone &

Hotchkiss, 2007), which were incorrectly assigned a mild—standing

waves HMU. A refined surface pattern classification based on three

classes correctly classified these areas as diffusing foam, suggesting

that the HMU classification needs further refinement.

4.2 | Training and validation of the CNN

Key to ensuring an effective hydromorphological classification is using

a suitable dataset for training and validating the CNN. The HMU clas-

sification system used two very dissimilar classes—smooth or rippled

versus standing waves—so it was easy to train the CNN such that it

F IGURE 7 River Orkla, showing manual and automated
hydromorphological unit classifications, surface patterns determined
by the convolutional neural network (CNN) and surface gradient. The
white overlaid box on the mesohabitat classifications corresponds to
the area covered by the surface pattern and surface gradient panels.
Ellipses on the CNN surface pattern classification show areas that are
misclassified as standing waves. [Color figure can be viewed at
wileyonlinelibrary.com]

F IGURE 8 River Orkla, showing visually identified surface
patterns and refined surface pattern classification. [Color figure can
be viewed at wileyonlinelibrary.com]
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could distinguish between these patterns for predicting on new data-

sets. Additionally, it was easy to create training classes to differentiate

between standing waves and diffusing foam. Differentiating between

further unsmoothed conditions (e.g., between broken and unbroken

standing waves) requires careful selection of sample classes. This may

be difficult because the optical properties of the phenomena

may overlap, depending on both local flow conditions and how the

imagery is acquired. Training and validation therefore require selec-

tion of class examples over a sufficiently broad range of conditions for

effective prediction in other river stretches.

The CNN-based approach for identifying flow features is suitable

for use with high-resolution aerial photographs of the water surface

acquired under appropriate illumination and free of confounding sig-

nals, both for training and validating the CNN, and predicting on new

datasets. The CNN-based approach relies on imagery with sufficient

detail on flow features. In the current study, we used imagery of a

10 cm spatial resolution. Coarse resolutions of the type available

through satellite imagery (e.g., 1 m resolution) would probably be

insufficient for this. For example, the texture within a stretch of stand-

ing waves occurs at short scales (<1 m); integrating this texture at a

1 m resolution would smooth this variation, and potentially make it

less distinguishable from smooth or rippled stretches. The CNN-based

approach also relies on imagery that are sufficiently illuminated to

allow differences between the classes to be detected. The approach

may be less effective for identifying mesohabitats when shadows fall

across the water surface, making surface patterns less visually identifi-

able (darker, “noisier” imagery). The approach will therefore be less

effective for narrow watercourse headwaters in steep, tree-lined val-

leys where the entire channel may be obscured by shadow (see

Hedger et al., 2022). Additionally, the optical properties of areas in

direct sunlight depend on the interaction between the water surface

and the solar position (Mount, 2005; Zeng et al., 2017). Surface undu-

lations may be more apparent under direct rather than diffuse sun-

light, and specular reflection from unbroken standing waves in

imagery taken under direct sunlight could appear more like the white

water inherent in broken standing waves. Therefore, the relative fre-

quency of the classification type will depend on the light environment.

Finally, the signal from a waterbody is not necessarily solely depen-

dent on surface patterns: in shallow areas, it is possible that the tex-

ture on the riverbed from coarse substrates could be confused with

surface patterns.

4.3 | Further development and management
potential

The method proposed here provides a system by which river surface

pattern recognition may be applied to remotely sensed imagery within

a decision system to obtain an automated map of river hydromorphol-

ogy. Automated classification of hydromorphology based on identify-

ing surface flow patterns in remote sensing imagery has received

relatively little attention, given the abundant use of CNNs for pattern

classification. Surface flow features may be obtained by direct analysis

of the 3-dimensional structure of the surface (see Woodget

et al., 2016) but such an approach requires a remote sensing tech-

nique able to provide this type of information (e.g., using Structure

from Motion with UAV imagery). The advantage of the CNN approach

used in the current study is that it may be applied to a wide range of

imagery (for instance, archived aerial orthophotos which are not nec-

essarily optimal in terms of resolution or image quality for alternative

image analysis methods). As such, it has a wider potential for applica-

tion. Improved application of the remote sensing data may provide a

more refined classification: specifically, better characterization of flow

features via a refined surface pattern classification, and the use of

additional hydromorphological information to refine the habitat

classification.

4.3.1 | Refining the surface pattern classification

The HMU classification system only categorized surface patterns into

two classes: (1) smooth or rippled and (2) standing waves. We have

shown here that there is potential to distinguish between standing

waves and the diffusing air bubbles/foam. There is, however, also

potential to differentiate between unbroken and broken standing

waves. Unbroken standing waves might have alternating bright pixels,

associated with reflections on the side of the wave facing the sun,

and darker pixels facing away from the sun. Broken standing waves

will have more white water distributed randomly in the cell. The chan-

nel characteristics influence hydraulics, so more detailed information

on the forms of surface flows might be used in further defining the

hydromorphology. For example, unbroken standing waves are more

associated with riffles whereas broken standing waves are more asso-

ciated with rapids and cascades (Newson & Newson, 2000).

