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Abstract 60 

 61 
The conservation of biodiversity from the genetic to the community levels is fundamental for the 62 
continual provision of ecosystem services (ES), the benefits that ecosystems provide to people. 63 
Genetic and genomic diversity enhance the resilience of populations and communities that underpin 64 
the provision of ecosystem functions and services. We show that genomics applications are mostly 65 
limited to flagship species and that their benefits for biodiversity conservation and ES management 66 
are underachieved. We propose a framework on how genomics applications can guide management 67 
for biodiversity conservation and sustainable ES to bridge this genomics-ES management ‘application 68 
gap’. We review how genomic knowledge in single species (relatedness, potentially adaptive variants) 69 
or in interacting species (host-microorganism coevolution, hybridization) can guide effective 70 
management actions. These include population supplementation, assisted migration or hybridization 71 
to promote climate-adapted variants or adaptive potential, control of invasives, delimitation of 72 
conservation or management areas, provenancing strategies for restoration, managing microbial 73 
function and solving conservation and ES trade-offs. Genomics-informed management actions for 74 
improved conservation and ES outcomes are supported through synergies between scientists and ES 75 
managers at local, regional and international levels, through the development of standardized genomic 76 
workflows, training to ES managers and incorporation of local information. Such actions facilitate the 77 
implementation of biodiversity conservation and ES policies such as the UN 2030 sustainable 78 
development goals and the EU Biodiversity strategy for 2030, and support the inclusion of ambitious 79 
biodiversity conservation goals in the development of new policies such as the CBD post-2020 Global 80 
Biodiversity Framework or conservation policies on hybrids. 81 
 82 

A. Introduction 83 

Managers of terrestrial or aquatic ecosystems increasingly use scientific evidence to design strategies 84 
for biodiversity conservation, its sustainable use and the sustainable provision of ecosystem services 85 
(Addison et al., 2017; Bland et al., 2017; Keith et al., 2013; Milner-Gulland and Rowcliffe, 2007; 86 
Perrings et al., 2011). Ecosystem services (ES) are the benefits that ecosystems provide to people 87 
(Haines-Young and Potschin, 2018). Sustainable ES and human well-being critically rely on 88 
biodiversity, which encompasses the diversity of ecosystems, species, and genes (Bennett et al., 89 
2015; Díaz et al., 2018; Reid et al., 2005). Biodiversity drives ES through sustaining ecosystem 90 
functions and enabling the resilience of populations, species and communities (Breed et al., 2019; 91 
Mace et al., 2012; Stange et al., 2021). As global assessments document alarming rates of 92 
degradation of biodiversity, ES and the climate (CBD, 2020; Fao and Unep, 2020; IPBES, 2019; IPCC, 93 
2020; WWF, 2020), there is an increasing urgency and necessity to preserve and restore life-94 
sustaining biodiversity for ES management (Breed et al., 2019; Keith et al., 2013; Mace et al., 2012; 95 
Oliver et al., 2015; Stange et al., 2021).  96 
 97 
Ecosystem managers have given different levels of attention to biodiversity among and within species. 98 
The diversity of species, their functions and interactions are regularly considered (Barbaro et al., 2017; 99 
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Brockerhoff et al., 2017; Cadotte et al., 2011; Dee et al., 2019; Lavorel et al., 2013), but the underlying 100 
genetic diversity within species is less conspicuous and remains often overlooked (Hoban et al., 101 
2021b; Laikre et al., 2020, 2010). Genomic diversity, i.e. genetic diversity at the genome-wide level, is 102 
composed of DNA variants that are mostly neutral to natural selection, and of variants that can respond 103 
to selection, affecting individual fitness and population adaptation. Genomic diversity is responsible 104 
for the level of adaptation of populations to their current environment, and for their adaptive potential 105 
(Derry et al., 2019; Hoffmann et al., 2017) which enables them to adapt to environmental change and 106 
increases their resilience to anthropogenic risks (Hoffmann and Sgrò, 2011; Hughes and Stachowicz, 107 
2004; Sgrò et al., 2011; Wernberg et al., 2018). The natural resource manager can harness this 108 
genetic diversity information for an evolutionary management of populations, with relatively fast 109 
effects, in just one or a few generations, e.g., slowing down genetic erosion or producing a shift in 110 
adaptive allele frequencies (Hairston et al., 2005; Rudman et al., 2017). Recent reviews have 111 
highlighted the relevance and application potential of genomics for biodiversity, ecosystems and 112 
people (Breed et al., 2019; Stange et al., 2021). However, despite available scientific knowledge, 113 
methods and guidance, the integration of genetic and genomic information into international policy on 114 
biodiversity conservation and sustainable management is progressing slowly (Arlettaz et al., 2010; 115 
Dubois et al., 2020; Shafer et al., 2015), notably with regard to the post-2020 global biodiversity 116 
framework of the Convention on Biological Diversity (Hoban et al., 2021a,b; Laikre et al., 2020) and 117 
the 2030 UN sustainable development goals (Huddart et al., 2022; Mondejar et al., 2021).  118 
 119 
In this paper we focus on genomic variation and its applications to facilitate biodiversity conservation 120 
and management for the sustainable provision of ES. Using a literature keyword search and the review 121 
of papers relating to specific ES management goals, we illustrate how genomic applications appear to 122 
have poor representation in the ES literature and how their use is still largely focused on a few flagship 123 
species. Consequently, benefits from genomics are underachieved, a reality we can qualify as a 124 
genomics-management ‘application gap’ (see also (Taylor et al., 2017)). We illustrate solutions to 125 
bridge this gap which extends beyond the earlier defined conservation genetics gap and its proposed 126 
solutions (Hoban et al., 2013a; Holderegger et al., 2019). We show how genomic data captures 127 
relevant conservation and management information in single and in interacting species (e.g., 128 
inbreeding, population structure, adaptive genetic variation, symbiotic interactions, co-evolutionary 129 
history) and how this information is actually or potentially used to support management actions to 130 
effectively attain ES-related management goals in a broad range of ecosystems.  131 
 132 
Our paper comprises four sections: 1) A section on the concepts and our proposed framework relevant 133 
to genomic applications in natural and weakly to moderately managed ecosystems; 2) a Methods 134 
section that describes our approach of reviewing the literature; 3) a core section that addresses the 135 
application gap and illustrates with case studies how genomics can facilitate conserving biodiversity 136 
and achieving a large range of species-level and community-level management goals for ES; and 4) 137 
a Discussion section that summarises our findings on genomics for biodiversity conservation and ES 138 
management and discusses their implications for improved research and biodiversity management in 139 
an international conservation context.   140 
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B. Concepts and framework for sustainable genomics-informed 141 
biodiversity conservation and ecosystem service management 142 

B1. Ecosystem services and a suggested framework for their sustainable management  143 

Ecosystem services are defined by the Common International Classification of Ecosystem Services 144 
(CICES, supported by the European Environmental Agency) as the contributions that ecosystems 145 
make to human well-being, and are considered to be distinct from the goods and benefits that people 146 
subsequently derive from ES (Haines-Young and Potschin, 2018). The CICES v. 5.1 framework 147 
defines three ES Sections: Provisioning ES, Regulation and maintenance ES, and Cultural ES. The 148 
concept of ES was popularised in the Millennium Ecosystem Assessment (Reid et al., 2005) and was 149 
further developed into the concept of ‘Nature’s Contributions to People’ (NCP) by the 150 
Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) to 151 
explicitly recognize the role of culture and local knowledge in shaping the relationship between nature 152 
and people (Díaz et al., 2018); for correspondence between the ES and NCP frameworks, see 153 
Kadykalo et al. (2019). Since specific ES are relatively straightforward to identify from an ES 154 
management point of view, and since they are commonly linked to a particular species or function 155 
within an ecosystem, we mainly use the ES concept in this paper.  156 
 157 
We propose a conceptual framework for effective and sustainable genomics-informed biodiversity 158 
conservation and management of ES as detailed in Fig.1. The ecosystem manager first has to define 159 
a management goal that aims to maximise one or multiple ES (Villarreal-Rosas et al., 2020), while 160 
also preserving the ecosystem with a high level of biodiversity for future needs under uncertainty (Grêt-161 
Regamey et al., 2013; Hamel and Bryant, 2017). To establish a management plan, they must identify 162 
ecosystem biodiversity reference points in time, such as i) the current biodiversity in the ecosystem 163 
before management actions are applied, and ii) the biodiversity at a specific future time point in which 164 
the targeted management goal will be achieved (Fig. 1). Indicators based on species diversity, 165 
genomic, phenotypic and environmental diversity can be used to measure the biodiversity status and 166 
eco-evolutionary processes of the ecosystem and the ES it provides. This is useful to understand and 167 
predict effects of potential threats to biodiversity and the ES (Keith et al., 2013), to provide insights 168 
into the mitigation of these threats, and thus to contribute to designing management actions to achieve 169 
the management goal (Fig. 1). Monitoring the change in these ecological and evolutionary indicators 170 
and adjusting management action as necessary is key for successful biodiversity conservation and 171 
sustainable ES management (Hoban et al., 2020). Collaboration between managers and scientists is 172 
highly relevant in this process, to exchange information, samples and methods.  173 
 174 
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 175 