4.3.2 | Refining HMU classes

The full classification system on which the current work is based

(Borsany, 2006) uses depth and velocity to further refine the mesoha-

bitat type: for example, cascades are defined by shallower depths than

rapids. Our HMU classification system used class divisions that were

only based on surface patterns and gradient, so only provided four

broad HMU types. However, extraction of depth via remote sensing is

possible, using bathymetric LiDAR (Hugue et al., 2016; Puig-Mengual

et al., 2021; Sundt et al., 2022), or analysis of image spectra

(Legleiter & Harrison, 2019; Sundt et al., 2021), or Structure from

Motion applied to UAV imagery (Dietrich, 2017). Velocity may be

determined using large-scale particle image velocimetry, applied to

UAV imagery (Detert & Weitbrecht, 2015). There may also be poten-

tial for extraction of depth and velocity using a CNN approach applied

to the imagery of the type used in this analysis, based on direct prop-

erties within the imagery (e.g., the darkness of an area indicating

depth, or foam patterns indicating flow speed). Refining the HMU

classes with information obtained directly from the imagery will give a

more detailed classification of hydromorphology. An additional
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refinement may be to use a more complex rule for assigning HMU on

the basis of surface gradient. The system on which the current deci-

sion tree is based uses a binary decision based on a gradient threshold

of 4%. However, comparison of the ground surveyed mesohabitat

type with surface gradient showed that gradient varied according to

mesohabitat type. Including a decision rule where a range of gradients

indicate a specific mesohabitat type may improve the classification.

4.3.3 | Soft classification

The approach used in the current study used a hard classification: that

is, the HMU class assigned to each cell was assigned definitively. Bio-

tope boundaries, however, are fuzzy (Legleiter & Goodchild, 2005). An

alternative therefore is to use a soft, or fuzzy, classification where

class types are not assigned with 100% certitude (see Milan

et al., 2010 and examples therein). Such an approach may prove effec-

tive. For example, Legleiter and Goodchild (2005) found that results

from fuzzy classification, which allowed for a continuous variation of

membership among classes, compared favorably with those from a

hard, supervised classification.

The methodology outlined here has strong potential for use in

river ecosystem management. First, it has wide applicability. It is suit-

able for use with archived orthophotos, which might be sub-optimal

in terms of spatial resolution or image quality, and thus can be applied

to already existing datasets in archived repositories. This expands the

spatial coverage because it is not necessary to go to the expense of

collecting dedicated data, and the potential application to archived

orthophotos allows historical hydromorphology to be quantified. Sec-

ond, the classification is efficient in terms of labor-hours. Rather than

requiring researchers to visit the site, all that is required is access to

imagery that probably already exists. Finally, using an automated clas-

sification system reduces the potential for researcher-subjectivity in

interpreting surface patterns. Thus, pattern classifications will be con-

sistent and independent of the biases of different researchers.

5 | CONCLUSION

Here, we present an approach for automated mapping of fluvial

hydromorphology from remote sensing imagery. The main advantages

of this approach are that it is quick, flexible, applicable to readily avail-

able imagery, and classifications follow a strict rule-based system.

First, image processing is fast. The approach does not rely on field sur-

veys or hydraulic modeling, both of which are time consuming, and

application of an automated decision rule system is potentially faster

than qualitatively interpreting images. The method is flexible and can

be easily adapted to various criteria. For example, our HMU classifica-

tion system used a gradient of 4% as a threshold to distinguish

between mild and steep gradients, but this could be adjusted if it is

producing results that appear unrealistic, which may be the case for

low-lying, downstream reaches. Imagery of the required types

(e.g., aerial photographs with a 10 cm resolution) are usually readily

abundant. Within a Norwegian context, orthophotos are available for

all rivers, and there is a complete high-resolution topographic LiDAR-

derived DTM/DSM covering the country. In locations where existing

aerial photographs are not available, imagery of a suitable resolution

(e.g., 10 cm) can easily be obtained using UAVs. Additionally, a range

of national and global data sources exist that can be used for estimat-

ing channel surface gradient (e.g., ASTER DEM; see Azizian &

Brocca, 2020). Finally, such a system follows a strict rule-based sys-

tem, and removes the potential for different researchers to differently

interpret the same patterns when qualitatively interpreting imagery. It

thus means that classifications are consistent among different rivers

and that the reasons for the classifications are documented.
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