Figure 1 Framework to reduce the application gap of genomics in biodiversity conservation 176 
and ecosystem service management. Current biodiversity and ecosystem services (ES) are 177 
affected by evolutionary processes that modulate genomic diversity. Managers can use indicators 178 
based on genomic, phenotypic and environmental diversity to assess and understand this current state 179 
of an ecosystem and to inform which management actions lead to the targeted management goals. 180 
Collaboration between managers and scientists is highly relevant in this process, to exchange 181 
information, samples and methods. Threats can affect all stages of the ecosystem and its 182 
management, but monitoring and adjustment of management actions will make it possible to achieve 183 
the management goals in which the targeted biodiversity can sustainably provide ecosystem services. 184 
The colour codes used are the same in figs. 1, 2 and 3, i.e. orange for genomic and other data, blue 185 
for management actions and green for management goals. 186 

 187 
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B2. Evolutionary processes and the added value of genomics for biodiversity 188 
conservation and ES management 189 

Different evolutionary processes affect biodiversity and thus ES provision: speciation and hybridization 190 
events shape species diversity, and mutation, genetic drift, gene flow and selection shape the genetic 191 
diversity within species (Fig. 1), with potential effects on species interactions (Whitham et al., 2006). 192 
Both these levels of genetic or genomic diversity, within single species and in systems of interacting 193 
species, are thus relevant for conservation and ES provision (Fig. 2, see also Methods).   194 
 195 
High-throughput sequencing technologies have made it possible to study evolutionary processes at 196 
the genomic level in model and in non-model organisms (Ekblom and Galindo, 2011; Formenti et al., 197 
2022; Rajora, 2019). The main advance compared to previous technologies is a 100-10,000 fold 198 
increase in the number of genetic markers assessed (e.g., single nucleotide polymorphisms, SNPs) 199 
which allows for more accurate estimation of evolutionary parameters and removes biases due to 200 
uneven genome sampling (Peterson et al., 2012). Intra-specific genomic data informs on the level of 201 
population genetic diversity (e.g., the risk of loss of genetic diversity through genetic drift), on the 202 
relatedness among individuals and substructure of populations, on their connectivity through gene 203 
flow, and on past demographic history including events such as population genetic bottlenecks or 204 
expansions (Gaut et al., 2018). In addition, the increased quantity and density of markers allow the 205 
detection of genomic regions or genes potentially involved in adaptive genetic variation, for example, 206 
based on molecular signatures of selection (Nielsen, 2005; Pritchard et al., 2010) or their association 207 
with relevant phenotypes or putative environmental drivers of selection (Flood and Hancock, 2017; 208 
Rellstab et al., 2015).  209 
 210 
The provision of sustainable ES depends on the persistence and continued performance of the species 211 
that provide the ES (‘ES species’), which relies on the sustainability and adaptive evolution of 212 
biodiversity at all levels, as well as the ecosystem's stability (Hairston et al., 2005). Keystone species 213 
are species that exert very large effects on other associated species in a community (Paine, 1995). 214 
Their adaptive potential is therefore particularly important to consider for management alongside that 215 
of the co-occurring ES species. A cost-effective genomics-informed ES management requires the 216 
identification of keystone and ES species and populations, and a suitable study design, sampling 217 
strategy and choice of genomic markers to inform on evolutionary processes within species and, in 218 
some cases, in communities of co-occurring and/or interacting species (Angeloni et al., 2012; Blasco-219 
Costa et al., 2021; Flanagan et al., 2018; Hoban et al., 2013b; Schielzeth and Wolf, 2021; Whitham et 220 
al., 2006).  221 
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222 
Figure 2 The value of genomic diversity knowledge for biodiversity and ecosystem services 223 
management goals and associated management actions. Management actions can be connected to 224 
multiple management goals (see text). 225 
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C. Methods 226 

To identify the best strategy to select the literature to review for this paper, we first evaluated the 227 
potential of a systematic literature extraction. We conducted a terminology research on Pubmed 228 
Central (www.ncbi.nlm.nih.gov/pmc/) to systematically and quantitatively examine the links between 229 
the keywords ‘genom’ (contained in genome, genomic, genomics), ‘biodiversity’ and ‘ecosystem 230 
service’ in the scientific literature. In over 6,000 papers that contained at least two of the keywords in 231 
the full text, only nine mentioned ‘genom’ and ‘ecosystem service’ simultaneously in the abstract, 232 
although both keywords co-occurred hundreds of times with ‘biodiversity’ (details in Supplementary 233 
material S1). Studies on genomic applications that are relevant for ES management thus appear to 234 
lack visibility in the scientific literature, or match poorly the terminology of ES (details on terminology 235 
match with CICES V5.1 ES Sections and Classes in Supplementary material S1). The keyword search 236 
suggested limited power for a systematic literature extraction; we thus defined our literature search in 237 
consultation with natural resource managers. Based on our framework (Fig. 1), we developed a list of 238 
management goals (MGs) in ecosystems that derive from natural biodiversity (Fig. 2). We selected 239 
review papers and case studies pertaining to each MG, structured into the categories ‘Single species 240 
genomic diversity’ or ‘Interacting species genomic diversity’ to illustrate how management actions 241 
(MAs, in bold in the text) for these MGs benefit from genomic data on a single species, or on multiple 242 
interacting species (Fig. 2). We are conscious that some MGs are overlapping (Fig. 2) but list them 243 
separately on purpose to enhance their accessibility to natural resource managers. When possible, 244 
we preferred case studies that implemented genomics-informed MAs over those that only suggested 245 
them. Given the wide scope of MGs, we did not aim to cover the literature on genomics and ES 246 
management exhaustively. The main workflows that link genomic and other data to MAs are 247 
summarised in Fig. 3.   248 

http://dx.doi.org/10.1016/j.biocon.2022.109883
http://www.ncbi.nlm.nih.gov/pmc/


Heuertz, Myriam et al 2022. The application gap: Genomics for biodiversity and ecosystem service 
management. Biological Conservation 2023 ;Volum 278. 10.1016/j.biocon.2022.109883  
CC-BY-NC-ND 
 

 

249 
Figure 3 Methodological framework on how to use genome-wide diversity in association with 250 
phenotypic or environmental data to guide management actions for biodiversity and ecosystem 251 
services. The column “Data” is divided into types of genomic diversity data (left) and complementary 252 
data (right). GWAS, genome-wide association study; eDNA: environmental DNA; eRNA: 253 
environmental RNA. 254 

 255 

D. Genomic applications to support biodiversity and ES management 256 

D1. Single species genomic diversity for biodiversity and ES management 257 

Ecosystem managers have long recognized the importance of genetic diversity knowledge to define 258 
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population boundaries and conservation units that maximise evolutionary potential and improve 259 
population management (Funk et al., 2012; Moritz, 1994). Genome-wide data allow for powerful 260 
insights into neutral and adaptive evolutionary processes and their drivers in non-model species 261 
(Ekblom and Galindo, 2011; Rajora, 2019). They promote the development of fast and effective 262 
methods and MAs to mitigate the impacts of decreasing genetic diversity on populations, species 263 
diversity, ES and climate change, as for example shown for the value of whales to sustain marine ES 264 
(Attard et al., 2018; Cook et al., 2020). The main ES MGs that benefit from genomic data on single 265 
species are listed in the following sections and include developing conservation strategies for 266 
threatened species (D1.1), managing for sustainable productivity (D1.2), facilitating adaptation to 267 
environmental change (D1.3), and restoring species in degraded ecosystems (D1.4).  268 

D1.1 Conservation of threatened species 269 

Conserving endangered species is a major MG that pursues the ES of preserving genetic resources 270 
and products from rare species that can have significant functional roles in ecosystem processes (Dee 271 
et al., 2019). It involves specific MGs on securing the persistence of populations and preventing 272 
genetic erosion. MAs generally aim at increasing the number of individuals through supplementation, 273 
for example from carefully designed captive breeding, in order to reduce inbreeding and thus to 274 
increase the diversity and adaptive potential of populations, or through assisted colonisation into 275 
new habitats (Derry et al., 2019, Fig. 2, see also D2.2). Genomic applications that support these MAs 276 
typically involve the estimation of relatedness, inbreeding, effective population size and, occasionally, 277 
estimates of maladaptation or genomic load (Fig. 3, Arenas et al., 2021; Flesch et al., 2020; Leroy et 278 
al., 2018). A recent workflow on how to use genomics to guide conservation MAs (Rossetto et al., 279 
2021) rests on well-established paradigms in conservation genetics (Willi et al., 2022). 280 
 281 
One of these paradigms is that a severe reduction in population size is linked to reduced genetic 282 
diversity (Frankham et al., 2014). For example, in the case of the hihi (Notiomystis cincta), a threatened 283 
passerine bird endemic to New Zealand, a conservation programme starting in the 1980s used the 284 
sole remaining island population as a source for reintroduction to the mainland and other islands but 285 
failed to restore the species’ adaptive potential (Brekke et al., 2011; de Villemereuil et al., 2019). Low 286 
genome-wide diversity was correlated with low adaptive potential of individuals (estimated from long-287 
term phenotypic trait and fitness data), which suggests genomic data can be used as a proxy for 288 
difficult to obtain long-term trait data (de Villemereuil et al., 2019).  289 
 290 
Another case of severe population reduction is that of the Iberian lynx (Lynx pardinus), which declined 291 
in the second half of the 20th century to only about 100 animals in two remaining subpopulations. A 292 
captive breeding program successfully minimised inbreeding in ex situ conservation and in the 293 
supplemented remnant populations (Kleinman-Ruiz et al., 2019). A new panel of 343 genome-wide 294 
markers selected for minimal redundancy in the lynx genome (Abascal et al., 2016) demonstrated the 295 
benefits of genomic markers, which outperformed microsatellites in four typical conservation 296 
applications (individual identification, parentage assignment, relatedness estimation, and admixture 297 
classification, Kleinman-Ruiz et al., 2017). 298 
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 299 
While threatened plant species have been underrepresented in past sequencing efforts (Exposito-300 
Alonso et al., 2020), a recent surge in the use of genomic data studies opens possibilities for more 301 
efficient MAs in plant conservation (Lanes et al., 2018; Mamo et al., 2021; Tierney et al., 2020; van 302 
der Merwe et al., 2021; Wagner et al., 2021). For example, Ipomoea cavalcantei, a narrowly distributed 303 
endangered plant and a flagship species for tropical conservation, showed, unexpectedly, higher 304 
genome-wide genetic diversity and lower spatial genetic structure than I. maurandioides, a widespread 305 
species of least concern (Lanes et al., 2018). These results illustrate that genomic data are a useful 306 
complement to the IUCN Red List Criterion B (extent of occurrence) in conservation assessments 307 
(Garner et al., 2020).  308 
 309 

D1.2 Sustainable productivity 310 

An important prerequisite for sustainable management of population productivity is the correct 311 
delimitation of genetically distinct populations with different demographic or adaptive histories to 312 
define conservation or management units (Fig. 2). For instance, genomic data is routinely used for 313 
this purpose in sustainable fisheries management (Benestan, 2020; Bernatchez et al., 2017). The high 314 
resolution of genomic data has made it possible to detect genetic structure in populations previously 315 
assumed to be panmictic (Koot et al., 2021; Pazmiño et al., 2019), to provide information about the 316 
directionality of gene flow between management areas (Barth et al., 2017), and to unveil mismatches 317 
between administrative and biological units (Benestan, 2020; Mejía-Ruíz et al., 2020; Mullins et al., 318 
2018). These genomic insights allow optimisation of management areas for productivity while limiting 319 
the risk of overexploitation. 320 

In many exploited species, the genomic underpinnings of biomass productivity traits (e.g., individual 321 
growth), phenotypic plasticity and sensitivity to environmental stressors remain poorly known. In forest 322 
trees, where genetic adaptation to the local population environment is common (Lind et al., 2018) 323 
breeding programs for biomass productivity and disease resistance have traditionally been based 324 
on phenotypic selection in pedigrees. SNPs associated with bud burst, drought resistance or wood 325 
properties have been identified in some species (Gailing et al., 2009; González-Martínez et al., 2006), 326 
but productivity-related traits are usually polygenic and may be shaped by negative selection (de 327 
Miguel et al., 2022). Genomics-informed breeding, or genomic selection, takes advantage of this 328 
polygenicity of traits allowing us to estimate the genomic estimated breeding value of each individual 329 
based on genome-wide markers only, exploiting their associations with numerous small-effect 330 
quantitative trait loci (Lebedev et al., 2020). In perennial species such as forest trees, genomic 331 
selection allows for an early selection of individuals before trait expression and can outperform 332 
pedigree-based selection while preserving genomic variation and adaptive potential (Pégard et al., 333 
2020).   334 

Assisted gene flow or migration to spread adaptive alleles is an option to boost productivity when 335 
allochthonous provenances outperform local ones, and is currently proposed to attenuate the impacts 336 
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of climate change (Aitken and Whitlock, 2013, see D1.3). The potential of this approach alongside 337 
genomic selection in a breeding program has been suggested for Norway spruce (Picea abies) in 338 
Sweden, where growth and phenology traits are polygenic and strongly geographically determined 339 
(Milesi et al., 2019). A study in lodgepole pine (Pinus contorta) showed that alleles associated with 340 
climate variables can be used to predict tree heights in a long-term provenance trial, illustrating the 341 
potential of genomic data to inform management  if phenotypic trials are not available (Mahony et al., 342 
2020). 343 

 344 

D1.3 Facilitate adaptation to climate change  345 

Climate change affects all levels of biological organisation, changing species’ distributions, species 346 
interactions and population allele frequencies (Scheffers et al., 2016), which affects many ES of the 347 
Provisioning and of the Regulation and Maintenance Sections. Climate change effects on ES are 348 
mostly negative although variable across services (Bindoff et al., 2019; Pecl et al., 2017; Runting et 349 
al., 2017). Populations can respond to climate change by migration to track their climate optimum, 350 
persist locally thanks to phenotypic plasticity or genetic adaptation, or face demographic decline and 351 
increased extinction risk, the latter being exacerbated by loss of habitats (Aitken et al., 2008). 352 
Predicting species and population responses to climate change is key to inform MA for their 353 
persistence, especially if they lose suitable habitat or cannot track climate change through migration 354 
(Urban et al., 2016). These predictions have been improved with the inclusion of genetic structure 355 
information into species distribution models (Ikeda et al., 2017), and the identification of climate-356 
adaptive genetic variants through landscape genomics approaches (Capblancq et al., 2020; Razgour 357 
et al., 2019; Rochat et al., 2021).  358 

In European beech (Fagus sylvatica), a keystone species in temperate forests, genomic variants 359 
associated with extreme phenotypes for drought damage were identified in natural panmictic 360 
populations using a cost-efficient genome-wide association study (GWAS) on sample pools and then 361 
validated in a genotyping assay that effectively predicted damage phenotypes (Pfenninger et al., 362 
2021). These results can inform future MAs to facilitate adaptation to climate change in these forests. 363 
In the bat species Myotis crypticus and M. escalerai, gene-environment association (GEA) methods 364 
identified over 30 potentially climate-adaptive variants (Fig. 3, Razgour et al., 2019). Ecological niche 365 
models that included these variants significantly reduced the geographic range loss predictions under 366 
future climate scenarios, and can inform MAs for evolutionary rescue of threatened cold-wet adapted 367 
populations through enhancing landscape connectivity and gene flow from hot-dry adapted ones 368 
(Razgour et al., 2019).  369 

Another approach to assessing climate change response is the prediction of genomic offset, or risk 370 
of non-adaptedness (RONA), i.e., the estimated level of maladaptation of a population to new 371 
environmental conditions based on genomic and environmental data from different time points and/or 372 
locations (Rellstab et al., 2021). For instance, current and future RONA estimates of Betula nana, a 373 
keystone woody species of conservation concern in Britain (Borrell et al., 2020) identify priority areas 374 
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for the conservation of local adaptations and adaptive diversity (see also D2.5) and propose assisted 375 
gene flow or migration strategies to maximise local adaptation under climate change. Similarly, SNPs 376 
for climatic maladaptation were identified in maritime pine (Pinus pinaster) and validated based on 377 
differential survival in a common garden trial in an extreme environment (Jaramillo-Correa et al., 2015). 378 
These examples illustrate the contribution of genomic applications to predicting natural population 379 
responses to climate change and inform MAs for adaptation and mitigation of effects. However, gene-380 
targeted MAs, which are often based on the current adaptive state, should be applied with caution in 381 
order to preserve sufficient genetic diversity for future unknown threats (Derry et al., 2019; Kardos and 382 
Shafer, 2018). 383 

D1.4 Restore and renew diversity   384 

Restoring terrestrial and aquatic ecosystems provides important ES including climate change 385 
mitigation and carbon sequestration (Bastin et al., 2019; Isabel et al., 2020, see also D2.6). Genomic 386 
diversity knowledge obtained in keystone species can meaningfully inform MAs on  the choice and 387 
sampling strategy of population provenances for restoration, leading to more successful establishment 388 
and persistence and greater resilience or restored populations (Breed et al., 2019; Gann et al., 2019; 389 
Rossetto et al., 2019).  390 

Recent restoration MAs for terrestrial ecosystems document a shift from local provenancing to 391 
climate-adjusted provenancing (Prober et al., 2015), using landscape genomics methods (see D1.3) 392 
to inform seed sourcing and to assess the risks and successes of MAs (Supple et al., 2018). 393 
Generalised Dissimilarity Modelling which controls for isolation by distance when testing GEA (Fig. 3) 394 
revealed distinct patterns of spatial genomic diversity in five largely co-distributed Acacia species 395 
supporting provenance regions of different sizes and species-specific seed-sourcing strategies for 396 
restoration (Rossetto et al., 2020). In Eucalyptus microcarpa fragmented woodlands of South-eastern 397 
Australia, GEA supported climate-based seed sourcing as well as mixed seed sourcing to enhance 398 
genetic diversity in revegetation (Jordan et al., 2019, see D2.6). Genetic assessment of reforestation 399 
MAs revealed that revegetated sites captured a large proportion of overall genomic diversity (Jordan 400 
et al., 2019, 2016). Eucalyptus melliodora is another keystone tree species in many native ecosystems 401 
in Australia, some of which are critically endangered. A genomic study in this species showed that 402 
restoration projects could source seeds much more broadly (up to ~500 km) than current practice, 403 
consistent with recommendations based on phenotypic trait analyses (Supple et al., 2018). This 404 
strategy could increase the number of available provenances for restoration, and help enhance the 405 
adaptive potential in planted sites. 406 

In the broader context of renewing biodiversity, genomic knowledge is important to monitor the 407 
consequences of assisted re-colonization of species into areas where they were previously depleted, 408 
and also of natural expansion of species into new areas (Berthouly-Salazar et al., 2013; Excoffier et 409 
al., 2009; McInerny et al., 2009; Mueller et al., 2022). 410 
 411 
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D2. Interacting species genomic diversity for biodiversity and ES management 412 

The provision of many ES depends on the complex interaction of species with each other and their 413 
environment (Keith et al., 2017; Moreno-Mateos et al., 2020; Pollock et al., 2020). Genomic 414 
applications play a key role in elucidating the evolutionary processes affecting communities and 415 
species interactions, evaluating their potential effects on biodiversity and ES and can thus inform ES 416 
management (Blasco-Costa et al., 2021; Schielzeth and Wolf, 2021; Whitham et al., 2006). The MGs 417 
that benefit from genomic information on interacting species include the management of invasives 418 
(D2.1), of hybridization (D2.2), of host-microbe interactions (D2.3) and of microbial community diversity 419 
(D2.4). Multi-species patterns of genomic diversity in communities also inform the delineation of 420 
conservation areas (D2.5) and the restoration of communities (D2.6).  421 
 422 

D2.1 Manage invasive species and their effects on species interactions  423 

Invasive species are among the biggest threats to biodiversity and ecosystem stability (Simberloff, 424 
2013). They interact with their competitors or hosts, may hybridise with related species (see also D2.2), 425 
often introduce parasites and pathogens, and may threaten biodiversity and many ES, e.g., material 426 
and food production, carbon storage, nutrient cycling, water and air purification (Hamelin and Roe, 427 
2020; North et al., 2021). The process of invasion involves the stages of transport, introduction, 428 
establishment, and spread (Chown et al., 2015; Hamelin and Roe, 2020). Genomic applications can 429 
inform MAs on each of these stages: metagenomic approaches (eDNA or metabarcoding, Fig. 3) are 430 
appropriate to detect potentially invasive species, assess invasion risk and inform MAs on prevention 431 
strategies in early stages whereas population genomic approaches are suitable to  assess the origins, 432 
the risks and the drivers of invasion and to monitor its progression so as to inform MAs to limit  the 433 
spread of invaders and their negative impact on native species, their associated communities and 434 
ES (Bouteiller et al., 2019; Chown et al., 2015; Hamelin and Roe, 2020; North et al., 2021).   435 

In black locust (Robinia pseudoacacia), a North American native species that invaded Europe in the 436 
19th century, SNP data allowed to trace the origin of invasion to a few populations from the 437 
northeastern part of the US native range and assign invasion success in Europe to higher clonality 438 
(Bouteiller et al., 2019). In the shrub Scotch broom (Cytisus scoparius) in Denmark, a genomic marker 439 
study confirmed the invasion by a non-native gene pool and genetic swamping of native vulnerable 440 
heathland populations of the same species but the authors cautioned against negative side-effects 441 
(e.g., unintended seed dispersal) by removal of the invasive phenotype (Rostgaard Nielsen et al., 442 
2016). In some cases removal of genetically identified migrants could minimise such risks. 443 

The raccoon dog (Nyctereutes procyonoides) from the Canidae family is of East-Asian origin and 444 
introduced in Europe for fur trade. It is a host and potential vector for a range of zoonotic diseases 445 
including echinococcosis, trichinellosis, rabies and SARS-CoV-2 (Freuling et al., 2020). Genomic 446 
information on the origin and spread of invasive populations (see Nørgaard et al., 2017, for an example 447 
in Denmark) and marker development from the recently available full genome (Chueca et al., 2021) 448 
constitute valuable resources to monitor and control invasive populations and possible associated 449 
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infectious diseases.  450 

Genome-wide studies also have the power to pinpoint genes or molecular processes that help 451 
understanding the success of an invasive species and develop countermeasures. In the case of the 452 
highly invasive house mouse (Mus musculus), island populations in California and in the Galápagos 453 
lacked rodenticide resistance alleles, which represents an option for population control or 454 
eradication (Morgan et al., 2018). In the case of two sister pathogenic tree fungi, introgression from 455 
the invasive North American Heterobasidion irregulare into the native European H. annosum increased 456 
invasiveness of the latter, suggesting adaptive introgression (Sillo et al., 2021, see also D2.2). 457 
Altogether, these studies demonstrate the usefulness of genomic approaches to elucidate and monitor 458 
invasion processes and inform MAs for the management of invasives. 459 

 460 

D2.2 Harness hybridization  461 

Hybridization is a common evolutionary process that may impact all processes of divergence along 462 
the speciation continuum (Abbott et al., 2013). Introgression of genes following hybridization can either 463 
(i) compromise species survival and integrity by disrupting coadapted gene complexes (Allendorf et 464 
al., 2001; Rhymer and Simberloff, 1996), or (ii) increase the adaptive potential of populations, by 465 
enhancing diversity and creating novel genetic combinations (Becker et al., 2013; Hamilton and Miller, 466 
2016; Hoffmann and Sgrò, 2011; Pfennig et al., 2016; Whiteley et al., 2015). Detecting hybrids and 467 
characterising introgression and its effects on adaptation is thus directly relevant for conservation and 468 
natural resource management (Flanagan et al., 2018; Quilodrán et al., 2020). Genomic diversity 469 
knowledge in hybrid systems allows to design strategies to monitor hybridization and its effects and 470 
as a result, hybridization is being increasingly harnessed as a management tool for genetic rescue 471 
or to enhance adaptation or adaptive potential (Chan, 2018; Hamilton and Miller, 2016; Moran et 472 
al., 2021; Strait et al., 2021). In this context, the possibility of conserving hybrids should be examined 473 
and integrated in novel conservation policies that allow to consider species not as fixed entities but as 474 
evolving lineages (Chan et al., 2019; Donfrancesco and Luque-Lora, 2021; Draper et al., 2021).  475 

A widely documented case of the use of hybridization for genetic rescue from an imminent threat of 476 
extinction is that of the Florida panther (Puma concolor coryi). Release of pumas from the Texas 477 
subspecies (P. c. stanleyana) increased survival, fitness and heterozygosity and reduced inbreeding 478 
depression in the Florida population (see also D1.1), although this MA also illustrated the need of 479 
managing infectious disease risks in genetic rescue (Johnson et al., 2010). More generally, 480 
understanding the phenotypic effects of introgression, developing cost-effective genotyping tools 481 
applicable across a wide range of sample provenances, DNA quantities and qualities is crucial for 482 
large-scale monitoring of hybridization and its associated risks, as shown in an assessment of 483 
hybridization between wolves (Canis lupus) and domestic dogs (Harmoinen et al., 2021).  484 

In marine ecosystems,  coral phylogenies bear a legacy of hybridization, suggesting that introgression 485 
promoted resilience to environmental changes, e.g., in the genera Porites, Pocillopora and Acropora 486 
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(Forsman et al., 2017; Willis et al., 2006). For example, genome sequencing in five Acropora corals 487 
identified a phylogeny shaped by adaptive introgression and climate change (Mao et al., 2018). Recent 488 
studies confirmed the past introgression events among more than a hundred coral species, some of 489 
them also revealing substantial ecological differentiation despite ancient morphological stasis 490 
(Bongaerts et al., 2021a; Hobbs et al., 2021). These studies support hybridization as a promising tool 491 
for adaptive management in coral reef restoration (Chan et al., 2019, 2018; Rinkevich, 2020).  492 

Hybridization has also shaped the genomes of numerous other animal or plant taxa (Marques et al., 493 
2019; Suarez-Gonzalez et al., 2018). In the genus Quercus (oaks), introgression has led to the transfer 494 
of genetic adaptations between species (Cannon and Petit, 2020; Leroy et al., 2020), suggesting its 495 
usefulness in MAs such as assisted gene flow, migration or genetic rescue in the context of adapting 496 
forests to climate change, or to disturbed or urban environments (previously developed in D1.2, D1.3 497 
and D1.4, Cannon and Petit, 2020; Hamilton and Miller, 2016; Leroy et al., 2020). Knowledge on gene 498 
flow between populations is essential to design such MAs since contact between long-isolated 499 
populations might cause outbreeding depression due to incompatibilities in adaptive differences 500 
(Aitken and Whitlock, 2013).  501 

 502 

D2.3 Manage host-microorganism interactions 503 

Global change is associated with deregulation of interactions between host species and their 504 
interacting microorganisms, which is projected to disrupt host-symbiont interactions and to increase 505 
the frequency of epidemic pest attacks (Bartoli et al., 2016; Mohan et al., 2014). GWAS can address 506 
the coevolution of hosts and their associated organisms, and, in the case of pathogens, reveal the 507 
genetic basis of host resistance (La Mantia et al., 2013). This is useful to assess the risks of disease 508 
outbreaks and for MAs to protect hosts from pathogens, thus contributing to ES by maintaining 509 
ecosystem health.  510 

In cetaceans, for example, GWAS revealed the genetic bases of adaptation to harmful algal blooms 511 
and of resistance to a lethal virus (Batley et al., 2019; Cammen et al., 2015), potentially useful in 512 
vaccine development (Batley et al., 2019). In plants, provenance and progeny trials (see D1.2) 513 
represent opportunities to study interactions between host genotypes and associated organisms. In 514 
trees of the genus Populus, genes associated with defence chemistry, phenology, growth and insect 515 
community composition have been identified (Barker et al., 2019; DeWoody et al., 2013). These co-516 
evolutionary interactions between plant genotypes and associated communities can be harnessed to 517 
foster plant health, to maintain or increase biodiversity, or to protect endangered species within their 518 
environment. It has also been suggested that genomic information on interactions between host plants 519 
and their symbionts, in particular arbuscular mycorrhizal fungi, can be used to enhance those 520 
beneficial associations and restoration success (Aavik et al., 2021).  521 

A promising approach to improve risk assessment for pathogen outbreaks is to examine genomic 522 
signatures of host response and pest genetic variability in parallel (Bartoli and Roux, 2017; Karasov 523 
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et al., 2014). This approach can contribute to monitoring the risks or to prevent pathogen spillover 524 
from one host to another, as has been shown for an important fungal pathogen at risk of spillover from 525 
cultivated apple to the Asian wild apple Malus sieversii (Feurtey et al., 2020). If the risk of pathogen 526 
spillover to an endangered species is high, discontinuation of host cultivation could be an adapted 527 
MA. Similarly, genomic assessment of disease spillover risk could be applied to aquaculture and wild 528 
fish populations, as a complement to pathogen monitoring (Bouwmeester et al., 2021). Target 529 
organisms are a priori at higher risk in the case of spillover of new, non co-evolutionary pathogen 530 
attacks. In such systems, it is possible to identify genomic regions responsible for so-called exapted, 531 
i.e., non co-evolutionary host resistant phenotypes, that would be due to the presence of genes 532 
providing broad-spectrum resistance, as has been shown in the oak species Quercus robur 533 
(Bartholomé et al., 2020). Although this requires both field work and substantial genomic resources 534 
(e.g. mapping populations and a reference genome), rapid progress in non-model species paves the 535 
way to more practical applications in the near future (Storfer et al., 2021).  536 

 537 

D2.4 Conserve and utilise microbial communities in water, soils and sediments  538 

Numerous ES of the Provisioning Section such as agricultural or material production and the 539 
Regulation and Maintenance Section such as water quality, reduction of contamination, or nutrient 540 
cycling are mediated by microorganisms. In terrestrial and marine environments, microorganisms 541 
regulate, balance or otherwise affect inter- and intraspecific interactions (Freimoser et al., 2016; Jiao 542 
et al., 2014; Marco and Abram, 2019). DNA metabarcoding, metagenomics and metatranscriptomics 543 
have been called ‘thermometers for biodiversity’ as they rapidly provide large data sets on inter- and 544 
intraspecific diversity of microorganisms and small organisms from a variety of taxonomic and 545 
functional groups based on environmental DNA (eDNA) from environmental samples (Breed et al., 546 
2019; Saccò et al., 2022; Wilson et al., 2019). These tools can be applied simply and systematically 547 
on large geographical scales, their efficiency in detecting species depending on taxonomic groups, 548 
sampling conditions and available reference databases (Hua et al., 2015; Ji et al., 2013; Watts et al., 549 
2019; Wilson et al., 2019).  550 

In forests, wood decomposition by microorganisms, in particular by saprophytic fungi, is crucial for ES 551 
such as nutrient recycling, carbon sequestration, soil formation, habitats creation and the preservation 552 
of the diversity of organisms living in dead wood (Tedersoo et al., 2016). DNA metabarcoding of forest 553 
soils showed the impact of distinct keystone forest tree species, edaphic variables and past forest 554 
management on microorganisms community structures (Behnke-Borowczyk et al., 2021; Jamy et al., 555 
2020; Tedersoo et al., 2016). This knowledge can inform forest management on which tree species 556 
are most appropriate to maximise soil functions such as carbon sequestration and nitrogen 557 
storage and to preserve soil microorganism diversity and their derived ES (Fig. 2). For example, 558 
shotgun metagenomic sequencing revealed that soils under Prunus serotina exhibited functions that 559 
indicate a rapid nitrogen cycle and a high inorganic nitrogen availability (Kelly et al., 2021), suggesting 560 
that P. serotina can be used for soil reclamation in nitrogen-poor soil conditions (e.g. in coal mine 561 
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spoil heaps) to restore post-industrial ecosystems (see also D2.6). More generally, metagenomics 562 
and metatranscriptomics can inform on the response of microorganism communities to environmental 563 
change and identify mutualistic endophytic and rhizosphere plant-microbial associations, which opens 564 
possibilities to harness these microbial functions through MAs (changing plant cover, inoculation) to 565 
support desired responses (Hamilton et al., 2016; Jansson and Hofmockel, 2020). 566 

eDNA approaches are also increasingly applied  in aquatic environments (Pawlowski et al., 2018; 567 
Saccò et al., 2022; Wang et al., 2021). For example, functional metagenomics can refine microbial 568 
community profiles associated with specific water masses at different depths that support different ES 569 
(Keuter et al., 2015; Lam et al., 2015). 570 

 571 

C2.5 Delineate areas for conservation and ES 572 

Delineating priority areas for biodiversity conservation and ES is a common challenge for managers 573 
(Hermoso et al., 2018; M. Jung et al., 2021; Mokany et al., 2014; Sala et al., 2021; Weeks and Adams, 574 
2018). Traditional approaches for conservation prioritisation identified hotspots based on species 575 
richness and endemism (Mittermeier et al., 2005; Myers et al., 2000). Recent approaches use multiple 576 
criteria to optimise the spatial representation and conservation of multiple biodiversity levels or 577 
ecosystem properties, while also minimising socio-economic limitations (Carvalho et al., 2017, 2016; 578 
V. Jung et al., 2021; Moilanen et al., 2009; Morán‐Ordóñez et al., 2018; Pollock et al., 2020). Genomic 579 
applications can facilitate spatial prioritisation through informing on drivers and features of 580 
biodiversity representation and persistence (D2.4) and on adaptive population management (Andrello 581 
et al., 2022; Hohenlohe et al., 2021; Nielsen et al., 2022), thus contributing to ecosystem resilience 582 
and regulation (Des Roches et al., 2021; Raffard et al., 2019, see also D1). When combined with 583 
spatially explicit measures of ES supply, demand and flow, genomics-informed conservation 584 
prioritisation can help resolve trade-offs between different management objectives for biodiversity 585 
conservation and different provisioning and/or maintenance and regulation ES (Hermoso et al., 2018; 586 
M. Jung et al., 2021; Law et al., 2021; Pereira et al., 2020; Sala et al., 2021; Villarreal-Rosas et al., 587 
2020), thus maximising benefits of biodiversity and ES. 588 

The body of research on genetic diversity across diverse species and evolutionary timescales 589 
suggests that multi-species conservation objectives are necessary to delineate protected-area 590 
networks that preserve evolutionary processes at the species and community levels (Carvalho et al., 591 
2017; Nielsen et al., 2017). Genomic data provide such metrics and enable the robust delineation of 592 
conservation areas that can be adjusted to desired MGs with regard to population adaptation or to 593 
maximise multispecies evolutionary potential (Phair et al., 2021; Xuereb et al., 2021). A study on 594 
six freshwater fish species suggested maximising the representation of individual alleles (Paz-Vinas 595 
et al., 2018) while another on three amphibian species recommended maximising the representation 596 
of both neutral and adaptive allele clusters (Hanson et al., 2020). In aquatic ecosystems multispecies 597 
information from metabarcoding is increasingly applied in spatial planning (Bani et al., 2020; 598 
Pawlowski et al., 2018). Although still rare, the application of genomic multi-species assessments for 599 
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protected area delineation are increasingly relevant for conservation planning and climate-adaptive 600 
management of communities (Gaitán-Espitia and Hobday, 2021). 601 

 602 

D2.6 Restore communities, habitats and ecosystems 603 

The large-scale restoration of converted or degraded ecosystems is primordial to mitigate climate 604 
change and limit species extinction world-wide (Rey Benayas et al., 2009; Strassburg et al., 2020; 605 
Suding et al., 2015). Restoration success will strongly depend on defining specific, pertinent and 606 
achievable MGs (see B2, Coleman et al., 2020; Coleman and Bragg, 2021). These will aim to restore 607 
the biodiversity of a historical or extant reference state to renew forfeited ES (Breed et al., 2019; Suding 608 
et al., 2015), or, alternatively, to reinforce or redefine the community for biodiversity conservation and 609 
ES provisioning under future conditions (Coleman et al., 2020; Kleypas et al., 2021).  610 

Restoration of habitats, communities or ecosystems first depends on the restoration success of 611 
keystone species (see D1.4). Genomic applications in keystone and associated species allow to 612 
select provenances adapted to the current or future predicted climate, to assess the risks 613 
associated to their use  in restoration in terrestrial or aquatic environments, and to monitor genetic 614 
diversity in the restored populations (D1.4, Breed et al., 2019; Coleman et al., 2020; Rossetto et al., 615 
2019; Wood et al., 2020). A scientifically supported strategy for restoration of resilient communities is 616 
regional admixture provenancing based on mixing seeds of a locally adapted provenance with that 617 
of a few surrounding provenances which contributes to increasing the diversity for future adaptation, 618 
as implemented jointly for multiple species in the restoration of European mesic grasslands 619 
(Bucharova et al., 2019). In this approach, provenance regions are defined based on the abiotic 620 
environment and are the same for all species (Bucharova et al., 2019). Multispecies regional 621 
admixture provenancing could benefit from species-specific genomics-based delineation (Rossetto 622 
et al., 2020) to facilitate reaching a compromise between current adaptation and the need for future 623 
adaptive potential of restored communities (Bucharova et al., 2019). A study that combined genomic, 624 
phenotypic and environmental data concluded that local provenances were the most appropriate to 625 
restore moderately disturbed sites, whereas provenance admixture was found to be most effective for 626 
the restoration of highly degraded sites (Carvalho et al., 2021; Rico, 2021). Monitoring the genetic 627 
outcomes of restoration strategies allows management practices to evolve as knowledge 628 
accumulates (Hodgins and Moore, 2016).  629 

In marine ecosystems, the use of genetics has been identified as a priority in reef restoration (Kleypas 630 
et al., 2021; Vardi et al., 2021), where MAs such as assisted migration of multiple species may create 631 
novel species assemblages (sensu Rinkevich, 2015) and dynamics, and in effect, lead to assisted 632 
translocation of communities (Rinkevich, 2021). The recent development of ‘reefscape genomics’ 633 
approaches that combine genomic data with state of the art spatial mapping and mass phenotyping 634 
paves the way for fine-scale landscape genomic approaches on coral reefs and other marine 635 
ecosystems, facilitating the characterization of evolutionary processes that provide guidance and 636 
monitoring tools for coral reef restoration (Bongaerts et al., 2021b). 637 
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Metagenomic and metatranscriptomic applications can monitor the species composition, the desired 638 
species interactions and the metabolic pathways necessary to deliver the targeted ES in restored 639 
ecosystems (Breed et al., 2019; Cordier et al., 2021). New biotechnology techniques, in particular 640 
the CRiSPR–Cas9 system (Hsu et al., 2014), bring the possibility to manipulate and edit genetic 641 
material in a rapid fashion. While sometimes controversial, such biotechnological tools can tackle 642 
urgent conservation and ES challenges by introducing precisely the desired traits into an original 643 
genetic background (Breed et al., 2019; Segelbacher et al., 2022). Key restoration species can be 644 
targeted with fitness-improving gene edits while pests can be controlled with suppression gene edits 645 
that cause infertility or lethality (Breed et al., 2019). Another biotechnology application is chimerism, 646 
the assembling of entities that possess cells of two or more conspecifics, which may help to accelerate 647 
adaptation of corals in restoration (Rinkevich, 2021). However, before application of biotechnology for 648 
restoration, a careful risk assessment on a case-by-case basis is needed, including technical, ethical 649 
and political aspects (Breed et al., 2019, Segelbacher et al., 2021). 650 

 651 

E. Discussion  652 

We have identified through a keyword search in the scientific literature that there is a gap in 653 
recognizing, addressing and discussing the use of genomics for biodiversity conservation and 654 
management of ecosystem services (ES). Further, examining the scientific literature on specific 655 
genomic applications pertaining to specific management goals, we found that there was also an 656 
application gap. Indeed, we show with case studies that: Genome-wide genetic marker approaches 657 
are mostly limited to keystone or flagship species such as iconic animals (e.g., the hihi, bat species), 658 
top predators (e.g., the Iberian lynx, the Florida panther) or habitat-shaping and economically 659 
important tree species (e.g., pines, spruces, oaks). Although approaches on more modest numbers of 660 
genetic markers are more common and remain useful especially to capture neutral genetic variation 661 
(Fig. 3), genomic approaches are not yet widely applied, i.e., mainstreamed into biodiversity 662 
conservation and ES management. The outlook for such mainstreaming is favourable: we are at the 663 
beginning of an exponential stage of data gathering on whole genomes of species and genomic 664 
variation across populations and, additionally, we are increasingly accessing genomic information from 665 
historical or ancient DNA samples for a temporal, holistic insight into eco-evolutionary processes 666 
(Jensen et al., 2022). We summarise below our findings on genomic applications for natural resource 667 
management, we discuss the ambitious scientific and management goals they allow to tackle and the 668 
policy and management contexts and developments that will enable their most effective use.  669 

 670 

E1. Genomics applications allow to tackle ambitious management goals 671 

We showed that genomics can significantly improve the design of management actions to meet 672 
specific management goals of interest to natural resources managers. These include goals on 673 
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biodiversity conservation and restoration as well as multifaceted goals on sustainable productivity and 674 
provision of ES under environmental changes and anthropogenic stressors. Genomic applications 675 
help to solve trade-offs between different management objectives, and inform decision making to 676 
maximise the long-term sustainable provision of ES (Hermoso et al., 2018; M. Jung et al., 2021; Law 677 
et al., 2021; Pereira et al., 2020; Sala et al., 2021; Villarreal-Rosas et al., 2020). Usually, such goals 678 
are intrinsically interconnected. We chose to organise them separately on purpose to visualise and 679 
exemplify possible management options unambiguously to ecosystem managers. We deliberately 680 
included several application examples in this review to illustrate the power of genomic information, 681 
including functional genetic and potentially adaptive variation, in species and communities.  Beyond 682 
approaches that focus on single species, promising novel applications for genomics in biodiversity and 683 
ES management clearly lie in using its power to exploit species interactions. Introgression of adaptive 684 
variation from closely related populations or species can enhance the resilience of populations after 685 
only a few generations of natural selection, while preserving the adaptive potential of the recipient 686 
population (Hamilton and Miller, 2016; Leroy et al., 2020). Managing the co-evolutionary diversity of 687 
species interactions with their symbionts or key pathogens can support ecosystem health for the 688 
sustainable provision of ES (Aavik et al., 2021; Feurtey et al., 2020). Finally, managing microbial 689 
function in terrestrial and marine ecosystems has the power to increase crucial ecosystem functions 690 
such as carbon storage (Jansson and Hofmockel, 2020; Pawlowski et al., 2018; Saccò et al., 2022). 691 

 692 

E2. Genomics applications or alternative approaches: how to choose?  693 

It should be pointed out that the necessary evolution-based management actions do not always require 694 
molecular genetic or genomic data (Hoban et al., 2020). A careful examination of the management 695 
problem and available resources will help to identify the most appropriate data strategy, for example, 696 
(1) to use proxies such as census population size to assess effective population size (Hoban et al., 697 
2020; Hoban et al., 2021b), (2) to use phenotypes to assess short-term responses to selection based 698 
on quantitative genetics (Alexandre et al., 2020) or (3) to use an effective strategy to obtain the most 699 
appropriate genetic or genomic data in pertinent species or communities (see B2, Angeloni et al., 700 
2012; Blasco-Costa et al., 2021; Flanagan et al., 2018; Schielzeth and Wolf, 2021). It should also be 701 
stressed again that it is precarious to focus on current genetic adaptations alone to foster the future 702 
persistence and resilience of populations. This is because 1) even if major effect loci can be found for 703 
a trait of interest in a particular population, promoting them in another environment can have neutral 704 
or even negative effects because complex adaptive traits are highly polygenic and thus phenotypes 705 
depend on a given genomic background which can respond to different environments in different ways 706 
due to genotype by environment interactions (Lind et al., 2018), and 2) there is uncertainty as to what 707 
future environmental conditions will be. In the case of MAs that involve moving genetic materials 708 
(individuals, populations, communities) or confronting them with new environments through 709 
environmental change, the best assurance for future adaptability is to preserve and foster high genetic 710 
diversity (Derry et al., 2019; Kardos and Shafer, 2018). 711 

Epigenetic variation may also offer applications to the benefit of ES management. Transgenerational 712 
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epigenetic and novel epigenetic landscapes may help predict adaptive responses through their effects 713 
on phenotypes and thus the fitness of organisms (Jeremias et al., 2018). The dynamic epigenetic 714 
system, in interaction with the environment, can thus direct genetically determined natural selection 715 
(Manjrekar, 2017). As a consequence, epigenetic processes can support fast intraspecific adaptation, 716 
impacting ecosystem services and functions (McCaw et al., 2020; Rey et al., 2020). Although 717 
epigenetic variation and processes appear to strongly vary across species with regard to their 718 
frequency and type of responses to climate change (McCaw et al., 2020), they can collectively impact 719 
important ES and their study is just beginning in non-model species.   720 

 721 

E3. Genomic applications in the natural resource policy context 722 

Adopting effective biodiversity conservation and management for ES is urgent and necessary in the 723 
current biodiversity crisis, and genetic and genomic methods and data are ready to be implemented 724 
to support the most effective management as we show in this paper (see also Hoban et al., 2020; 725 
Hoban et al., 2021a; Laikre et al., 2020). In this context, it is especially important that the CBD post-726 
2020 Global Biodiversity Framework adopt a strong goal for the conservation of genetic diversity, and 727 
genetic diversity indicators to monitor progress towards achieving this goal (Hoban et al., 2020; Hoban 728 
et al., 2021a). Genetic and genomic approaches are also crucial to improve management for the 729 
implementation of policies that are already in place, for biodiversity conservation and provision of ES 730 
as well as for human well-being, such as the UN 2030 sustainable development goals, and the EU 731 
Biodiversity strategy for 2030. For example, genomics can help decide which species and 732 
provenances are the most suitable for major ongoing tree planting initiatives, such as the ‘3 Billion 733 
Trees Pledge’ committed by the EU biodiversity strategy for 2030 under the EU Green deal, and its 734 
North American counterparts, the ‘1 trillion tree initiative’ in the USA and the ‘2 billion trees 735 
commitment’ in Canada. Genomic applications will also support a faster implementation of sustainable 736 
fishing practices regulated by the EU Common fisheries policy and the Marine Strategy Framework 737 
Directive. Long-term natural resource planning and policy requires genetic diversity and gene flow 738 
information in increasing numbers of species to reach the best management decisions without 739 
compromising the resilience and adaptive potential of ecosystems (G-BIKE, 2020). Novel 740 
developments and adaptations of the policy framework will be necessary to allow for ambitious MGs 741 
to adapt natural resources to future needs. For example, legal recognition of hybrids in conservation 742 
and natural resource policies would make a significant step forward to enhance such MGs, recognizing 743 
that species are not fixed but evolving entities (Draper et al., 2021; Fitzpatrick et al., 2015). Other 744 
ambitious policy developments that genomic data can support through proposing consensus methods 745 
concern the taxonomic delimitation of closely related species in species complexes (Coates et al., 746 
2018) and the conservation of adaptive potential (Funk et al., 2019).  747 
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E4. Genomics applications in natural resource management in practice 749 

The scientific community is increasingly well organised, in conjunction with natural resource managers, 750 
to use the most powerful scientific knowledge to promote and achieve ambitious goals for biodiversity 751 
in policy and practice, e.g., through collaborative instruments such as the EU COST Action G-BIKE 752 
(Genomic Biodiversity Knowledge for Resilient Ecosystems, G-BiKE, 2019) or the Coalition for 753 
Conservation Genetics that federates four eminent organisations (Kershaw et al., 2022). Scientists 754 
increasingly recognize the power of genome-wide data for monitoring and managing genetic diversity 755 
(e.g., Meuwissen et al., 2020), with the great promise of mitigating the ever intensifying environmental 756 
change. At the same time, natural resource managers are increasingly aware of the benefits provided 757 
by genomic monitoring tools, and teaming up with geneticists for timely interventions and optimising 758 
ES. There remains a need to enhance standardisation and simplification of genomic data acquisition 759 
and analysis workflows to reduce the cost, increase the speed and facilitate the practical deployment 760 
of genomics in MAs (Rossetto et al., 2021; von Thaden et al., 2020). Synergies between scientists 761 
and ES managers need to be increasingly fostered not only at international (Kershaw et al., 2022) but 762 
also national and local levels to bridge the science-ES management application gap. Ambitious goals 763 
for biodiversity conservation, its sustainable use and provision of ES can be achieved by merging the 764 
high level of expertise required to analyse the genomic data and the expertise of real-world ES 765 
management using appropriate workflows, deploying genomics training to ES managers, and 766 
incorporating indigenous and local knowledge into science-informed MAs (e.g., Díaz et al., 2020). In 767 
COST Action G-BIKE we follow this rationale, and in this work in particular, we prepared a “Brief for 768 
nature managers” (Supplementary material S2) that summarizes our main findings and provides 769 
application examples targeted to biodiversity and ES managers. The brief will be made available on 770 
the G-BIKE website (https://g-bikegenetics.eu/) in a user-friendly layout with illustrations and 771 
translated to several languages for dissemination. Another example framework for science-informed 772 
biodiversity and conservation actions on the ground is the Biodiversity and Ecosystem Services 773 
Network (BES-Net) that builds capacity and commitment for biodiversity action across the world by 774 
translating the latest IPBES products into action, but BES-Net still lacks the implementation of 775 
genomics. Governments and natural resource managers need to embrace the huge potential of 776 
genomics for ES, particularly in this time of rapid changes in our ecosystems as a result of 777 
anthropogenic effects. 778 
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S1 Keyword analysis - How does genomics link to ecosystem services in 1636 
the scientific literature?  1637 

To systematically and quantitatively examine the links between the concepts of genomics, biodiversity 1638 
and different types of ecosystem services in the scientific literature, we assessed and analysed the 1639 
co-occurrence of keywords attributed to these concepts in the abstracts of published articles.  1640 
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 1641 
Methods - We conducted a terminology research on Pubmed Central 1642 
(https://www.ncbi.nlm.nih.gov/pmc/) for pairwise combinations of the terms “biodiversity”, “ecosystem 1643 
service” and “genomics” in the body text of articles on October 8th, 2020, using the “Advanced search” 1644 
tools. The search command was formulated as “(ecosystem service[Body - All Words] AND 1645 
biodiversity[Body - All Words]) OR (ecosystem service[Body - All Words] AND genomics[Body - All 1646 
Words]) OR (biodiversity[Body - All Words] AND genomics[Body - All Words])”. Abstracts of all 1647 
retrieved papers were searched with 1. Target keywords (“ecosystem service”, “genom” and 1648 
“biodiversity”); 2. Keywords or combinations of keywords describing ES Classes belonging to the three 1649 
ES Sections Provisioning ES, Regulation and maintenance ES, and Cultural ES, as defined by the 1650 
Common International Classification of Ecosystem Services, v5.1 available at https://cices.eu/. CICES 1651 
classifies ES in a system of four hierarchical levels, 1) Sections, 2) Divisions, 3) Groups, and 4) 1652 
Classes. We attributed each retrieved paper to one or more Classes (four-number code of CICES) 1653 
based on keywords found in the abstract that matched the corresponding CICES Class descriptions. 1654 
  1655 
Results - Our keyword research yielded 6417 references, the earliest published in 1993; 6064 papers 1656 
had an abstract and were analysed. The target keywords “biodiversity”, “ecosystem service” and 1657 
“genom” appeared in the abstracts of 2211, 616 and 1114 retrieved papers, respectively, representing 1658 
a total of 2871 papers (Figure S1). We discovered that only 9 papers mentioned “genom” (contained 1659 
in genome, genomic, genomics) and “ecosystem service” simultaneously in the abstract although both 1660 
concepts are well connected through biodiversity (Figure S1). The links between the keywords 1661 
“genomics” and “ecosystem services” appear poorly exploited in the literature, but the strong 1662 
connection of both concepts with biodiversity illustrates that there is potential of genomic studies for 1663 
ES valuation. 1664 
 1665 

 1666 
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 1667 
 1668 

Figure S1. Articles retrieved in a search on Pubmed Central (https://www.ncbi.nlm.nih.gov/pmc/) for 1669 
pairwise combinations of the terms “biodiversity”, “ecosystem service” and “genomics” in the body text 1670 
of articles, on October 20, 2020. 1671 
 1672 
A total of 2871 papers were attributed to specific ES Sections, 720 to the Provisioning Section, 1903 1673 
to the Regulation and Maintenance section and 929 to the Cultural Section (Figure S2); multiple 1674 
attributions were possible. The “genom” term was associated with articles from the three Sections in 1675 
proportions similar to the number of articles retrieved. 1676 
Within the Provisioning ES Section, the retrieved papers were unevenly distributed across Classes: 1677 
Studies on plants as food crops (1.1.1.1) or for materials (1.1.1.2) were represented about four times 1678 
more frequently than such studies on animals (1.1.3.1 and 1.1.3.2). Genetic resources as materials 1679 
for breeding (1.2.1.2, 1.2.2.2, 1.2.2.3) or population conservation (1.2.1.1, 1.2.2.1) were also well 1680 
represented (see Supplementary material). 1681 
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 1682 

Figure S2. Attribution of articles with the target keywords “biodiversity”, “ecosystem service” or 1683 
“genom” appearing in their abstracts to Sections and Classes of Ecosystem Services as defined by 1684 
CICES. Only classes with more than 30 attributed studies are represented.  1685 

In the Classes of the Provisioning Section with more than 30 studies represented (Figure S2), we 1686 
illustrate the percentage of studies in which our target keywords occurred in the abstract. The “genom” 1687 
term occurred in over 50% of the studies on breeding or population establishment or conservation 1688 
(1.2.1.1., 1.2.1.2, 1.2.2.1, 1.2.2.2, 1.2.2.3), and was more frequent in classes on food (1.1.1.1, 1.1.3.1) 1689 
and materials (1.1.1.2, 1.1.3.2) than energy (1.1.1.3). The ecosystem service term was, strikingly, very 1690 
poorly represented in these Classes on breeding or conservation, suggesting that studies on the 1691 
provision of genetic materials or resources are not commonly presented as targeting an ES. The 1692 
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biodiversity term was mentioned as the most frequently associated keywords in Classes on fisheries 1693 
(1.1.4.1) or wild-sourced food or materials (1.1.5.1, 1.1.5.2). When characterizing genetic materials 1694 
using genomic tools, scientists are fulfilling a Provisioning ES, a link that could be made more visible 1695 
in future genomic studies. 1696 

In the Regulation and Maintenance ES Section, the retrieved studies were attributed to Classes in a 1697 
strongly uneven way, with a strong overrepresentation of studies attributed to the Class on filtration, 1698 
sequestration, storage or accumulation (2.1.1.2) and a near-absence of studies in the Classes that 1699 
focus on the contribution of living organisms in the regulation of soils (2.2.4.x, 2.2.5.x). The “genom” 1700 
term (Figure 2B) was mostly associated with bioremediation (2.1.1.1), filtration / sequestration / 1701 
storage / accumulation (2.1.1.2) and disease control (2.2.3.2). These Classes are much less 1702 
associated with the ES term, and thus not explicitly valued as ecosystem services. Genomics was little 1703 
associated with water flow regulation (2.2.1.3), and perhaps, unexpectedly, with pollen or seed 1704 
dispersal (2.2.2.1, 2.2.2.2) and control of invasives (2.2.3.1). The latter categories are strongly 1705 
associated with the biodiversity and ES terms though, and thus correctly valued as such in the 1706 
literature.  1707 
 1708 
In the ES Section on Culture, most retrieved studies were attributed to the Class on nature-related 1709 
knowledge or research (3.1.2.1), and accessorily to the one on nature-related training or education 1710 
(3.1.2.2); Classes on nature-related experiences and wellbeing (3.1.1.1, 3.1.1.2) or entertainment and 1711 
representation (3.2.1.3) were also significantly represented (> 30 studies/ Class; FIgure 2C). Classes 1712 
related to natural heritage, aesthetic, spiritual or religious experiences were little represented. 1713 
Genomics was predominantly associated with the class on nature-related knowledge or research 1714 
(3.1.2.1) and that on representation (3.2.1.3), although the latter could be an artifact due to multiple 1715 
meanings of the term “representation”; genomics was little associated with nature-related experiences 1716 
and human well-being (3.1.1.1, 3.1.1.2), although the latter classes are clearly associated with 1717 
biodiversity and ecosystem services.  1718 

Our keyword analysis on the terms genomics, biodiversity and ecosystem services in the scientific 1719 
literature has limitations, especially due to the fact that the words used to define ES classes can have 1720 
multiple meanings and that CICES categories are unevenly covered in the scientific literature. The 1721 
analysis allows us to conclude that the link between genomics and ecosystem services is exploited in 1722 
breeding and biodiversity conservation studies, but that there is potential for genomics studies in other 1723 
fields to highlight more clearly their contribution to ES. 1724 

- For Provisioning ES, the genomic characterization of materials can be better promoted as an 1725 
ES. 1726 

- For Regulation and Maintenance ES, genomic studies relating to bioremediation, filtration, 1727 
sequestration, storage or accumulation and with disease control have potential to be better 1728 
values as delivering ES. 1729 

- For Cultural ES, genomic applications are not much represented beyond knowledge 1730 
generation, thus there is no clear potential identified to value them as ES. 1731 
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To better exploit this link, researchers could use a multidirectional approach based on 1. identifying 1732 
the ES that match the object of their genomic work, instead of using biodiversity-centered approach 1733 
only; 2. targeting genomic studies toward ES that have received little contributions from genomics but 1734 
where a potential may exist, through including genome-ES studies into existing and future projects 1735 
and programmes. 1736 

1737 
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S2 Brief for nature managers - Genomic applications for the 1738 

conservation and management of biodiversity and ecosystem 1739 

services 1740 
 1741 
● The ongoing loss of biodiversity impacts ecosystem services (ES), the benefits that ecosystems 1742 

provide to people (e.g., pollination, timber production, water filtration)  1743 
● High biodiversity within species, i.e., genetic diversity, allows populations and species to adapt 1744 

and be resilient in the long-term 1745 
● Long-term resilient communities yield sustainable ES 1746 
● Nature managers can use genetic diversity information to more effectively 1747 

o achieve biodiversity conservation and sustainable nature management goals 1748 
o comply with biodiversity policies 1749 

 1750 
 1751 
 1752 
WHY AND HOW – Collaboration with scientists 1753 
can provide genetic or genomic diversity 1754 
knowledge (BOX) that benefits nature managers 1755 
to:  1756 
● Design management actions based on 1757 

genetic indicators to meet their ES goals 1758 
● Monitor the success of implemented 1759 

management actions 1760 
● Adjust management actions as necessary 1761 

to achieve sustainability 1762 
 1763 
 1764 
 1765 
 1766 

 1767 
Nature management goals that support 1768 
sustainable ecosystem services and benefit from 1769 
genomic diversity knowledge 1770 
● Conservation of threatened species and 1771 

delineation of conservation/management areas 1772 
● Management  1773 

o for sustainable productivity  1774 
o for adaptation to climate change  1775 
o of invasive species  1776 
o of host-microbe interaction, e.g., pest control, 1777 

symbionts  1778 
o of microbial communities  1779 
o for ES derived from water, soils and sediments 1780 

● Species, habitat and ecosystem restoration  1781 
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● Implementation of new biodiversity policies 1782 
BOX: Genetic diversity is the intraspecific diversity between individuals within a species, 
encoded in DNA and expressed in diverse phenotypes and adaptations to environments. 

Genetic diversity 

● Determines species’ adaptive potential to environmental change,  
● Increases ecosystem resilience in the face of climate change and anthropogenic risks, 
● Supports all the other levels of biodiversity that deliver ecosystem services, benefiting 

people 

Genomic diversity refers to genetic diversity measured at hundreds to millions of DNA sites 
spread across the genome. It provides highly detailed information on  

● Genetic diversity and inbreeding within populations 
● Genetic structure among populations 
● Species’ past demographic and selection history 
● Genes involved in adaptive variation and adaptive potential 
● Genomic signatures of hybridization 

 1783 
WHICH DATA - Genomic diversity information to support management can be collected  1784 
● in a species threatened by extinction 1785 
● in the species most relevant for the ecosystem function or service of interest 1786 
● in interacting species, e.g., invasive species, hybrids, host-pest systems 1787 
● in a community of microbes 1788 
 1789 

Management goals Genomics-informed management actions 
Population or species 
conservation 

reduce inbreeding to prevent inbreeding depression, preserve gene 
pools, assist colonisation, design conservation areas that maximise 
adaptive potential 

Sustainable productivity identify populations (stocks) for management, breed for/promote 
productivity while conserving genetic diversity 

Climate adaptation favour adaptive alleles while conserving genetic diversity, assisted 
gene flow, assisted colonization 

Restoration perform climate-adjusted provenancing while conserving genetic 
diversity 

Pest control monitor disease dynamics, identify and promote co-evolved 
resistance, prevent pest spillover 
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Microbial community 
management 

characterise community function and manage it, e.g., through 
associated vegetation or inoculation to promote desired properties 

Control of invasives identify alien species to prevent invasion, identify invasive genotypes 
 1790 
 1791 
 1792 
IN PRACTICE, NATURE MANAGERS CAN  1793 
● Collaborate with scientists on data, methods and implementation of new policies 1794 
● Discuss the need for genomic data, its collection and use for a given management goal 1795 
● Use genomic information to identify risks of management options, including inaction 1796 

o e.g., inbreeding, maladaptation and local extinction risks in the absence of active 1797 
management 1798 

o e.g., risks of co-translocated pathogens in the case of translocation or population 1799 
supplementation 1800 

● Implement the best genomics-informed management actions and monitor their risks and 1801 
successes  1802 

Examples of genomic applications for nature management 1803 
Illustration  
of Atlantic  
cod 

Genomic applications help 
to secure the future of 
seafood. Genomic 
applications revealed the 
geographic distribution of 
distinct Atlantic cod 
ecotypes and the genome 
regions responsible for their 
differential adaptation. 

Illustration of 
a bat of 
genus Myotis 

Including information on 
adaptive genomic variation in 
species distribution modelling 
improves projections for future 
range losses and the potential 
for population rescue using 
population genetic connectivity 
or assisted colonization. 

Illustration 
of 
Australian 
Acacia 
woodland 

Genomics-informed 
provenancing strategies for 
woodland restoration that 
account for the drivers of 
genomic divergence 
achieve better proofing to 
future climates than 
strategies based on 
distribution similarity of tree 
species.    

Illustration of 
a pine 
seedling 

Monitoring of gene flow from 
exotic plantations into native 
relict stands of Mediterranean 
conifers demonstrated that the 
proportion of exotic-sired 
offspring decreased from seeds 
to established seedlings. Exotic 
pollen did not lead to fitness 
reduction in offspring in native 
stands. 
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Illustration 
of one of 
the pest 
species or 
leaf 
lesions  
from the 
paper 

Genomic biosurveillance of 
tree pathogens and pests 
can be reliably conducted 
on plant lesions, even in situ 
in remote forests, allowing 
for fast and accurate 
identification that can speed 
up management 
interventions. 

Illustration of 
an 
abandoned 
mining site 

Metabarcoding of soil microbial 
communities informs on the 
effectiveness of soil 
reclamation activities, as 
shown on the site of an 
abandoned iron and sulfur 
mine in southern Poland where 
soil restoration measures were 
conducted in the 1970s.  

 1804 
 1805 
BENEFITS FOR POLICY IMPLEMENTATION 1806 
Genomics-informed management is adapted to an ambitious policy framework for nature 1807 
conservation and management. It helps to meet the requirements of 1808 
● the EU Habitat directives,  1809 
● the EU Natura 2000 network management, 1810 
● the CBD Post-2020 global biodiversity framework,  1811 
● the UN 2030 sustainable development goals,  1812 
● the EU 2030 Biodiversity strategies,  1813 
● the EU Forest strategy for 2030, 1814 
● the EU Green deal and infrastructure strategy,  1815 
● the EU Water Framework Directive,  1816 
● the EU Common fisheries policy and Marine Strategy Framework Directive 1817 

 1818 
The content of this brief for nature managers is based on research published in Biological Conservation and 1819 
developed by COST Action G-Bike (Genomic biodiversity knowledge for resilient ecosystems) under working 1820 
group 3 Genomics and ecosystem services https://g-bikegenetics.eu/en 1821 

 1822 
 1823 
 1824 
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